-
Notifications
You must be signed in to change notification settings - Fork 0
/
inv_RV_dependence.py
964 lines (818 loc) · 31.1 KB
/
inv_RV_dependence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
# This script calculates and fits the R(V) dependent relationship
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from collections import Counter
from scipy import stats, interpolate
from astropy.modeling import models, fitting
from astropy.table import Table
from matplotlib.lines import Line2D
from synphot import SpectralElement, SourceSpectrum, Observation
from synphot.models import Empirical1D
import astropy.units as u
from measure_extinction.extdata import ExtData
from dust_extinction.parameter_averages import CCM89, F19
def get_data(inpath, starpair_list_diff, starpair_list_dense, norm="V"):
"""
Obtain the required data for all stars in the star pair lists:
- A(lambda)/A(V)
- 1/R(V)
- A(V)
Parameters
----------
inpath : string
Path to the input data files
starpair_list_diffuse : list of strings
List of diffuse star pairs to include in the fitting, in the format "reddenedstarname_comparisonstarname" (no spaces)
starpair_list_dense : list of strings
List of dense star pairs to include in the fitting, in the format "reddenedstarname_comparisonstarname" (no spaces)
norm : string [default="V"]
Band or wavelength for the normalization
Returns
-------
1/R(V) with uncertainties, A(V) with uncertainties, A(lambda)/A(V) with uncertainties, wavelengths, boolean for dense/diffuse
"""
starpair_list = starpair_list_diff + starpair_list_dense
inv_RVs = np.zeros((len(starpair_list), 3))
AVs = np.zeros((len(starpair_list), 3))
# determine the wavelengths at which to retrieve the extinction data
extdata_model = ExtData("%s%s_ext.fits" % (inpath, starpair_list[0].lower()))
waves = np.sort(
np.concatenate(
(
extdata_model.waves["SpeX_SXD"].value,
extdata_model.waves["SpeX_LXD"].value,
)
)
)
alavs = np.full((len(waves), len(starpair_list)), np.nan)
alav_uncs = np.full((len(waves), len(starpair_list)), np.nan)
dense_bool = np.full(len(starpair_list), False)
# retrieve the information for all stars
for i, starpair in enumerate(starpair_list):
# retrieve 1/R(V) and A(V) (with uncertainties)
extdata = ExtData("%s%s_ext.fits" % (inpath, starpair.lower()))
inv_RVs[i] = np.array(extdata.columns["IRV"])
AVs[i] = np.array(extdata.columns["AV"])
# transform the curve from E(lambda-V) to A(lambda)/A(V)
extdata.trans_elv_alav()
# get the good data in flat arrays
(flat_waves, flat_exts, flat_exts_unc) = extdata.get_fitdata(
["SpeX_SXD", "SpeX_LXD"]
)
# convert extinction from A(lambda)/A(V) to A(lambda)/A(norm) if norm is not "V"
if norm != "V":
ind1 = np.abs(flat_waves.value - norm).argmin()
flat_exts = flat_exts / flat_exts[ind1]
flat_exts_unc = flat_exts_unc / flat_exts[ind1]
# retrieve A(lambda)/A(V) at all wavelengths
for j, wave in enumerate(waves):
if wave in flat_waves.value:
alavs[j][i] = flat_exts[flat_waves.value == wave]
alav_uncs[j][i] = flat_exts_unc[flat_waves.value == wave]
# flag the dense sightlines
if starpair in dense:
dense_bool[i] = True
return inv_RVs, AVs, alavs, alav_uncs, waves, dense_bool
def get_phot(waves, exts, bands):
"""
Compute the extinction in the requested bands
Parameters
----------
waves : numpy.ndarray
The wavelengths
exts : numpy.ndarray
The extinction values at wavelengths "waves"
bands: list of strings
Bands requested
Outputs
-------
band extinctions : numpy array
Calculated band extinctions
"""
# create a SourceSpectrum object from the extinction curve
spectrum = SourceSpectrum(
Empirical1D,
points=waves * 1e4,
lookup_table=exts,
)
# path for band response curves
band_path = (
"/Users/mdecleir/measure_extinction/measure_extinction/data/Band_RespCurves/"
)
# dictionary linking the bands to their response curves
bandnames = {
"J": "2MASSJ",
"H": "2MASSH",
"K": "2MASSKs",
"IRAC1": "IRAC1",
"IRAC2": "IRAC2",
"WISE1": "WISE1",
"WISE2": "WISE2",
"L": "AAOL",
"M": "AAOM",
}
# compute the extinction value in each band
band_ext = np.zeros(len(bands))
for k, band in enumerate(bands):
# create the bandpass (as a SpectralElement object)
bp = SpectralElement.from_file(
"%s%s.dat" % (band_path, bandnames[band])
) # assumes wavelengths are in Angstrom!!
