-
Notifications
You must be signed in to change notification settings - Fork 1
/
bracis-goal-recognition-presentation.tex
2905 lines (2786 loc) · 120 KB
/
bracis-goal-recognition-presentation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[usenames,dvipsnames]{beamer}
\usepackage[utf8]{inputenc}
\usepackage{hyperref}
\usepackage{colortbl}
\usepackage{epstopdf}
\usepackage{graphicx}
\usepackage{mathtools}
\usepackage{listings}
\usepackage{letltxmacro}
\usepackage{algorithm, algpseudocode}
\usepackage{subcaption}
\newcommand{\incp}[1]{\widetilde{\mathcal{#1}}}
\newcommand{\inc}[1]{\widetilde{#1}}
\newcommand{\idest}{{i.e.}}
\newcommand{\exemp}{{e.g.}}
\newcommand{\etc}{{etc.}}
\newcommand{\etal}{{et al.}}
\newcommand{\todo}[1]{ {\color{red} #1} }
\def\masterclass{1}
\def\masterclass{0}
\logo{\includegraphics[width=4cm]{politecnica.pdf}}
\usetheme{Madrid}
\usecolortheme{seagull}
\title[\fontsize{0.08cm}{1em}\selectfont Goal Recognition with Real World Data]{Goal Recognition with Real World Data}
\author[Meneguzzi]{Felipe Meneguzzi\dag
}
\institute[]{\dag Pontifical Catholic University of Rio Grande do Sul, Brazil
\\
\url{[email protected]}
}
% \institution[BRACIS]{Brazilian Conference on Intelligent Systems}
\date{Salvador, October, 2019}
\AtBeginSection[]
{
\begin{frame}
\frametitle{Table of Contents}
% \tableofcontents[currentsection,sectionstyle=show/hide,subsectionstyle=show/hide/show]
\tableofcontents[currentsection]
\end{frame}
}
\begin{document}
%---------------------------------------------------------------------------------
\begin{frame}
\titlepage
\end{frame}
% \logo{\includegraphics[width=1cm]{politecnica.pdf}}
\logo{}
\begin{frame}[c]{A researcher with a vision}
\begin{center}
\includegraphics[height=.8\textheight]{fig/felipe1.jpg}
\end{center}
\end{frame}
%---------------------------------------------------------------------------------
\section{What is Goal Recognition?}
% \subsection{Motivation and Intuition}
% \begin{frame}[c]\frametitle{Tentative Structure}
% \begin{itemize}
% \item Introduction to plan recognition (from Automated Planning)
% \item Goal recognition heuristics
% \item Hybrid goal recognition heuristics (ask Mor)
% \item Optimality monitoring and applications
% \item Recognizing plans using real-time video data
% \item Future work
% \end{itemize}
% \end{frame}
\begin{frame}[c]\frametitle{What is it?}
\begin{itemize}
\item \textbf{Goal Recognition} is the task of recognizing agents' goal that explains a sequence of observations of its actions;
\begin{itemize}
\item Related to plan recognition, i.e. recognizing a \emph{top-level} action
\item A specific form of the problem of abduction
\end{itemize}
\item Roughly two types of approach:
\begin{itemize}
\item Plan-library based (\emph{classical} plan recognition)
\item Domain-theory based (plan recognition as planning, or PRAP)
\end{itemize}
\end{itemize}
\begin{center}
\includegraphics[width=.4\textwidth]{fig/gr-approaches/gr-concept.pdf}
\end{center}
\end{frame}
\begin{frame}[c]\frametitle{Why do we need goal recognition?}
\begin{itemize}
\item Recognizing plans and goals of others is critical for meaningful interaction:
\begin{itemize}
\item important for humans/agents working in the same environment
\item increasingly important as we build more intelligent systems
\end{itemize}
\begin{center}
\includegraphics<1->[height=8em]{fig/intent-recognition-robot.jpg}
\includegraphics<2>[height=8em]{fig/elderly-care.jpg}
\includegraphics<3>[height=8em]{fig/creepy-care.jpg}
\end{center}
\item Overall area of Plan, Activity and Intent Recognition
\begin{itemize}
\item Activity recognition: recognizing meaningful activities from low-level sensor data
\item Plan/Intent/Goal recognition: recognizing intentional higher-level sequences of activities
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[c]\frametitle{An example of Activity Recognition}
% \animategraphics[loop,type=png,width=\linewidth]{2}{fig/egg-}{1}{4}
\begin{center}
\only<1>{\includegraphics[width=.5\linewidth]{fig/egg-1.jpg}}
\only<2>{\includegraphics[width=.5\linewidth]{fig/egg-2.jpg}}
\only<3>{\includegraphics[width=.5\linewidth]{fig/egg-3.jpg}}
