-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
executable file
·157 lines (134 loc) · 6.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import time
import scipy # this is to prevent a potential error caused by importing torch before scipy (happens due to a bad combination of torch & scipy versions)
from collections import OrderedDict
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer
import os
import numpy as np
import torch
from pdb import set_trace as st
def train(opt):
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
if opt.continue_train:
if opt.which_epoch == 'latest':
try:
start_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int)
except:
start_epoch, epoch_iter = 1, 0
else:
start_epoch, epoch_iter = int(opt.which_epoch), 0
print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter))
for update_point in opt.decay_epochs:
if start_epoch < update_point:
break
opt.lr *= opt.decay_gamma
else:
start_epoch, epoch_iter = 0, 0
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
model = create_model(opt)
visualizer = Visualizer(opt)
total_steps = (start_epoch) * dataset_size + epoch_iter
display_delta = total_steps % opt.display_freq
print_delta = total_steps % opt.print_freq
save_delta = total_steps % opt.save_latest_freq
bSize = opt.batchSize
#in case there's no display sample one image from each class to test after every epoch
if opt.display_id == 0:
dataset.dataset.set_sample_mode(True)
dataset.num_workers = 1
for i, data in enumerate(dataset):
if i*opt.batchSize >= opt.numClasses:
break
if i == 0:
sample_data = data
else:
for key, value in data.items():
if torch.is_tensor(data[key]):
sample_data[key] = torch.cat((sample_data[key], data[key]), 0)
else:
sample_data[key] = sample_data[key] + data[key]
dataset.num_workers = opt.nThreads
dataset.dataset.set_sample_mode(False)
for epoch in range(start_epoch, opt.epochs):
epoch_start_time = time.time()
if epoch != start_epoch:
epoch_iter = 0
for i, data in enumerate(dataset, start=epoch_iter):
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
# whether to collect output images
save_fake = (total_steps % opt.display_freq == display_delta) and (opt.display_id > 0)
############## Network Pass ########################
model.set_inputs(data)
disc_losses = model.update_D()
gen_losses, gen_in, gen_out, rec_out, cyc_out = model.update_G(infer=save_fake)
loss_dict = dict(gen_losses, **disc_losses)
##################################################
############## Display results and errors ##########
### print out errors
if total_steps % opt.print_freq == print_delta:
errors = {k: v.item() if not (isinstance(v, float) or isinstance(v, int)) else v for k, v in loss_dict.items()}
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch+1, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
### display output images
if save_fake and opt.display_id > 0:
class_a_suffix = ' class {}'.format(data['A_class'][0])
class_b_suffix = ' class {}'.format(data['B_class'][0])
classes = None
visuals = OrderedDict()
visuals_A = OrderedDict([('real image' + class_a_suffix, util.tensor2im(gen_in.data[0]))])
visuals_B = OrderedDict([('real image' + class_b_suffix, util.tensor2im(gen_in.data[bSize]))])
A_out_vis = OrderedDict([('synthesized image' + class_b_suffix, util.tensor2im(gen_out.data[0]))])
B_out_vis = OrderedDict([('synthesized image' + class_a_suffix, util.tensor2im(gen_out.data[bSize]))])
if opt.lambda_rec > 0:
A_out_vis.update([('reconstructed image' + class_a_suffix, util.tensor2im(rec_out.data[0]))])
B_out_vis.update([('reconstructed image' + class_b_suffix, util.tensor2im(rec_out.data[bSize]))])
if opt.lambda_cyc > 0:
A_out_vis.update([('cycled image' + class_a_suffix, util.tensor2im(cyc_out.data[0]))])
B_out_vis.update([('cycled image' + class_b_suffix, util.tensor2im(cyc_out.data[bSize]))])
visuals_A.update(A_out_vis)
visuals_B.update(B_out_vis)
visuals.update(visuals_A)
visuals.update(visuals_B)
ncols = len(visuals_A)
visualizer.display_current_results(visuals, epoch, classes, ncols)
### save latest model
if total_steps % opt.save_latest_freq == save_delta:
print('saving the latest model (epoch %d, total_steps %d)' % (epoch+1, total_steps))
model.save('latest')
np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d')
if opt.display_id == 0:
model.eval()
visuals = model.inference(sample_data)
visualizer.save_matrix_image(visuals, 'latest')
model.train()
# end of epoch
iter_end_time = time.time()
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch+1, opt.epochs, time.time() - epoch_start_time))
### save model for this epoch
if (epoch+1) % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch+1, total_steps))
model.save('latest')
model.save(epoch+1)
np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d')
if opt.display_id == 0:
model.eval()
visuals = model.inference(sample_data)
visualizer.save_matrix_image(visuals, epoch+1)
model.train()
### multiply learning rate by opt.decay_gamma after certain iterations
if (epoch+1) in opt.decay_epochs:
model.update_learning_rate()
if __name__ == "__main__":
opt = TrainOptions().parse()
train(opt)