Skip to content

Latest commit

 

History

History
 
 

contracts-bedrock

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Optimism Smart Contracts (Bedrock)

This package contains the smart contracts that compose the on-chain component of Optimism's upcoming Bedrock upgrade. We've tried to maintain 100% backwards compatibility with the existing system while also introducing new useful features. You can find detailed specifications for the contracts contained within this package here.

Contracts Overview

Contracts deployed to L1

Name Proxy Type Description
L1CrossDomainMessenger ResolvedDelegateProxy High-level interface for sending messages to and receiving messages from Optimism
L1StandardBridge L1ChugSplashProxy Standardized system for transfering ERC20 tokens to/from Optimism
L2OutputOracle Proxy Stores commitments to the state of Optimism which can be used by contracts on L1 to access L2 state
OptimismPortal Proxy Low-level message passing interface
OptimismMintableERC20Factory Proxy Deploys standard OptimismMintableERC20 tokens that are compatible with either StandardBridge
ProxyAdmin - Contract that can upgrade L1 contracts

Contracts deployed to L2

Name Proxy Type Description
GasPriceOracle Proxy Stores L2 gas price configuration values
L1Block Proxy Stores L1 block context information (e.g., latest known L1 block hash)
L2CrossDomainMessenger Proxy High-level interface for sending messages to and receiving messages from L1
L2StandardBridge Proxy Standardized system for transferring ERC20 tokens to/from L1
L2ToL1MessagePasser Proxy Low-level message passing interface
SequencerFeeVault Proxy Vault for L2 transaction fees
OptimismMintableERC20Factory Proxy Deploys standard OptimismMintableERC20 tokens that are compatible with either StandardBridge
L2ProxyAdmin - Contract that can upgrade L2 contracts when sent a transaction from L1

Legacy and deprecated contracts

Name Location Proxy Type Description
AddressManager L1 - Legacy upgrade mechanism (unused in Bedrock)
DeployerWhitelist L2 Proxy Legacy contract for managing allowed deployers (unused since EVM Equivalence upgrade)
L1BlockNumber L2 Proxy Legacy contract for accessing latest known L1 block number, replaced by L1Block

Installation

We export contract ABIs, contract source code, and contract deployment information for this package via npm:

npm install @eth-optimism/contracts-bedrock

Development

Dependencies

We work on this repository with a combination of Hardhat and Foundry.

  1. Install Foundry by following the instructions located here.

  2. Install node modules with yarn (v1) and Node.js (16+):

    yarn install

Build

yarn build

Tests

yarn test

Deployment

Configuration

  1. Create or modify a file <network-name>.json inside of the deploy-config folder.
  2. Fill out this file according to the deployConfigSpec located inside of the `hardhat.config.ts

Execution

  1. Copy .env.example into .env
  2. Fill out the L1_RPC and PRIVATE_KEY_DEPLOYER environment variables in .env
  3. Run npx hardhat deploy --network <network-name> to deploy the L1 contracts
  4. Run npx hardhat etherscan-verify --network <network-name> --sleep to verify contracts on Etherscan

Standards and Conventions

Style

Comments

We use Seaport-style comments with some minor modifications. Some basic rules:

  • Always use @notice since it has the same general effect as @dev but avoids confusion about when to use one over the other.
  • Include a newline between @notice and the first @param.
  • Include a newline between @param and the first @return.
  • Use a line-length of 100 characters.

We also have the following custom tags:

  • @custom:proxied: Add to a contract whenever it's meant to live behind a proxy.
  • @custom:upgradeable: Add to a contract whenever it's meant to be used in an upgradeable contract.
  • @custom:semver: Add to a constructor to indicate the version of a contract.
  • @custom:legacy: Add to an event or function when it only exists for legacy support.

Errors

  • Use require statements when making simple assertions.
  • Use revert if throwing an error where an assertion is not being made (no custom errors). See here for an example of this in practice.
  • Error strings MUST have the format "{ContractName}: {message}" where message is a lower case string.

Function Parameters

  • Function parameters should be prefixed with an underscore.

Event Parameters

  • Event parameters should NOT be prefixed with an underscore.

Spacers

We use spacer variables to account for old storage slots that are no longer being used. The name of a spacer variable MUST be in the format spacer_<slot>_<offset>_<length> where <slot> is the original storage slot number, <offset> is the original offset position within the storage slot, and <length> is the original size of the variable. Spacers MUST be private.

Proxy by Default

All contracts should be assumed to live behind proxies (except in certain special circumstances). This means that new contracts MUST be built under the assumption of upgradeability. We use a minimal Proxy contract designed to be owned by a corresponding ProxyAdmin which follow the interfaces of OpenZeppelin's Proxy and ProxyAdmin contracts, respectively.

Unless explicitly discussed otherwise, you MUST include the following basic upgradeability pattern for each new implementation contract:

  1. Extend OpenZeppelin's Initializable base contract.
  2. Include a uint8 public constant VERSION = X at the TOP of your contract.
  3. Include a function initialize with the modifier reinitializer(VERSION).
  4. In the constructor, set any immutable variables and call the initialize function for setting mutables.