\only<4>{\includegraphics[width=.5\linewidth]{fig/egg-4.jpg} \\
\texttt{breaking egg}
}
\end{center}
% {\color{red} Complete this once I figure out how to include graphics}
\end{frame}
\begin{frame}[c]\frametitle{An Example of Goal/Plan Recognition}
from Miquel Ramirez's thesis
\begin{columns}
\begin{column}{0.5\textwidth}
\includegraphics[width=.9\textwidth]{fig/roboschool-example.pdf}\\
Wooden pieces $p_1,p_2, \dots p_n$\\
Pieces have shapes and colors\\
Bins $b_1, b_2, \dots, b_n$
\end{column}
\begin{column}{0.5\textwidth}
\only<1>{
The possible \textbf{goals} the trainer expected to pursue:
\begin{enumerate}
\item Store all triangles in $b_1$
\item Store all spheres in $b_2$
\item Store all cubes in $b_3$
\item Store red objects in $b_2$
\item Store green objects in $b_3$
\item Store blue objects in $b_1$
\end{enumerate}
}
\only<2>{
One possible \emph{plan} for the trainer to achieve goal \#1 \\(store all triangles in $b_1$):
\begin{enumerate}
\item Walk from B3 into A4
\item Pick $p_3$ up
\item Walk from A4 into B3
\item Walk from B3 into C2
\item Pick $p_4$ up
\item Throw $p_3$ into $b_1$
\item Throw $p_4$ into $b_1$
\end{enumerate}
}
\only<3->{
If sensors miss 70\% of \emph{walk} actions and half \emph{pick} and \emph{drop} actions, we may only see:
\begin{enumerate}
\item Pick $p_3$ up
\item Walk from A4 into B3
\end{enumerate}
}
\only<4->{
Here, we could deduce either goal \#1 or \#4 (store all red objects in $b_2$), as other tasks are less \emph{likely}.
}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[c]\frametitle{Flavors of Recognition Formalism}
\begin{columns}
\begin{column}[t]{0.5\textwidth}
Plan Library
\includegraphics[width=\textwidth]{examples/fig_plan_library.pdf}
\end{column}
\begin{column}[t]{0.5\textwidth}
Domain Theory (PRAP)
\lstinputlisting[basicstyle=\fontsize{4}{4.5}\selectfont,language=LISP]{examples/easy_ipc_grid.pddl.txt}
\end{column}
\end{columns}
\end{frame}
%---------------------------------------------------------------------------------
\if\masterclass1
\subsection{Formalism}
\begin{frame}[c]\frametitle{Automated Planning}
\begin{definition} [\textbf{Planning}]
A planning instance is represented by a triple $\Pi = \langle \Xi, \mathcal{I}, G\rangle$, in which:
\begin{itemize}
\item $\Xi = \langle \Sigma, \mathcal{A} \rangle$ is the \textbf{domain definition}, and consists of a finite set of \textbf{facts} $\Sigma$ and a finite set of \textbf{actions} $\mathcal{A}$ (action costs typically 1);
\item $\mathcal{I} \subseteq \Sigma$ and $G \subseteq \Sigma$ represent the \textbf{planning problem}, in which $\mathcal{I} \subseteq \Sigma$ is the \textbf{initial state}, and $G \subseteq \Sigma$ is the \textbf{goal state}.
\end{itemize}
\end{definition}
\begin{itemize}
\item Actions $a \in \mathcal{A}$ are tuples $a = \langle \mathit{pre}(a), \mathit{eff}(a), \mathit{cost}(a) \rangle$
\item Facts $\Sigma$ can be modeled in a variety of ways:
\begin{itemize}
\item As a logic language (restricted FOL): \\states are truth assignments
\item As a set of variables $\mathcal{V}$ with finite domains: \\states are variable assignments
\end{itemize}
%\todo{Complete this in a new slide}
\end{itemize}
\end{frame}
\begin{frame}[c]\frametitle{Roboschool}
{\color{red} Add Roboschool formalization}
\end{frame}
\begin{frame}[c]\frametitle{Goal Recognition Problem}
\begin{definition}[\textbf{Goal Recognition Problem}]
A goal recognition problem is a tuple $P = \langle \Xi, \mathcal{I}, \mathcal{G}, \mathbf{O} \rangle$, where:
\begin{itemize}
\item $\Xi = \langle \Sigma, \mathcal{A} \rangle$ is the domain definition (facts and actions) ;
\item $\mathcal{I} \subseteq \Sigma$ is the initial state;
\item $\mathcal{G}$ s.t. $\forall{G \in \mathcal{G}}, G \subseteq \Sigma$ is a set of candidate goals (with an assumed hidden goal $G$); and
\item $\mathbf{O}$ is a sequence $\langle o_1, \dots o_n \rangle$ of observations, where $o_i \in \mathcal{A}$
\end{itemize}
\end{definition}
\begin{itemize}
\item The solution for a goal recognition problem is the hidden goal $G \in \mathcal{G}$ that is most consistent with observation sequence $O$.