# integrate the extinction curve over the bandpass, only if the bandpass fully overlaps with the extinction curve (this actually excludes WISE2)
if bp.check_overlap(spectrum) == "full":
obs = Observation(spectrum, bp)
band_ext[k] = obs.effstim().value
else:
band_ext[k] = np.nan
return band_ext
def calc_corr(f, f_unc, g, g_unc, fac, fac_unc):
"""
Function to calculate the correlation coefficients between two (arrays of) quantities (functions) f and g that have a common denominator fac with uncertainty fac_unc
Parameters
----------
f : np.ndarray
Numpy array with values of the first quantity
f_unc : np.ndarray
Numpy array with uncertainties of the first quantity
g : np.ndarray
Numpy array with values of the second quantity
g_unc : np.ndarray
Numpy array with uncertainties of the second quantity
fac : np.ndarray
Numpy array with values of the common factor
fac_unc : np.ndarray
Numpy array with uncertainties of the common factor
Returns
-------
The correlation coefficients between two quantities f and g
"""
# calculate the covariance between f and g
# cov(f,g) = (df/dfac) * (dg/dfac) * fac_unc**2
# in this case f=x/fac, g=y/fac
# so cov(f,g) = f * g * fac_unc**2 / fac**2
cov = f * g * fac_unc ** 2 / fac ** 2
# calculate and return the correlation coefficient between f and g
# corr = cov(f,g) / (f_unc * g_unc)
return cov / (f_unc * g_unc)
def plot_inv_rv_dep(
outpath,
inv_RVs,
alavs,
alav_uncs,
waves,
plot_waves,
slopes,
intercepts,
dense,
norm="V",
):
"""
Plot the relationship between A(lambda)/A(V) and 1/R(V)-1/3.1 at wavelengths "plot_waves"
Parameters
----------
outpath : string
Path to save the plot
inv_RVs : np.ndarray
Numpy array with 1/R(V) values and uncertainties
alavs : np.ndarray
Numpy array with A(lambda)/A(V) values
alav_uncs : np.ndarray
Numpy array with A(lambda)/A(V) uncertainties
waves : np.ndarray
Numpy array with all wavelengths for which A(lambda)/A(V) is given
plot_waves : list
List with wavelengths for which to plot the relationship
slopes : np.ndarray
Numpy array with the slopes of the linear relationship
intercepts : np.ndarray
Numpy array with the intercepts of the linear relationship
dense : list of booleans
Whether or not the sightline is dense
norm : string [default="V"]
Band or wavelength for the normalization
Returns
-------
Plot of A(lambda)/A(V) vs. 1/R(V)-1/3.1 at wavelengths "plot_waves"
"""
fig, ax = plt.subplots(
len(plot_waves), figsize=(7, len(plot_waves) * 4), sharex=True
)
if norm != "V":
norm = str(norm) + r"\mu m"
for j, wave in enumerate(plot_waves):
indx = np.abs(waves - wave).argmin()
# plot the data and the fitted line, give the dense sightlines a different color and marker
handle1 = ax[j].errorbar(
inv_RVs[dense][:, 0] - 1 / 3.1,
alavs[indx][dense],
xerr=(
inv_RVs[dense][:, 1],
inv_RVs[dense][:, 2],
),
yerr=alav_uncs[indx][dense],
ms=5,
fmt="s",
color="magenta",
elinewidth=0.5,
)
handle2 = ax[j].errorbar(
inv_RVs[~dense][:, 0] - 1 / 3.1,
alavs[indx][~dense],
xerr=(
inv_RVs[~dense][:, 1],
inv_RVs[~dense][:, 2],
),
yerr=alav_uncs[indx][~dense],
ms=5,
fmt="ok",
elinewidth=0.5,
)
xs = np.arange(-0.155, 0.12, 0.01)
ax[j].plot(
xs,
slopes[indx] * xs + intercepts[indx],
