forked from PeetCrypto/freqtrade-stuff
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ClucFiatROI.py
175 lines (140 loc) · 6.01 KB
/
ClucFiatROI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy as np
from functools import reduce
import talib.abstract as ta
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy import merge_informative_pair
from datetime import datetime
from freqtrade.persistence import Trade
from pandas import DataFrame, Series
class ClucFiatROI(IStrategy):
# Buy hyperspace params:
buy_params = {
'bbdelta-close': 0.00642,
'bbdelta-tail': 0.75559,
'close-bblower': 0.01415,
'closedelta-close': 0.00883,
'fisher': -0.97101,
'volume': 18
}
# Sell hyperspace params:
sell_params = {
'sell-bbmiddle-close': 0.95153,
'sell-fisher': 0.60924
}
# ROI table:
minimal_roi = {
"0": 0.04354,
"5": 0.03734,
"8": 0.02569,
"10": 0.019,
"76": 0.01283,
"235": 0.007,
"415": 0
}
# Stoploss:
stoploss = -0.34299
# Trailing stop:
trailing_stop = True
trailing_stop_positive = 0.01057
trailing_stop_positive_offset = 0.03668
trailing_only_offset_is_reached = True
"""
END HYPEROPT
"""
timeframe = '5m'
use_sell_signal = True
sell_profit_only = False
sell_profit_offset = 0.01
ignore_roi_if_buy_signal = True
startup_candle_count: int = 48
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Set Up Bollinger Bands
upper_bb1, mid_bb1, lower_bb1 = ta.BBANDS(dataframe['close'], timeperiod=40)
upper_bb2, mid_bb2, lower_bb2 = ta.BBANDS(qtpylib.typical_price(dataframe), timeperiod=20)
# only putting some bands into dataframe as the others are not used elsewhere in the strategy
dataframe['lower-bb1'] = lower_bb1
dataframe['lower-bb2'] = lower_bb2
dataframe['mid-bb2'] = mid_bb2
dataframe['bb1-delta'] = (mid_bb1 - dataframe['lower-bb1']).abs()
dataframe['closedelta'] = (dataframe['close'] - dataframe['close'].shift()).abs()
dataframe['tail'] = (dataframe['close'] - dataframe['low']).abs()
dataframe['ema_fast'] = ta.EMA(dataframe['close'], timeperiod=6)
dataframe['ema_slow'] = ta.EMA(dataframe['close'], timeperiod=48)
dataframe['volume_mean_slow'] = dataframe['volume'].rolling(window=24).mean()
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=9)
# # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
rsi = 0.1 * (dataframe['rsi'] - 50)
dataframe['fisher-rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
# These indicators are used to persist a buy signal in live trading only
# They dramatically slow backtesting down
if self.config['runmode'].value in ('live', 'dry_run'):
dataframe['sar'] = ta.SAR(dataframe)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
params = self.buy_params
active_trade = False
if self.config['runmode'].value in ('live', 'dry_run'):
active_trade = Trade.get_trades([Trade.pair == metadata['pair'], Trade.is_open.is_(True),]).all()
conditions = []
"""
If this is a fresh buy, apple additional conditions.
Idea is to leverage "ignore_roi_if_buy_signal = True" functionality by using certain
indicators for active trades while applying additional protections to new trades.
"""
if not active_trade:
conditions.append(
(
dataframe['fisher-rsi'].lt(params['fisher'])
) &
((
dataframe['bb1-delta'].gt(dataframe['close'] * params['bbdelta-close']) &
dataframe['closedelta'].gt(dataframe['close'] * params['closedelta-close']) &
dataframe['tail'].lt(dataframe['bb1-delta'] * params['bbdelta-tail']) &
dataframe['close'].lt(dataframe['lower-bb1'].shift()) &
dataframe['close'].le(dataframe['close'].shift())
) |
(
(dataframe['close'] < dataframe['ema_slow']) &
(dataframe['close'] < params['close-bblower'] * dataframe['lower-bb2']) &
(dataframe['volume'] < (dataframe['volume_mean_slow'].shift(1) * params['volume']))
))
)
else:
conditions.append(dataframe['close'] > dataframe['close'].shift())
conditions.append(dataframe['close'] > dataframe['sar'])
conditions.append(dataframe['volume'].gt(0))
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
params = self.sell_params
dataframe.loc[
((dataframe['close'] * params['sell-bbmiddle-close']) > dataframe['mid-bb2']) &
dataframe['ema_fast'].gt(dataframe['close']) &
dataframe['fisher-rsi'].gt(params['sell-fisher']) &
dataframe['volume'].gt(0)
,
'sell'
] = 1
return dataframe
"""
https://www.freqtrade.io/en/latest/strategy-advanced/
Custom Order Timeouts
"""
def check_buy_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
ob = self.dp.orderbook(pair, 1)
current_price = ob['bids'][0][0]
# Cancel buy order if price is more than 1% above the order.
if current_price > order['price'] * 1.01:
return True
return False
def check_sell_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
ob = self.dp.orderbook(pair, 1)
current_price = ob['asks'][0][0]
# Cancel sell order if price is more than 1% below the order.
if current_price < order['price'] * 0.99:
return True
return False