\item Caveat: we may have other representations for the observations
\item This is what I will refer to as PRAP
\end{itemize}
\end{frame}
\begin{frame}[c]\frametitle{Plan Recognition Problem}
\begin{definition}[Plan Recognition Problem]
\todo{Figure out formalization}
\end{definition}
\begin{itemize}
\item Requires a lot more domain knowledge
\item This is what I will refer to as classical plan recognition
\end{itemize}
\end{frame}
\begin{frame}[c]\frametitle{Roboschool}
{\color{red} Add Roboschool problem for master class}
\end{frame}
\begin{frame}[c]\frametitle{Observations}
Often, this means Observed Actions\\
This observation sequence can be either \textbf{partial} or \textbf{full}.\\
\todo{Observations as actions, and states, animation}
\end{frame}
\fi
%---------------------------------------------------------------------------------
\section{A Canned History of Current Approaches}
% \begin{frame}[c]{Goal Recognition using Planning Formalisms}
% \begin{itemize}
% \item Ramirez and Geffner
% \item E-Martín
% \item Sohrabi
% \item Pereira and Meneguzzi
% \end{itemize}
% \end{frame}
\begin{frame}[c,allowframebreaks]\frametitle{Goal Recognition using Planning Domains}
Ramirez and Geffner (2009 and 2010)
\begin{itemize}
\item First approaches to goal recognition: Plan Recognition as Planning (PRAP)
\item Probabilistic model aims to compute $P(G \mid O)$
\item Following Bayes Rule $P(G \mid O) = \alpha P(O \mid G) P(G)$
\item Given $P(G)$ as a prior, key bottleneck is computing $P(O \mid G)$
% \begin{itemize}
% \item Compute $P(O \mid G)$ in terms of a cost difference $c(G,O) - c(G,\bar{O})$
% \item Computational cost is \textbf{two planner calls per goal hypothesis}
% \item For online recognition: two planner calls per goal hypothesis \textbf{per observation}
% \end{itemize}
% \item Some conclusions challenged for path planning domains\\ (Masters and Sardina 2017)
\end{itemize}
\begin{columns}
\begin{column}{.5\textwidth}
\begin{itemize}
\normalsize
\item Compute $P(O \mid G)$ in terms of a cost difference $c(G,O) - c(G,\bar{O})$
\item Costs \textbf{two planner calls per goal hypothesis}
% \item For online recognition: two planner calls per goal hypothesis
\end{itemize}
\end{column}
\begin{column}{.5\textwidth}
\begin{center}
\includegraphics[width=12em]{fig/gr-approaches/gr-ramirez.pdf}
\end{center}
\end{column}
\end{columns}
% \framebreak
%
% E-Martín et al. (2015)
%
% \framebreak
%
% Sohrabi et al. (2017)
\end{frame}
\begin{frame}[c]{Goal Recognition using Planning Heuristics}
Pereira, Oren and Meneguzzi (2017):
\begin{itemize}
\item \textbf{Obviate the need to execute a planner multiple times} for recognizing goals; and
\item Novel goal recognition heuristics that use \textbf{planning landmarks}.
% \item We evaluate our approaches against the fastest and most accurate approach of Ramírez and Geffner ({\footnotesize Plan Recognition as Planning. IJCAI, 2009}) over \textbf{15 planning domains};
\item \textbf{More accurate} and \textbf{orders of magnitude faster} than all previous approaches.
\end{itemize}
\begin{columns}
\begin{column}{.5\textwidth}
Planning Landmarks:
\begin{itemize}
\item Are \textbf{necessary conditions} for any valid plan
\item Theoretical cost of computation is the same as planning
\end{itemize}
\end{column}
\begin{column}{.5\textwidth}
\begin{center}
\includegraphics[width=12em]{fig/gr-approaches/gr-landmarks.pdf}
\end{center}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[c]{Goal Recognition using Operator-Counting Constraints}
Meneguzzi, Pereira and Pereira (2020):
\begin{itemize}
\item Use \textbf{operator counting} heuristic information for recognizing goals; and
\item Operator counts and LP constraints cope explicitly with noisy observations.
% \item We evaluate our approaches against the fastest and most accurate approach of Ramírez and Geffner ({\footnotesize Plan Recognition as Planning. IJCAI, 2009}) over \textbf{15 planning domains};
\end{itemize}
\begin{columns}
\begin{column}{.5\textwidth}
Key advantages:
\begin{itemize}
\item \textbf{More accurate} than all previous approaches; and
\item Provides an \textbf{extensible framework} for further goal recognition work.
