-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathINLAcode_JC_J29.r
executable file
·539 lines (446 loc) · 24.8 KB
/
INLAcode_JC_J29.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
rm(list = ls())
#devtools::install_github("mengluchu/APMtools")
library(INLA)
library(APMtools)
library(dismo) # for area() inside INLA_crossvali()
library(caret)
library(rgdal)
#' Creates triangulated mesh to fit a spatial model using INLA and SPDE
#'
#' @param coo coordinates to create the mesh
#' @return mesh boject
fnConstructMesh = function(coo){
# meshbuilder()
# offset: size of the inner and outer extensions around the data locations
(offset1 = 1/8*max(dist(coo)))
(offset2 = 1/8*max(dist(coo)))
# max.edge: maximum allowed triangle edge lengths in the region and in the extension
(maxedge1 = 1/30*max(dist(coo)))
(maxedge2 = 1/5*max(dist(coo)))
# cutoff: minimum allowed distance between points used to avoid building many small triangles around clustered locations
(cutoff = 1/10000*max(dist(coo)))
shape5 <- readOGR(dsn = "C:/Users/Usuario/Desktop/Projects/2021/KAUST/INLA/temp", layer = "shape1")
#mesh = inla.mesh.2d(loc = coo, offset = c(offset1, offset2), cutoff = cutoff, max.edge = c(maxedge1, maxedge2))
mesh = inla.mesh.2d(boundary = shape5, offset = c(offset1, offset2), cutoff = cutoff, max.edge = c(maxedge1, maxedge2))
plot(mesh)
points(coo, col = "red")
print(mesh$n)
return(mesh)
}
#' Fits a spatial model using INLA and SPDE
#'
#' It creates a mesh using coordinates d$coox and d$cooy
#' Formula is passed in argument formula
#' It creates stk.full with data for estimation or data for estimation and prediction (if TFPOSTERIORSAMPLES is TRUE)
#' Calls \code{inla()} and returns list with result and stk.full
#'
#' @param d Data frame with data for estimation that contains coordinates (coox, cooy), response variable (y) and covariates
#' @param formula Formula for the model
#' If \code{covnames} includes an intercept, \code{d} needs to have column of 1s for the intercept
#' @param dp Data frame with data for prediction that contains coordinates (coox, cooy), and covariates
#' If \code{covnames} includes an intercept, \code{dp} needs to have column of 1s for the intercept
#' If dp is NULL, dp will not used to construct stk.full
#' @param covnames Vector with the names of the intercept and covariates that are in the formula
#' @param TFPOSTERIORSAMPLES Boolean variable to call \code{inla()} with config = TFPOSTERIORSAMPLES.
#' If it config = TRUE we will get a res object with which we could call \code{inla.posterior.samples()}
#' @return list with the results of the fitted model, stk.full and mesh
fnFitModelINLA = function(d, dp, formula, covnames, TFPOSTERIORSAMPLES, family = ""){
# Coordinates locations
coo = cbind(d$coox, d$cooy)
# Mesh
mesh = fnConstructMesh(coo)
# Building the SPDE model on the mesh
# spde = inla.spde2.pcmatern(mesh, prior.range = c(500, .5), prior.sigma = c(2, 0.01))
spde = inla.spde2.matern(mesh = mesh, alpha = 2, constr = TRUE)
# Index set
indexs = inla.spde.make.index("s", spde$n.spde)
# Projection matrix
A = inla.spde.make.A(mesh = mesh, loc = coo)
# Stack with data for estimation. Effects include intercept and covariates
stk.e = inla.stack(tag = "est", data = list(y = d$y), A = list(1, A), effects = list(d[, covnames, drop = FALSE], s = indexs))
if(is.null(dp)){
stk.full = inla.stack(stk.e)
}else{
# Prediction coordinate locations and projection matrix
coop = cbind(dp$coox, dp$cooy)
Ap = inla.spde.make.A(mesh = mesh, loc = coop)
# stack
stk.p = inla.stack(tag = "pred", data = list(y = NA), A = list(1, Ap), effects = list(dp[, covnames, drop = FALSE], s = indexs))
stk.full = inla.stack(stk.e, stk.p)
}
cres = list(return.marginals.predictor = TRUE, return.marginals.random = TRUE)
cinla = list(strategy = 'adaptive', int.strategy = 'eb') #
st1 = Sys.time()
if(family == "gaussian"){
# Formula that is specified in the arguments
res = inla(formula, family = "gaussian", data = inla.stack.data(stk.full),
control.predictor = list(compute = TRUE, A = inla.stack.A(stk.full), link = 1),
control.compute = list(config = TFPOSTERIORSAMPLES, return.marginals = TRUE, dic=TRUE, waic = TRUE, cpo = TRUE),
control.results = cres, control.inla = cinla,
verbose=TRUE)}
if(family == "Gamma"){
cres = list(return.marginals.predictor = TRUE, return.marginals.random = TRUE)
cinla = list(strategy = 'adaptive', int.strategy = 'eb') #
st1 = Sys.time()
res = inla(formula, family = "Gamma", data = inla.stack.data(stk.full),