color="forestgreen",
ls="-",
label=r"$%5.3f\, %+5.3f\, [1/R(V)-1/3.1]$"
% (intercepts[indx], slopes[indx]),
)
ax[j].set_ylabel(r"$A(" + "{:1.2f}".format(wave) + "\mu m)/A(" + norm + ")$")
ax[j].legend(loc="lower left", fontsize=fs * 0.8)
# add literature curves, only if normalized to A(V)
if norm == "V":
styles = ["--", ":"]
for i, cmodel in enumerate([CCM89, F19]):
if wave > 3.3:
continue
yvals = []
for xval in xs:
ext_model = cmodel(Rv=1 / (xval + 1 / 3.1))
yvals.append(ext_model(wave * u.micron))
ax[j].plot(
xs,
yvals,
lw=1.5,
ls=styles[i],
alpha=0.8,
)
line_handles = [
Line2D([0], [0], color="tab:blue", lw=1.5, ls="--"),
Line2D([0], [0], color="tab:orange", lw=1.5, ls=":"),
]
line_labels = [
"Cardelli et al. (1989)",
"Fitzpatrick et al. (2019)",
]
# finalize the plot
plt.xlabel(r"$\frac{1}{R(V)} - \frac{1}{3.1}$", fontsize=fs * 1.3)
plt.subplots_adjust(hspace=0)
handles = [handle1, handle2]
labels = ("dense", "diffuse")
fig.legend(handles, labels, bbox_to_anchor=(0.4, 0.19), fontsize=fs * 0.8)
if norm == "V":
fig.legend(
line_handles, line_labels, bbox_to_anchor=(0.65, 0.8), fontsize=fs * 0.8
)
plt.savefig(
outpath + "inv_RV_dep" + norm.split("\\")[0] + ".pdf", bbox_inches="tight"
)
def table_inv_rv_dep(
outpath, table_waves, fit_slopes, fit_intercepts, fit_stds, norm="V"
):
"""
Create tables with the slopes, intercepts and standard deviations at wavelengths "table_waves", and the measured and fitted average extinction curve
Parameters
----------
outpath : string
Path to save the table
table_waves : list
List with wavelengths to be included in the table
fit_slopes : tuple
The interpolated spline for the slopes
fit_intercepts : astropy model
The fitted model for the intercepts
fit_stds : tuple
The interpolated spline for the standard deviations
norm : string [default="V"]
Band or wavelength for the normalization
Returns
-------
Tables of the R(V)-dependent relationship at wavelengths "table_waves":
- in aaxtex format for the paper
- in ascii format
"""
# obtain the slopes, intercepts and standard deviations at the table wavelengths
table_slopes = interpolate.splev(table_waves, fit_slopes)
table_intercepts = fit_intercepts(table_waves)
table_stds = interpolate.splev(table_waves, fit_stds)
# obtain the measured average extinction curve
average = ExtData(inpath + "average_ext.fits")
(ave_waves, exts, exts_unc) = average.get_fitdata(["SpeX_SXD", "SpeX_LXD"])
indx = np.argsort(ave_waves)
ave_waves = ave_waves[indx].value
exts = exts[indx]
exts_unc = exts_unc[indx]
# create wavelength bins and calculate the binned median extinction and uncertainty
bin_edges = np.insert(table_waves + 0.025, 0, table_waves[0] - 0.025)
meds, edges, indices = stats.binned_statistic(
ave_waves,
(exts, exts_unc),
statistic="median",
bins=bin_edges,
)
# obtain the fitted average extinction curve
ave_fit = average.model["params"][0] * table_waves ** (-average.model["params"][2])
# obtain the measured average extinction in a few photometric bands
bands = ["J", "H", "K", "WISE1", "L", "IRAC1"]
band_waves = [1.22, 1.63, 2.19, 3.35, 3.45, 3.52]
band_ave = get_phot(ave_waves, exts, bands)
band_ave_unc = get_phot(ave_waves, exts_unc, bands)