\end{itemize}
\end{column}
\begin{column}{.5\textwidth}
\begin{center}
\includegraphics[width=12em]{fig/gr-approaches/gr-operator-counting.pdf}
\end{center}
\end{column}
\end{columns}
\end{frame}
\section{Goal Recognition using Real World Data}
{
\usebackgroundtemplate{\includegraphics[width=\paperwidth]{fig/fightclub.pdf}}%
\begin{frame}[b]{Warning}
\begin{itemize} \Large
\item \color{white} I will now talk about Machine Learning, \\ but I do not buy into the hype
\item<2-> ML Inverse Fight Club (James Mickens)
\begin{enumerate} \color{white} \large
\item<3-> First Rule: You must talk about fight club
\item<4-> Second Rule: Let's not fight because we all agree that ML is awesome
\end{enumerate}
\end{itemize}
\vspace*{2em}
\end{frame}
}
\begin{frame}[c]{Where can we use real-world data?}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item Domain description: \\What we want to recognize?
\begin{itemize}
\item Environment domain
\item Subject preferences
\end{itemize}
\item Goal Recognition: \\How do we deal with the observations?
\begin{itemize}
\item Generate observations from raw data
\item Cope with noise from observations
\end{itemize}
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\includegraphics[width=.9\textwidth]{fig/gr-learning.pdf}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[c]{Limitations of previous approaches}
\begin{itemize}
\item Domain Knowledge:
\begin{itemize}
\item Must be engineered by humans
\item Must be \textbf{perfect}
\end{itemize}
\item Observations:
\begin{itemize}
\item Must be ``well-behaved'' in some sense
\item Do not use raw, real-world data
\end{itemize}
\end{itemize}
\end{frame}
{
\usebackgroundtemplate{\includegraphics[width=\paperwidth]{fig/bengio.pdf}}%
\begin{frame}[b]{Machine Learning Again}
\begin{itemize} \Large
\item \color{white} Do I hate machine learning then?
\item<2-> No, I love it!
\begin{enumerate} \color{white} \large
\item<3-> If you are doing any unstructured data input
\item<4-> If you want to impress your friends or peddle for money
\end{enumerate}
\end{itemize}
\vspace*{3em}
\end{frame}
}
% \begin{frame}[t]{Now let's talk politics}
% \Huge Who should win the next election? \\[4em]
%
%
% \onslide<2->{
%
% % \vspace{10em}
% \begin{center}
% \normalsize Just kidding, let's go back to our talk
% \end{center}
% }
%
%
% \end{frame}
\begin{frame}[c]{How do we try to solve this?}
\begin{itemize}
\item To Generate Symbolic Observations:
\begin{itemize}
\item ML to map raw data into recognition algorithm
\item ML algorithms to generate \textbf{symbolic observations}
\end{itemize}
\item Obtain Domain Knowledge:
\begin{itemize}
\item Cope with expected noisy observations relaxing the domain model
\item Learn PDDL representations from image data
\item Learn \textbf{Nominal Models} from raw data
\end{itemize}
\item To work on both problems simultaneously
\begin{itemize}
\item Hybrid engineering/learning of PDDL representations
\end{itemize}
\end{itemize}
\end{frame}
\subsection{Plan Recognition using Video Data}
% \begin{frame}[c]\frametitle{Plan Recognition using Video Data}
% Get slides from Roger
% \end{frame}
\begin{frame}[c]
\begin{center}
\Large{Plan Recognition using Video Data}
\end{center}
\end{frame}
\begin{frame}[c]\frametitle{Plan Recognition using Video Data}
% \begin{itemize}
% \item \textbf{Plan recognition}
% \begin{itemize}
% \item Task of recognizing the plan (i.e., the sequence of actions) the observed agent is following in order to achieve his intention %(Sadri, 2012)
% \end{itemize}
% \item \textbf{Activity recognition}
% \begin{itemize}
% \item The task of recognizing the independent set of actions that generates an interpretation to the movement that is being performed (Poppe,~2010)
% \item This is particularly challenging in the real physical world
% \end{itemize}
% \end{itemize}
\begin{columns}
\begin{column}{.7\textwidth}
\begin{itemize}
\item Most research focuses on activity and plan recognition separately;
\item We develop a hybrid approach that comprises both;
\item The approach infers, from a set of candidate plans, which plan a human subject is pursuing based exclusively on fixed-camera video.
