forked from PeetCrypto/freqtrade-stuff
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ClucHAnix.py
343 lines (277 loc) · 11.2 KB
/
ClucHAnix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy as np
import talib.abstract as ta
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy import merge_informative_pair, DecimalParameter, stoploss_from_open, RealParameter
from pandas import DataFrame, Series
from datetime import datetime
def bollinger_bands(stock_price, window_size, num_of_std):
rolling_mean = stock_price.rolling(window=window_size).mean()
rolling_std = stock_price.rolling(window=window_size).std()
lower_band = rolling_mean - (rolling_std * num_of_std)
return np.nan_to_num(rolling_mean), np.nan_to_num(lower_band)
def ha_typical_price(bars):
res = (bars['ha_high'] + bars['ha_low'] + bars['ha_close']) / 3.
return Series(index=bars.index, data=res)
class ClucHAnix(IStrategy):
"""
PASTE OUTPUT FROM HYPEROPT HERE
Can be overridden for specific sub-strategies (stake currencies) at the bottom.
"""
buy_params = {
'bbdelta_close': 0.01965,
'bbdelta_tail': 0.95089,
'close_bblower': 0.00799,
'closedelta_close': 0.00556,
'rocr_1h': 0.54904
}
# Sell hyperspace params:
sell_params = {
# custom stoploss params, come from BB_RPB_TSL
"pHSL": -0.32,
"pPF_1": 0.02,
"pPF_2": 0.047,
"pSL_1": 0.02,
"pSL_2": 0.046,
'sell-fisher': 0.38414,
'sell-bbmiddle-close': 1.07634
}
# ROI table:
minimal_roi = {
"70": 0
}
# Stoploss:
stoploss = -0.99 # use custom stoploss
# Trailing stop:
trailing_stop = False
trailing_stop_positive = 0.001
trailing_stop_positive_offset = 0.012
trailing_only_offset_is_reached = False
"""
END HYPEROPT
"""
timeframe = '1m'
# Make sure these match or are not overridden in config
use_sell_signal = True
sell_profit_only = False
ignore_roi_if_buy_signal = False
# Custom stoploss
use_custom_stoploss = True
process_only_new_candles = True
startup_candle_count = 168
order_types = {
'buy': 'market',
'sell': 'market',
'emergencysell': 'market',
'forcebuy': "market",
'forcesell': 'market',
'stoploss': 'market',
'stoploss_on_exchange': False,
'stoploss_on_exchange_interval': 60,
'stoploss_on_exchange_limit_ratio': 0.99
}
# buy params
rocr_1h = RealParameter(0.5, 1.0, default=0.54904, space='buy', optimize=True)
bbdelta_close = RealParameter(0.0005, 0.02, default=0.01965, space='buy', optimize=True)
closedelta_close = RealParameter(0.0005, 0.02, default=0.00556, space='buy', optimize=True)
bbdelta_tail = RealParameter(0.7, 1.0, default=0.95089, space='buy', optimize=True)
close_bblower = RealParameter(0.0005, 0.02, default=0.00799, space='buy', optimize=True)
# hard stoploss profit
pHSL = DecimalParameter(-0.500, -0.040, default=-0.08, decimals=3, space='sell', load=True)
# profit threshold 1, trigger point, SL_1 is used
pPF_1 = DecimalParameter(0.008, 0.020, default=0.016, decimals=3, space='sell', load=True)
pSL_1 = DecimalParameter(0.008, 0.020, default=0.011, decimals=3, space='sell', load=True)
# profit threshold 2, SL_2 is used
pPF_2 = DecimalParameter(0.040, 0.100, default=0.080, decimals=3, space='sell', load=True)
pSL_2 = DecimalParameter(0.020, 0.070, default=0.040, decimals=3, space='sell', load=True)
def informative_pairs(self):
pairs = self.dp.current_whitelist()
informative_pairs = [(pair, '1h') for pair in pairs]