# obtain the fitted average extinction in a few photometric bands
all_waves = np.arange(0.8, 4.05, 0.001)
ave_fit_all = average.model["params"][0] * all_waves ** (
-average.model["params"][2]
)
band_ave_fit = get_phot(all_waves, ave_fit_all, bands)
# obtain the slopes, intercepts and standard deviations in a few photometric bands
band_slopes = get_phot(all_waves, -interpolate.splev(all_waves, fit_slopes), bands)
band_intercepts = get_phot(all_waves, fit_intercepts(all_waves), bands)
band_stds = get_phot(all_waves, interpolate.splev(all_waves, fit_stds), bands)
# create the table
table = Table(
[
np.concatenate((band_waves, table_waves)),
np.concatenate((band_ave, meds[0])),
np.concatenate((band_ave_unc, meds[1])),
np.concatenate((band_ave_fit, ave_fit)),
np.concatenate((band_intercepts, table_intercepts)),
np.concatenate((-band_slopes, table_slopes)),
np.concatenate((band_stds, table_stds)),
],
names=(
"wavelength[micron]",
"ave",
"ave_unc",
"ave_fit",
"intercept",
"slope",
"std",
),
)
# save it in ascii format
table.write(
outpath + "inv_RV_dep" + str(norm) + ".txt",
format="ascii.commented_header",
overwrite=True,
)
# save it in aastex format
table.write(
outpath + "inv_RV_dep" + str(norm) + ".tex",
format="aastex",
names=(
r"$\lambda\ [\micron]$",
r"$\frac{A(\lambda)}{A(V)}$",
"unc",
"fit",
r"$a(\lambda$)",
r"$b(\lambda$)",
r"$\sigma(\lambda)$",
),
formats={
r"$\lambda\ [\micron]$": "{:.2f}",
r"$\frac{A(\lambda)}{A(V)}$": "{:.3f}",
"unc": "{:.3f}",
"fit": "{:.3f}",
r"$a(\lambda$)": "{:.3f}",
r"$b(\lambda$)": "{:.3f}",
r"$\sigma(\lambda)$": "{:.3f}",
},
latexdict={
"col_align": "c|ccc|ccc",
"tabletype": "deluxetable",
"caption": r"Average diffuse Milky Way extinction curve and parameters of the linear relationship between extinction $A(\lambda)/A(V)$ and $1/R(V)$. \label{tab:RV_dep}",
},
fill_values=[("nan", r"\nodata")],
overwrite=True,
)
def table_spline(outpath, waves, slopes, stds, norm):
"""
Create a table with the achor points of the spline interpolation
Parameters
----------
outpath : string
Path to save the table
waves : np.ndarray
Numpy array with anchor wavelengths
slopes : np.ndarray
Numpy array with anchor slopes
stds : np.ndarray
Numpy array with anchor standard deviations
norm : string [default="V"]
Band or wavelength for the normalization
Returns
-------
Table with the anchor points of the spline interpolation (in ascii format)
"""
# create the table
table = Table(
[waves, slopes, stds],
names=(
"wavelength[micron]",
"slope",
"std",
),
)
# save it in ascii format
table.write(
outpath + "inv_RV_anchors" + str(norm) + ".txt",
format="ascii.commented_header",
overwrite=True,
)
def fit_slopes_intercepts(slopes, intercepts, stds, waves, norm):
"""
Fit the slopes, intercepts and standard deviations vs. wavelength
Parameters
----------
slopes : np.ndarray
Numpy array with the slopes of the linear relationship
intercepts : np.ndarray
Numpy array with the intercepts of the linear relationship
stds : np.ndarray
Numpy array with the standard deviations about the linear fit
waves : np.ndarray
Numpy array with all wavelengths
norm : string [default="V"]
Band or wavelength for the normalization
Returns
-------