\end{itemize}
\end{column}
\begin{column}{.3\textwidth}
\begin{center}
\includegraphics[width=9em]{fig/computer-vision-eggs.pdf}
\end{center}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[c]\frametitle{A Hybrid Architecture for Activity and Plan Recognition}
\begin{itemize}
\item \textbf{Conceptually divided in two main parts}
\begin{itemize}
\item CNN-based activity recognition (CNN)\footnote{That's us!}
\item CNN-backed symbolic plan recognition (SBR)\footnote{Not our work: Avrahami-Zilberbrand and Kaminka. Fast and Complete Symbolic Plan Recognition. IJCAI 2005}
\end{itemize}
\end{itemize}
\begin{center}
\includegraphics[width=0.8\linewidth]{fig/pipeline.pdf}
\end{center}
\end{frame}
\if\masterclass1
\begin{frame}[c]\frametitle{CNN-based Activity Recognition}
\begin{itemize}
\item \textbf{Convolutional Neural Network}
\begin{itemize}
\item Architecture: GoogLeNet
\item 22-layer deep network based on the Inception module
\item Input images: 224x224 (3 channels: RGB)
\item Output classes: 9 (activities)
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{CNN-backed Symbolic Plan Recognition}
\begin{itemize}
\item \textbf{Symbolic Behavior Recognition (SBR)}
\begin{itemize}
\item A plan recognition approach that takes as input a plan library and a sequence of observations
\item Feature decision tree (FDT) maps observable features to plan-steps in a plan library
\item SBR returns set of hypotheses plans such that each hypothesis represents a plan that achieves a top-level goal in a plan library
\end{itemize}
\begin{center}
\includegraphics[width=0.7\linewidth]{fig/fdt.pdf}
\end{center}
\end{itemize}
\end{frame}
\begin{frame}[c]\frametitle{CNN-backed Symbolic Plan Recognition}
\begin{itemize}
\item \textbf{Our Symbolic Behavior Recognition}
\begin{itemize}
\item We modify the SBR and replace the FDT with the CNN-backed Activity Recognition
\item The CNN-backed Activity Recognition maps frames directly into nodes (activities) in the plan library used by SBR to compute sequential consistency of plan steps
\end{itemize}
\begin{center}
\includegraphics[width=0.9\linewidth]{fig/sbr.pdf}
\end{center}
\end{itemize}
\end{frame}
\fi
% \begin{frame}{Experiments: Dataset}
% \begin{itemize}
% \item ICPR 2012 Kitchen Scene Context based Gesture Recognition dataset (KSCGR)%\footnote{http://www.murase.m.is.nagoya-u.ac.jp/KSCGR/}
% \item \textbf{5 recipes for cooking eggs in Japan}
% \begin{itemize}
% \item Ham and Eggs, Omelet, Scrambled-Egg, Boiled-Egg and Kinshi-Tamago
% \item Each recipe is performed by 7 subjects \\(5 in training set, 2 in testing set)
% \end{itemize}
% \item \textbf{9 cooking activities within the dataset}
% \begin{itemize}
% \item Breaking, mixing, baking, turning, cutting, boiling, seasoning, peeling, and none
% \end{itemize}
% \begin{figure}[here]
% \centering
% \includegraphics[width=0.7\linewidth]{fig/egg-dataset.pdf}
% \end{figure}
% \end{itemize}
% \end{frame}
\begin{frame}[c]{How are we doing so far?}
\begin{itemize}
\item To Generate Symbolic Observations:
\begin{itemize}
\item ML to map raw data into a recognition algorithm {\Large \color{red} \checkmark}
\item ML algorithms to generate \textbf{symbolic observations}
\end{itemize}
\item Obtain Domain Knowledge:
\begin{itemize}
\item Cope with expected noisy observations relaxing the domain model
\item Learn PDDL representations from image data
\item Learn \textbf{Nominal Models} from raw data
\end{itemize}
\item To work on both problem simultaneously
\begin{itemize}
\item Hybrid engineering/learning of PDDL representations
\end{itemize}
\end{itemize}
\end{frame}
\subsection{Goal Recognition in Incomplete Domains}
\begin{frame}[c]
\begin{center}
\Large{Goal Recognition in Incomplete Domains}
\end{center}
\end{frame}
\begin{frame}[c]{What is an Incomplete Domain?}
In a nutshell: \\
It is a STRIPS/PDDL domain that allows me to state that some preconditions/effects \textbf{may or may not} be there!
% Add figure of invisible man
\end{frame}
\begin{frame}{Why use Incomplete Domains?}
\begin{itemize}
% Sometimes we do not have full knowlegde about the dynamics of the domain model.
\item A \textbf{step forward} to \textbf{more realistic settings}; and
% Even having a domain expert, sometimes it is hard to formalize a domain model completly.
\item The \textbf{lack of domain knowledge}, human-error, and etc.