return informative_pairs
############################################################################
#come from BB_RPB_TSL
# Custom Trailing stoploss ( credit to Perkmeister for this custom stoploss to help the strategy ride a green candle )
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
# hard stoploss profit
HSL = self.pHSL.value
PF_1 = self.pPF_1.value
SL_1 = self.pSL_1.value
PF_2 = self.pPF_2.value
SL_2 = self.pSL_2.value
# For profits between PF_1 and PF_2 the stoploss (sl_profit) used is linearly interpolated
# between the values of SL_1 and SL_2. For all profits above PL_2 the sl_profit value
# rises linearly with current profit, for profits below PF_1 the hard stoploss profit is used.
if (current_profit > PF_2):
sl_profit = SL_2 + (current_profit - PF_2)
elif (current_profit > PF_1):
sl_profit = SL_1 + ((current_profit - PF_1) * (SL_2 - SL_1) / (PF_2 - PF_1))
else:
sl_profit = HSL
# Only for hyperopt invalid return
if (sl_profit >= current_profit):
return -0.99
return stoploss_from_open(sl_profit, current_profit)
############################################################################
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# # Heikin Ashi Candles
heikinashi = qtpylib.heikinashi(dataframe)
dataframe['ha_open'] = heikinashi['open']
dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low']
# Set Up Bollinger Bands
mid, lower = bollinger_bands(ha_typical_price(dataframe), window_size=40, num_of_std=2)
dataframe['lower'] = lower
dataframe['mid'] = mid
dataframe['bbdelta'] = (mid - dataframe['lower']).abs()
dataframe['closedelta'] = (dataframe['ha_close'] - dataframe['ha_close'].shift()).abs()
dataframe['tail'] = (dataframe['ha_close'] - dataframe['ha_low']).abs()
dataframe['bb_lowerband'] = dataframe['lower']
dataframe['bb_middleband'] = dataframe['mid']
dataframe['ema_fast'] = ta.EMA(dataframe['ha_close'], timeperiod=3)
dataframe['ema_slow'] = ta.EMA(dataframe['ha_close'], timeperiod=50)
dataframe['volume_mean_slow'] = dataframe['volume'].rolling(window=30).mean()
dataframe['rocr'] = ta.ROCR(dataframe['ha_close'], timeperiod=28)
rsi = ta.RSI(dataframe)
dataframe["rsi"] = rsi
rsi = 0.1 * (rsi - 50)
dataframe["fisher"] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
inf_tf = '1h'
informative = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe=inf_tf)
inf_heikinashi = qtpylib.heikinashi(informative)
informative['ha_close'] = inf_heikinashi['close']
informative['rocr'] = ta.ROCR(informative['ha_close'], timeperiod=168)
dataframe = merge_informative_pair(dataframe, informative, self.timeframe, inf_tf, ffill=True)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
params = self.buy_params
dataframe.loc[
(
dataframe['rocr_1h'].gt(self.rocr_1h.value)
) &
((
(dataframe['lower'].shift().gt(0)) &
(dataframe['bbdelta'].gt(dataframe['ha_close'] * self.bbdelta_close.value)) &
(dataframe['closedelta'].gt(dataframe['ha_close'] * self.closedelta_close.value)) &
(dataframe['tail'].lt(dataframe['bbdelta'] * self.bbdelta_tail.value)) &
(dataframe['ha_close'].lt(dataframe['lower'].shift())) &
(dataframe['ha_close'].le(dataframe['ha_close'].shift()))
) |
(
(dataframe['ha_close'] < dataframe['ema_slow']) &
(dataframe['ha_close'] < self.close_bblower.value * dataframe['bb_lowerband'])
)),
'buy'
] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
params = self.sell_params
dataframe.loc[
(dataframe['fisher'] > params['sell-fisher']) &
(dataframe['ha_high'].le(dataframe['ha_high'].shift(1))) &
(dataframe['ha_high'].shift(1).le(dataframe['ha_high'].shift(2))) &
(dataframe['ha_close'].le(dataframe['ha_close'].shift(1))) &
(dataframe['ema_fast'] > dataframe['ha_close']) &
((dataframe['ha_close'] * params['sell-bbmiddle-close']) > dataframe['bb_middleband']) &
(dataframe['volume'] > 0)
,
'sell'
] = 1
return dataframe
class ClucHAnix_ETH(ClucHAnix):
# Buy hyperspace params:
buy_params = {
'bbdelta-close': 0.01566,
'bbdelta-tail': 0.8478,
'close-bblower': 0.00998,
'closedelta-close': 0.00614,
'rocr-1h': 0.61579,
'volume': 27
}
# Sell hyperspace params:
sell_params = {
'sell-bbmiddle-close': 1.02894,
'sell-fisher': 0.38414
}
# ROI table:
minimal_roi = {
"0": 0.14414,
"13": 0.10123,
"20": 0.03256,
"47": 0.0177,
"132": 0.01016,
"177": 0.00328,
"277": 0
}
# Stoploss:
stoploss = -0.02
# Trailing stop:
trailing_stop = True
trailing_stop_positive = 0.01
trailing_stop_positive_offset = 0.0116
trailing_only_offset_is_reached = False
class ClucHAnix_BTC(ClucHAnix):
# Buy hyperspace params:
buy_params = {
'bbdelta-close': 0.01192,
'bbdelta-tail': 0.96183,
'close-bblower': 0.01212,
'closedelta-close': 0.01039,
'rocr-1h': 0.53422,
'volume': 27
}
# Sell hyperspace params:
sell_params = {
'sell-bbmiddle-close': 0.98016,
'sell-fisher': 0.38414
}
# ROI table:
minimal_roi = {
"0": 0.19724,
"15": 0.14323,
"33": 0.07688,
"52": 0.03011,
"144": 0.01616,
"307": 0.0063,
"449": 0
}
# Stoploss:
stoploss = -0.11356
# Trailing stop:
trailing_stop = True
trailing_stop_positive = 0.01544
trailing_stop_positive_offset = 0.11438
trailing_only_offset_is_reached = False
class ClucHAnix_USD(ClucHAnix):
# Buy hyperspace params:
buy_params = {
'bbdelta-close': 0.01806,
'bbdelta-tail': 0.85912,
'close-bblower': 0.01158,
'closedelta-close': 0.01466,
'rocr-1h': 0.51901,
'volume': 26
}
# Sell hyperspace params:
sell_params = {
'sell-bbmiddle-close': 0.96094,
'sell-fisher': 0.38414
}
# ROI table:
minimal_roi = {
"0": 0.16139,
"11": 0.12608,
"54": 0.08335,
"140": 0.03423,
"197": 0.0123,
"325": 0.00649,
"417": 0
}
# Stoploss:
stoploss = -0.17654
# Trailing stop:
trailing_stop = True
trailing_stop_positive = 0.0101
trailing_stop_positive_offset = 0.02952
trailing_only_offset_is_reached = False