spline_wave : np.ndarray
Numpy array with the anchor wavelengths
spline_slope : np.ndarray
Numpy array with the anchor slopes
spline_std : np.ndarray
Numpy array with the anchor standard deviations
fit_slopes : tuple
The interpolated spline for the slopes
fit_intercepts : astropy model
The fitted model for the intercepts
fit_stds : tuple
The interpolated spline for the standard deviations
"""
# define a mask for the good data
mask = ~np.isnan(slopes)
short_wave_mask = waves < 4.1
# fit the intercepts with a power law
fit_lev = fitting.LevMarLSQFitter()
powerlaw = models.PowerLaw1D(fixed={"x_0": True})
fit_intercepts = fit_lev(powerlaw, waves[mask], intercepts[mask])
# define the anchor points for the spline interpolation
# divide the data into 25 bins with the same number of data points in every bin
alloc, bin_edges = pd.qcut(waves[mask * short_wave_mask], q=25, retbins=True)
# calculate the median wavelength, slope and standard deviation in every bin
meds, edges, indices = stats.binned_statistic(
waves[mask * short_wave_mask],
(
waves[mask * short_wave_mask],
slopes[mask * short_wave_mask],
stds[mask * short_wave_mask],
),
statistic="median",
bins=bin_edges,
)
# use the median values as the anchor points for the spline interpolation
spline_wave = meds[0][~np.isnan(meds[0])]
spline_slope = meds[1][~np.isnan(meds[1])]
spline_std = meds[2][~np.isnan(meds[2])]
# interpolate the slopes with a spline function
fit_slopes = interpolate.splrep(spline_wave, spline_slope)
# interpolate the standard deviations with a spline function
fit_stds = interpolate.splrep(spline_wave, spline_std)
# create tables with the fitting results at certain wavelengths
table_waves = np.arange(0.8, 4.05, 0.05)
table_inv_rv_dep(
table_path, table_waves, fit_slopes, fit_intercepts, fit_stds, norm
)
# create a table with the anchor points of the spline interpolation
table_spline(table_path, spline_wave, spline_slope, spline_std, norm)
return spline_wave, spline_slope, spline_std, fit_slopes, fit_intercepts, fit_stds
def plot_inv_RV_lit(outpath, fit_slopes, fit_intercepts, fit_stds):
"""
Plot the R(V)-dependent extinction curve for different R(V) values, together with R(V)-dependent curves from the literature
Parameters
----------
outpath : string
Path to save the plot
fit_slopes : tuple
The interpolated spline for the slopes
fit_intercepts : astropy model
The fitted model for the intercepts
Returns
-------
Plot with the R(V)-dependent extinction curve for different R(V) values
"""
waves = np.arange(0.8, 4.01, 0.001)
fig, ax = plt.subplots(figsize=(10, 9))
for i, RV in enumerate([2.5, 3.1, 5.5]):
# plot the extinction curve from this work
offset = 0.1 * i
slopes = interpolate.splev(waves, fit_slopes)
alav = fit_intercepts(waves) + slopes * (1 / RV - 1 / 3.1)
(line,) = ax.plot(waves, alav + offset, lw=1.5, label=r"$R(V) = $" + str(RV))
stddev = interpolate.splev(waves, fit_stds)
color = line.get_color()
ax.fill_between(
waves,
alav + offset - stddev,
alav + offset + stddev,
color=color,
alpha=0.2,
edgecolor=None,
)
# plot the literature curves
styles = ["--", ":"]
for i, cmodel in enumerate([CCM89, F19]):
ext_model = cmodel(Rv=RV)
(indxs,) = np.where(