\begin{figure}[]
\centering
\includegraphics[width=0.8\linewidth]{fig/nerd-incomplete_domain.pdf}
\end{figure}
\end{itemize}
\end{frame}
\begin{frame}{Background: Incomplete STRIPS Domain Models}
\begin{definition} [\textbf{Incomplete STRIPS Domain Model\footnote{\tiny \it Weber and Bryce, Planning and Acting in Incomplete Domain Models. ICAPS, 2011.}}]
An incomplete STRIPS domain model is a tuple $\incp{D} = \langle \mathcal{R}, \incp{O} \rangle$, where:
\begin{itemize}
\item $\mathcal{R}$ is a set of predicates with typed variables;
\item $\incp{O}$ is a set of incomplete operators. An operator $\inc{op} \in \incp{O}$ defines:
\begin{itemize}
\item $pre(\inc{op}) \subseteq \mathcal{R}$ as a set of known preconditions;
\item<2-> $\widetilde{pre}(\inc{op}) \subseteq \mathcal{R}$ as a set of \textbf{possible preconditions};
\item $add(\inc{op}) \subseteq \mathcal{R}$ as a set of known add effects;
\item<2-> $\widetilde{add}(\inc{op}) \subseteq \mathcal{R}$ as a set of \textbf{possible add effects};
\item $del(\inc{op}) \subseteq \mathcal{R}$ as a set of known delete effects;
\item<2-> $\widetilde{del}(\inc{op}) \subseteq \mathcal{R}$ as a set of \textbf{possible delete effects};
\end{itemize}
\end{itemize}
\end{definition}
\end{frame}
% \begin{frame}{Problem Overview (1 of 2)}
% \begin{itemize}
% \item We assume that the \textbf{recognizer} (\textbf{observer}) has an \textbf{incomplete domain model} while the \textbf{observed agent} is planning and acting in the environment with a \textbf{complete domain model};
% \vspace{2mm}
% \item We \textbf{do not change (or improve)} the incomplete domain model for recognizing goals;
% \end{itemize}
% \end{frame}
%
% \begin{frame}{Problem Overview (2 of 2)}
% \begin{figure}[]
% \centering
% \includegraphics[width=0.9\linewidth]{fig/GoalRecognition-IncompleteDomains-Big.pdf}
% \end{figure}
% \end{frame}
\begin{frame}{Problem Overview}
\begin{figure}[]
\centering
\includegraphics[width=0.9\linewidth]{fig/GoalRecognition-IncompleteDomains-Big.pdf}
\end{figure}
\end{frame}
\begin{frame}[c]{How are we doing so far?}
\begin{itemize}
\item To Generate Symbolic Observations:
\begin{itemize}
\item ML to map raw data into a recognition algorithm {\Large \checkmark}
\item ML algorithms to generate \textbf{symbolic observations}
\end{itemize}
\item Obtain Domain Knowledge:
\begin{itemize}
\item Cope with expected noisy observations relaxing the domain model {\Large \color{red} \checkmark}
\item Learn PDDL representations from image data
\item Learn \textbf{Nominal Models} from raw data
\end{itemize}
\item To work on both problem simultaneously
\begin{itemize}
\item Hybrid engineering/learning of PDDL representations
\end{itemize}
\end{itemize}
\end{frame}
\subsection{Plan Recognition in Latent Space}
\begin{frame}[c]
\begin{center}
\Large{Plan Recognition in Latent Space}
\end{center}
\end{frame}
\begin{frame}[c]{Motivation}
\begin{itemize}
\item Goal and Plan Recognition depend on high-quality domain engineering
\begin{itemize}
\item PDDL domain theory for PRAP
\item Plan Library for traditional PR
\end{itemize}
\item We would like to obviate the need for most domain engineering
\begin{itemize}
\item Learn domain models directly from raw data
\item Recognize goals using raw data as observations
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[c]{Inspiration: LatPlanner\footnote{\tiny Not our Work: Asai and Fukunaga. Classical Planning in Deep Latent Space: Bridging the Subsymbolic-Symbolic Boundary, AAAI, 2018}}
\begin{center}
\includegraphics[width=10cm]{fig/latplan.pdf}
\end{center}
\end{frame}
\begin{frame}[c]{Variational Autoencoders}
\begin{itemize}
\item Autoencoders are a specific type of Neural Network intended to learn representations
\item Consists of three key parts
\begin{itemize}
\item Encoder network
\item Latent layer (the middle layer)
\item Decoder network
\end{itemize}
\item Trained in an unsupervised manner
\item Variational Autoencoders force the the encoder network to generate latent vectors following some distribution \\(typically a unit-gaussian one)
\end{itemize}
\begin{center}
\includegraphics[width=5cm]{fig/autoencoder.pdf}
\end{center}
\end{frame}
\begin{frame}[c]{Gumbel-softmax autoencoders and planning}
\begin{itemize}
\item Planners view states as sets of logical propositions (i.e. binary vectors)
\item We would like to be able to learn state representations from raw data
\item We force an autoencoder to have a categorial distribution in the latent layer:
\begin{itemize}
\item Gumbel-softmax activation can be annealed into a categorical distribution
\item Latent layer now correspond to \textbf{logic bits}
\item Can learn a PDDL transition function from pairs of states
\end{itemize}
\end{itemize}
\begin{center}
\includegraphics[width=8cm]{fig/cat-autoencoder.png}
\end{center}
\end{frame}
\begin{frame}[c]{Goal Recognition using Raw Data}
\begin{itemize}
\item Once we learn the internal representation, we can recognize plans as sequences of images, but using symbolic goal recognition algorithms
\end{itemize}
\begin{center}
\includegraphics[width=8cm]{fig/lat_rec_problem.pdf}
\end{center}
\end{frame}
\begin{frame}[c]{Goal Recognition in Latent Space}
\begin{columns}
\begin{column}{.35\textwidth}
Key steps in the approach
\small
\begin{itemize}
\item Train autoencoder using an image dataset (binary representation)
\item Infer transition function from pairs of encoded images (states)
\item Convert Goal Recognition problem to latent space using autoencoder
\item Recognize goals using PRAP algorithms (ours)
\end{itemize}
\end{column}
\begin{column}{.6\textwidth}
\begin{center}
\includegraphics[width=.85\textwidth]{fig/IGR_Full.pdf}
\end{center}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[c]{How are we doing so far?}
\begin{itemize}
\item To Generate Symbolic Observations:
\begin{itemize}
\item ML to map raw data into a recognition algorithm {\Large \checkmark}
\item ML algorithms to generate \textbf{symbolic observations}
\end{itemize}
\item Obtain Domain Knowledge:
\begin{itemize}
\item Cope with expected noisy observations relaxing the domain model {\Large \checkmark}
\item Learn PDDL representations from image data {\Large \color{red} \checkmark}
\item Learn \textbf{Nominal Models} from raw data
\end{itemize}
\item To work on both problem simultaneously
\begin{itemize}
\item Hybrid engineering/learning of PDDL representations
\end{itemize}
\end{itemize}
\end{frame}
\subsection{Goal Recognition Using Nominal Models}
\begin{frame}[c]
\begin{center}
\Large{Goal Recognition Using Nominal Models}
\end{center}
\end{frame}
\begin{frame}{Motivation}
\begin{itemize}
\item Existing goal recognition approaches \textbf{rely on complete models} with \textbf{known system dynamics};
% Even recognition approaches that deal with incomplete domains assume that the transition function is given and well defined.
