forked from PeetCrypto/freqtrade-stuff
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ActionZone.py
183 lines (147 loc) · 6.51 KB
/
ActionZone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# flake8: noqa: F401
# isort: skip_file
# --- Do not remove these libs ---
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from freqtrade.strategy import IStrategy
from freqtrade.strategy import CategoricalParameter, DecimalParameter, IntParameter
# --------------------------------
# Add your lib to import here
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
import datetime
class ActionZone(IStrategy):
# Strategy interface version - allow new iterations of the strategy interface.
# Check the documentation or the Sample strategy to get the latest version.
INTERFACE_VERSION = 2
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi".
minimal_roi = {
"0": 100000
}
# Optimal stoploss designed for the strategy.
# This attribute will be overridden if the config file contains "stoploss".
stoploss = -1.00
use_custom_stoploss = True
# Trailing stoploss
trailing_stop = False
# trailing_only_offset_is_reached = False
# trailing_stop_positive = 0.01
# trailing_stop_positive_offset = 0.0 # Disabled / not configured
# Optimal timeframe for the strategy.
timeframe = '1d'
# Run "populate_indicators()" only for new candle.
process_only_new_candles = False
# These values can be overridden in the "ask_strategy" section in the config.
use_sell_signal = True
sell_profit_only = False
ignore_roi_if_buy_signal = False
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 30
# Number of candles used for calculations in lowest price of period
min_price_period: int = 14
# max loss able for calculation position size
max_loss_per_trade = 10 # USD
# Optional order type mapping.
order_types = {
'buy': 'limit',
'sell': 'limit',
'stoploss': 'market',
'stoploss_on_exchange': False
}
# Optional order time in force.
order_time_in_force = {
'buy': 'gtc',
'sell': 'gtc'
}
plot_config = {
'main_plot': {
'fastMA': {
'color': 'red',
'fill_to': 'slowMA',
'fill_color': 'rgba(232, 232, 232,0.2)'
},
'slowMA': {
'color': 'blue',
},
},
}
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime, current_rate: float, current_profit: float, **kwargs) -> float:
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1].squeeze()
stoploss_price = last_candle['lowest']
# Convert absolute price to percentage relative to current_rate
if stoploss_price < current_rate:
return (stoploss_price / current_rate) - 1
# return maximum stoploss value, keeping current stoploss price unchanged
return 1
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float, proposed_stake: float, min_stake: float, max_stake: float, **kwargs) -> float:
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1].squeeze()
stop_price = last_candle['lowest']
volume_for_buy = self.max_loss_per_trade / (current_rate - stop_price)
use_money = volume_for_buy * current_rate
return use_money
def informative_pairs(self):
"""
Define additional, informative pair/interval combinations to be cached from the exchange.
These pair/interval combinations are non-tradeable, unless they are part
of the whitelist as well.
For more information, please consult the documentation
:return: List of tuples in the format (pair, interval)
Sample: return [("ETH/USDT", "5m"),
("BTC/USDT", "15m"),
]
"""
return []
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Dataframe with data from the exchange
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
# MIN - Lowest value over a specified period
lowest = ta.MIN(dataframe, timeperiod=self.min_price_period)
dataframe['lowest'] = lowest
# EMA - Exponential Moving Average
fastEMA = ta.EMA(dataframe, timeperiod=12)
slowEMA = ta.EMA(dataframe, timeperiod=26)
dataframe['fastMA'] = fastEMA
dataframe['slowMA'] = slowEMA
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['fastMA'] > dataframe['slowMA']) & # Bull
(dataframe['close'] > dataframe['fastMA'] ) & # Price Cross Up
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with sell column
"""
dataframe.loc[
(
(dataframe['fastMA'] < dataframe['slowMA']) & # Bear
(dataframe['close'] < dataframe['fastMA'] ) & # Price Cross Down
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'sell'] = 1
return dataframe