np.logical_and(
1 / waves >= ext_model.x_range[0], 1 / waves <= ext_model.x_range[1]
)
)
yvals = ext_model(waves[indxs] * u.micron)
ax.plot(
waves[indxs],
yvals + offset,
lw=1.5,
color=color,
ls=styles[i],
alpha=0.8,
)
# add text
ax.text(3.45, 0.03, r"$R(V) = 2.5$", fontsize=0.8 * fs, color="tab:blue")
ax.text(3.45, 0.15, r"$R(V) = 3.1$", fontsize=0.8 * fs, color="tab:orange")
ax.text(3.45, 0.305, r"$R(V) = 5.5$", fontsize=0.8 * fs, color="tab:green")
# finalize and save the plot
ax.set_xlabel(r"$\lambda\ [\mu m$]", fontsize=1.2 * fs)
ax.set_ylabel(r"$A(\lambda)/A(V)$ + offset", fontsize=1.2 * fs)
ax.set_xlim(0.75, 4.05)
ax.set_ylim(-0.03, 0.98)
handles = [
Line2D([0], [0], color="k", lw=1.5),
Line2D([0], [0], color="k", lw=1.5, ls="--"),
Line2D([0], [0], color="k", lw=1.5, ls=":"),
]
labels = [
"this work",
"Cardelli et al. (1989)",
"Fitzpatrick et al. (2019)",
]
plt.legend(handles, labels, fontsize=fs)
plt.savefig(outpath + "inv_RV_lit.pdf", bbox_inches="tight")
# also save the plot in log scale
plt.ylim(0.01, 1)
plt.yscale("log")
plt.tight_layout()
plt.savefig(outpath + "inv_RV_lit_log.pdf")
def fit_plot_inv_rv_dep(
inpath, plot_path, table_path, starpair_list_diff, starpair_list_dense, norm="V"
):
"""
Fit and plot the relationship between A(lambda)/A(V) and 1/R(V)
Parameters
----------
inpath : string
Path to the input data files
plot_path : string
Path to save the plots
table_path : string
Path to save the table
starpair_list_diffuse : list of strings
List of diffuse star pairs to include in the fitting, in the format "reddenedstarname_comparisonstarname" (no spaces)
starpair_list_dense : list of strings
List of dense star pairs to include in the fitting, in the format "reddenedstarname_comparisonstarname" (no spaces)
norm : string [default="V"]
Band or wavelength for the normalization
Returns
-------
Several plots related to the R(V)-dependence
"""
# collect the data to be fitted
inv_RVs, AVs, alavs, alav_uncs, waves, dense_bool = get_data(
inpath, starpair_list_diff, starpair_list_dense, norm
)
inv_RV_vals = inv_RVs[:, 0]
inv_RV_uncs = (inv_RVs[:, 1] + inv_RVs[:, 2]) / 2
AV_vals = AVs[:, 0]
AV_uncs = (AVs[:, 1] + AVs[:, 2]) / 2
# for every wavelength, fit a straight line through the A(lambda)/A(V) vs. 1/R(V)-1/3.1 data
fit = fitting.LinearLSQFitter()
line_func = models.Linear1D()
slopes, intercepts, stds = np.full((3, len(waves)), np.nan)
corr_list = []
for j, wave in enumerate(waves):
mask = ~np.isnan(alavs[j])
npts = np.sum(mask)
# require at least 5 data points for the fitting
if npts < 5:
continue
fitted_line = fit(
line_func,
(inv_RV_vals[mask] - 1 / 3.1),
alavs[j][mask],
weights=1 / alav_uncs[j][mask],
)
# calculate the standard deviation about the fit
# the "residuals" in the fit_info is the sum of the squared residuals
# std = np.sqrt(fit.fit_info["residuals"] / (npts - 2))
# this does not work when using weights in the fitting
# dividing by npts-2 is needed, because there are npts-2 degrees of freedom (subtract 1 for the slope and 1 for the intercept)
std = np.sqrt(
np.sum((fitted_line(inv_RV_vals[mask] - 1 / 3.1) - alavs[j][mask]) ** 2)
/ (npts - 2)
)
slopes[j] = fitted_line.slope.value