\vspace{3mm}
\item We \textbf{drop the assumption} that the transition function is given and well defined, using \textbf{Nominal (approximate) models}
\end{itemize}
\begin{figure}[]
\centering
\includegraphics[width=0.25\linewidth]{fig/robotic-arm-0.pdf}
\includegraphics[width=0.25\linewidth]{fig/robotic-arm-1.pdf}
\hspace{2mm}
\includegraphics[width=0.3\linewidth]{fig/robotic-arm-2.pdf}
\end{figure}
\end{frame}
% \begin{frame}{Introduction}
% \begin{itemize}
% \vspace{3mm}
% \item We can learn \textbf{Nominal models} from observations on transitions of systems;
% \begin{itemize}
% \vspace{1.5mm}
% \item We use \textbf{Deep Neural Networks} to obtain \textit{nominal models};
% \vspace{1.5mm}
% \item \textit{Nominal models} support \textbf{continuous} action and state spaces;
% \end{itemize}
%
% \vspace{3mm}
% \item We \textbf{adapt two goal recognition approaches} to cope with \textit{nominal models};
% \begin{itemize}
% \item Performing \textbf{offline and online} goal recognition.
% \end{itemize}
% \end{itemize}
% \end{frame}
% Slides skipped from the original
\begin{frame}[c]{Deep Neural Networks as Nominal Models}
\begin{center}
\includegraphics[width=0.95\linewidth]{fig/DNNs_as_NominalModels.pdf}
\end{center}
% \begin{figure}[]
% \centering
%
% \caption{DNNs as Nominal Models.}
% \end{figure}
\begin{itemize}
% \item To acquire \textbf{nominal models} we use a DNN developed by Say et al. (IJCAI, 2017)\footnote{\tiny \it Say et al., Nonlinear Hybrid Planning with Deep Net Learned Transition Models and Mixed-Integer Linear Programming. IJCAI, 2017.}.
\item We acquire \textbf{nominal models} by training a DNN
\item Trained DNN becomes the \textbf{transition function}
\item \textit{Nominal models} support \textbf{continuous} action and state spaces;
\end{itemize}
\end{frame}
\begin{frame}[c]{Goal Recognition over Nominal Models}
\begin{center}
\includegraphics[width=0.85\linewidth]{fig/GR_ApproximatedModels-ProblemOverview.pdf}
\end{center}
\begin{itemize}
\item We define the observations $O$ as \textbf{\emph{trajectory} of \emph{states}} induced by a policy
$\pi$ that minimises $J$, and \textbf{achieve a hidden goal} $G^* \in \mathcal{G}$.
\end{itemize}
\end{frame}
\begin{frame}{Probabilistic Goal Recognition over Nominal Models}
We adopt the probabilistic interpretation of Ramírez and Geffner (2010)\footnote{\tiny \it Ramírez and Geffner, Probabilistic Plan Recognition using off-the-shelf Classical Planners. AAAI, 2011.}:
\vspace{2mm}
\begin{itemize}
\item $P(G|O) = \alpha P(O|G) P(G)$
\vspace{1mm}
\begin{itemize}
\item $P(G)$ is a \emph{prior} probability to a goal $G$;
\vspace{1.5mm}
\item $P(O|G)$ is the probability of observing $O$ when the goal is $G$;
\vspace{1.5mm}
\item $\alpha$ is a normalisation factor.
\end{itemize}
\end{itemize}
\vspace{5mm}
Here, since $P(G)$ is equal for every candidate goal, the question is:
\begin{itemize}
\item \textbf{How do we compute $P(O|G)$}?