intercepts[j] = fitted_line.intercept.value
stds[j] = std
# calculate the correlation coefficient between A(lambda)/A(V) and 1/R(V) for every sightline, and find out the range in correlation coefficients and the median value over all sightlines and all wavelengths
corr = calc_corr(
alavs[j][mask],
alav_uncs[j][mask],
inv_RV_vals[mask],
inv_RV_uncs[mask],
AV_vals[mask],
AV_uncs[mask],
)
for value in corr:
corr_list.append(value)
# print information about the correlation coefficients
print(
"Minimum, median and maximum correlation coefficients: ",
np.min(corr_list),
np.median(corr_list),
np.max(corr_list),
)
# plot A(lambda)/A(V) vs. 1/R(V) at certain wavelengths
plot_waves = [0.89864296, 1.6499686, 2.4527225, 3.5002365, 4.697073]
plot_inv_rv_dep(
plot_path,
inv_RVs,
alavs,
alav_uncs,
waves,
plot_waves,
slopes,
intercepts,
dense_bool,
norm=norm,
)
# plot the slopes, intercepts and standard deviations vs. wavelength
# color the data points at wavelengths > 4.03 gray
fig, ax = plt.subplots(3, figsize=(9, 9), sharex=True)
short_waves = (waves > 0.809) & (waves < 4.02)
ms = 0.8
ax[0].scatter(waves, intercepts, color="k", s=ms)
ax[1].scatter(waves[short_waves], slopes[short_waves], color="k", s=ms)
ax[1].scatter(waves[~short_waves], slopes[~short_waves], color="gray", s=ms)
ax[2].scatter(waves[short_waves], stds[short_waves], color="k", s=ms)
ax[2].scatter(waves[~short_waves], stds[~short_waves], color="gray", s=ms)
for wave in plot_waves:
indx = np.abs(waves - wave).argmin()
ax[0].scatter(wave, intercepts[indx], color="lime", s=50, marker="x", zorder=3)
ax[1].scatter(wave, slopes[indx], color="lime", s=50, marker="x", zorder=3)
ax[2].scatter(wave, stds[indx], color="lime", s=50, marker="x", zorder=3)
# fit the slopes, intercepts and standard deviations vs. wavelength, and add the fit to the plot
(
spline_wave,
spline_slope,
spline_std,
fit_slopes,
fit_intercepts,
fit_stds,
) = fit_slopes_intercepts(slopes, intercepts, stds, waves, norm)
ax[0].plot(
waves,
fit_intercepts(waves),
color="crimson",
ls="--",
alpha=0.9,
label=r"$%5.3f \ \lambda ^{-%5.2f}$"
% (fit_intercepts.amplitude.value, fit_intercepts.alpha.value),
)
slope_spline = interpolate.splev(waves[short_waves], fit_slopes)
ax[1].scatter(spline_wave, spline_slope, color="r", marker="d", s=15)
ax[1].plot(
waves[short_waves],
slope_spline,
color="crimson",
ls="--",
alpha=0.9,
)
std_spline = interpolate.splev(waves[short_waves], fit_stds)
ax[2].scatter(spline_wave, spline_std, color="r", marker="d", s=10)
ax[2].plot(
waves[short_waves],
std_spline,
color="crimson",
ls="--",
alpha=0.9,
)
# finalize and save the plot
ax[0].legend(fontsize=fs)
plt.xlabel(r"$\lambda\ [\mu m$]", fontsize=1.2 * fs)
plt.xlim(0.75, 5.2)
ax[0].set_ylim(-0.03, 0.6)
ax[1].set_ylim(-1.1, 0.2)
ax[2].set_ylim(0.005, 0.075)
ax[0].set_ylabel(r"$a$", fontsize=1.2 * fs)
ax[1].set_ylabel(r"$b$", fontsize=1.2 * fs)
ax[2].set_ylabel(r"$\sigma$", fontsize=1.2 * fs)
ax[0].axhline(ls="--", color="k", lw=1, alpha=0.6)
ax[1].axhline(ls="--", color="k", lw=1, alpha=0.6)
plt.subplots_adjust(hspace=0)
plt.savefig(
plot_path + "inv_RV_slope_inter" + str(norm) + ".pdf", bbox_inches="tight"
)