\end{itemize}
\end{frame}
\begin{frame}{Goal Recognition as Nominal Mirroring: $\eta$\textsc{Mirroring}}
We develop our first approach using the concept of \emph{Mirroring}\footnote{\tiny \it Vered et al., Online Goal Recognition through Mirroring: Humans and Agents. ACS, 2016.} to \textbf{compare two plans for each of the candidate goals in} $\mathcal{G}$:
\vspace{2mm}
\begin{itemize}
\vspace{2mm}
\item \textbf{Ideal-plan} ($\pi_G$): a plan computed from $\mathcal{I}$ to every goal $G$ in $\mathcal{G}$;
\vspace{2mm}
\item \textbf{$O$-plan} ($\pi_{O,G}$): a plan computed for every pair ${\cal I}$, $G$, which must visit every state in $O$.
\end{itemize}
\end{frame}
\begin{frame}{$\eta$\textsc{Mirroring}: \emph{matching-error} {\huge $\epsilon$}}
We compare the \textbf{Ideal-plan} and the \textbf{$O$-plan} using the \emph{matching-error}\footnote{\tiny \it Kaminka et al., Plan Recognition in Continuous Domains. AAAI, 2018.} {\huge $\epsilon$}, i.e., the \textbf{Euclidean distance} between the trajectories.
\begin{figure}[]
\centering
\includegraphics[width=0.85\linewidth]{fig/nominal_mirroring.pdf}
\vspace{-2mm}
\end{figure}
\end{frame}
\begin{frame}[c]{How are we doing so far?}
\begin{itemize}
\item To Generate Symbolic Observations:
\begin{itemize}
\item ML to map raw data into recognition algorithm {\Large \checkmark}
\item ML algorithms to generate \textbf{symbolic observations}
\end{itemize}
\item Obtain Domain Knowledge:
\begin{itemize}
\item Cope with expected noisy observations relaxing the domain model {\Large \checkmark}
\item Learn PDDL representations from image data {\Large \checkmark}
\item Learn \textbf{Nominal Models} from raw data {\Large \color{red} \checkmark}
\end{itemize}
\item To work on both problem simultaneously
\begin{itemize}
\item Hybrid engineering/learning of PDDL representations
\end{itemize}
\end{itemize}
\end{frame}
% \subsection{LSTM-based plan recognition}
%
% \begin{frame}[c]
% \begin{center}
% \Large{LSTM-based plan recognition}
% \end{center}
% \end{frame}
%
% \begin{frame}[c]{Placeholder slide}
%
% \end{frame}
%
% \begin{frame}[c]{How do we try to solve this?}
% \begin{itemize}
% \item To Generate Symbolic Observations:
% \begin{itemize}
% \item ML to map raw data into recognition algorithm {\Large \checkmark}
% \item ML algorithms to generate \textbf{symbolic observations}
% \end{itemize}
% \item Obtain Domain Knowledge:
% \begin{itemize}
% \item Cope with expected noisy observations relaxing the domain model {\Large \checkmark}
% \item Learn PDDL representations from image data {\Large \checkmark}
% \item Learn \textbf{Nominal Models} from raw data {\Large \color{red} \checkmark}
% \end{itemize}
% \item To work on both problem simultaneously
% \begin{itemize}
% \item Hybrid engineering/learning of PDDL representations
% \end{itemize}
% \end{itemize}
% \end{frame}
\subsection{Engineering GR Domains using ML}
\begin{frame}[c]
\begin{center}
\Large{Engineering GR Domains using ML}
\end{center}
\end{frame}
% \begin{frame}[c]{Placeholder}
% \includegraphics[width=.9\textwidth]{../placeholder2.pdf}
% \end{frame}
%
% \begin{frame}[c]{Placeholder}
% \includegraphics[width=.9\textwidth]{../placeholder1.pdf}
% \end{frame}
\begin{frame}[c]{Machine Learning and Computer Vision}
\begin{columns}
\begin{column}{.6\textwidth}
\begin{itemize}
\item<1-> Machine Learning models are the unchallenged state of the art for computer vision: %\\ \onslide<2-> {~\color{red} Deal with it}
\item<2-> Most computer vision datasets already contain \textbf{annotated semantic information} (and algorithms assume their existence):
\begin{itemize}
\item Labels for \textbf{objects} and \textbf{relations}
\end{itemize}
\item<2-> Why not use this semantic information to co-design GR domains around them?
\end{itemize}
\end{column}
\begin{column}{.4\textwidth}
\only<1>{\includegraphics[width=\textwidth]{fig/computer-vision-eggs.pdf}}
\only<2->{\includegraphics[width=\textwidth]{fig/computer-vision-annotated.pdf}
Relations:\\
\footnotesize
\texttt{<{\color{red}person},{\color{black}holding},{\color{OliveGreen}boiled-egg}>}\\
\texttt{<{\color{OliveGreen}boiled-egg},{\color{black}holding},{\color{orange}bowl}>}
}