# plot the residuals of the intercepts and add the residuals from the average extinction curve fitting
res_inter = intercepts - fit_intercepts(waves)
average = ExtData(inpath + "average_ext.fits")
wave_ave = average.model["waves"]
res_ave = average.model["residuals"]
fig, ax = plt.subplots(figsize=(10, 7))
ax.scatter(waves, res_inter, s=1.5, color="k", alpha=0.8, label="intercepts")
ax.scatter(wave_ave, res_ave, s=1.5, color="r", alpha=0.8, label="average")
ax.axhline()
plt.xlabel(r"$\lambda\ [\mu m$]")
plt.ylabel(r"residual extinction")
plt.ylim(-0.026, 0.026)
plt.legend()
plt.savefig(plot_path + "inv_inter_res" + str(norm) + ".pdf", bbox_inches="tight")
# compare R(V)-dependent extinction curves to literature curves
# only useful for extinction curves that are normalized to A(V)
if norm == "V":
plot_inv_RV_lit(plot_path, fit_slopes, fit_intercepts, fit_stds)
if __name__ == "__main__":
# define the input and output path and the names of the star pairs in the format "reddenedstarname_comparisonstarname"
inpath = "/Users/mdecleir/Documents/NIR_ext/Data/"
plot_path = "/Users/mdecleir/spex_nir_extinction/Figures/"
table_path = "/Users/mdecleir/spex_nir_extinction/Tables/"
diffuse = [
"BD+56d524_HD034816",
"HD013338_HD031726",
"HD014250_HD031726",
"HD014422_HD214680",
"HD014956_HD214680",
"HD017505_HD214680",
"HD029309_HD042560",
"HD034921_HD214680",
"HD037020_HD034816",
"HD037022_HD034816",
"HD037023_HD036512",
"HD037061_HD034816",
"HD038087_HD051283",
"HD052721_HD091316",
"HD156247_HD042560",
"HD166734_HD031726",
"HD183143_HD188209",
"HD185418_HD034816",
"HD192660_HD214680",
"HD204827_HD003360",
"HD206773_HD047839",
"HD229238_HD214680",
"HD294264_HD051283",
]
dense = ["HD029647_HD034759", "HD283809_HD003360"]
# list the problematic star pairs
flagged = [
"HD014250_HD031726",
"HD014422_HD214680",
"HD034921_HD214680",
"HD037020_HD034816",
"HD037022_HD034816",
"HD037023_HD036512",
"HD052721_HD091316",
"HD166734_HD031726",
"HD206773_HD047839",
"HD294264_HD051283",
]
# settings for the plotting
fs = 20
plt.rc("font", size=fs)
plt.rc("xtick.major", width=1, size=10)
plt.rc("ytick.major", width=1, size=10)
plt.rc("xtick", top=True, direction="in", labelsize=fs * 0.8)
plt.rc("ytick", right=True, direction="in", labelsize=fs * 0.8)
# subtract the flagged stars from the star pair lists
good_diffuse = list((Counter(diffuse) - Counter(flagged)).elements())
good_dense = list((Counter(dense) - Counter(flagged)).elements())
# fit and plot the RV dependence
fit_plot_inv_rv_dep(inpath, plot_path, table_path, good_diffuse, good_dense)
# fit and plot the RV dependence when normalizing to 1 micron instead of to the V-band
# fit_plot_inv_rv_dep(inpath, plot_path, table_path, good_diffuse, good_dense, norm=1)
# ------------------------------------------------------------------
# EXTRA (eventually not used in the paper)
# add CCM89 1/RV dependent relation (can only be used with 1/RV)
# waves_CCM89 = [0.7, 0.9, 1.25, 1.6, 2.2, 3.4]
# slopes_CCM89 = [-0.366, -0.6239, -0.3679, -0.2473, -0.1483, -0.0734]
# intercepts_CCM89 = [0.8686, 0.68, 0.4008, 0.2693, 0.1615, 0.08]
# ax[0].scatter(waves_CCM89, slopes_CCM89, s=5)
# ax[1].scatter(waves_CCM89, intercepts_CCM89, s=5)