control.predictor = list(compute = TRUE, A = inla.stack.A(stk.full), link = 1),
control.compute = list(config = TFPOSTERIORSAMPLES, return.marginals = TRUE, dic=TRUE, waic = TRUE, cpo = TRUE),
control.results = cres, control.inla = cinla,
verbose=TRUE)}
if(family == "lognormal"){
cres = list(return.marginals.predictor = TRUE, return.marginals.random = TRUE)
cinla = list(strategy = 'adaptive', int.strategy = 'eb') #
st1 = Sys.time()
res = inla(formula, family = "lognormal", data = inla.stack.data(stk.full),
control.predictor = list(compute = TRUE, A = inla.stack.A(stk.full), link = 1),
control.compute = list(config = TFPOSTERIORSAMPLES, return.marginals = TRUE, dic=TRUE, waic = TRUE, cpo = TRUE),
control.results = cres, control.inla = cinla,
verbose=TRUE)}
if(family == "beta"){
cres = list(return.marginals.predictor = TRUE, return.marginals.random = TRUE)
cinla = list(strategy = 'adaptive', int.strategy = 'eb') #
st1 = Sys.time()
res = inla(formula, family = "beta", data = inla.stack.data(stk.full),
control.predictor = list(compute = TRUE, A = inla.stack.A(stk.full), link = 1),
control.compute = list(config = TFPOSTERIORSAMPLES, return.marginals = TRUE, dic=TRUE, waic = TRUE, cpo = TRUE),
control.results = cres, control.inla = cinla,
verbose=TRUE)}
st2 = Sys.time()
print(st2-st1)
return(list(res, stk.full, mesh, coo, coop))
}
#' Computes the linear predictor from one of the samples of an object obtained with \code{inla.posterior.samples()
#'
#' It retrieves the sample number \code{ite} from the object \code{psamples} that was obtained with \code{inla.posterior.samples()
#' For this sample, it extracts the betas for the coefficients in \code{covnames} and the values of the spatial field
#' Then it calculates beta*covariates + spatial effect
#'
#' @param psamples Object obtained from \code{inla.posterior.samples() that contains a list with the samples
#' @param ite Number of sample from \code{psamples} that we want to use
#' @param res result object from an \code{inla()} call
#' @param mesh Triangulated mesh that was used to fit the model
#' @param dp Data frame with data for prediction that contains coordinates (coox, cooy), and covariates.
#' If \code{covnames} includes an intercept, \code{dp} needs to have column of 1s for the intercept
#' @param covnames Name of the coefficients in the formula (intercept and other covariates)
#' @return Data frame \code{dp} with added columns \code{pred_mean}, \code{pred_ll}, \code{pred_ul} and \code{excprob}
fnPredictFromPosteriorSample = function(psamples, ite, res, mesh, dp, covnames){
# Retrieve elements sample
(contents = res$misc$configs$contents)
# betas for elements of covnames. covnames[1] is the first covariate (b0)
id_firstcov = grep(covnames[1], rownames(psamples[[ite]]$latent))
betas = psamples[[ite]]$latent[id_firstcov : (id_firstcov + (length(covnames)-1)), ]
# spatial field
id_s = which(contents$tag == "s")
id_s = contents$start[id_s]:(contents$start[id_s] + contents$length[id_s] - 1)
spatialfield = psamples[[ite]]$latent[id_s]
# spat = lapply(ps, function(x) x$latent[id_s])
# spat = matrix(unlist(spat), ncol = length(id_s), byrow = T)
# Multiply model matrix times betas + spatial effect
coop = cbind(dp$coox, dp$cooy)
Ap = inla.spde.make.A(mesh = mesh, loc = coop)
predictions = as.matrix(dp[, covnames]) %*% betas + drop(Ap %*% spatialfield)
return(predictions)
}
#' Get predictions from a result object obtained by fitting as spatial model using INLA and SPDE
#'
#' @param res result object from an \code{inla()} call
#' @param stk.full stk.full object constructed during an \code{inla()} call
#' @param mesh Triangulated mesh that was used to fit the model
#' @param covnames Name of the coefficients in the formula (intercept and other covariates)
#' @param d Data frame with data for estimation that contains coordinates (coox, cooy), response variable (y) and covariates
#' If \code{covnames} includes an intercept, \code{d} needs to have column of 1s for the intercept
#' It can be NULL if predictions are added to \code{dp}
#' @param dp Data frame with data for prediction that contains coordinates (coox, cooy), and covariates
#' If \code{covnames} includes an intercept, \code{dp} needs to have column of 1s for the intercept
#' If dp is NULL, dp will not used to construct stk.full
#' It can be NULL if predictions are added to \code{d}
#' @param NUMPOSTSAMPLES number of samples to call \code{inla.posterior.samples()}
#' If NUMPOSTSAMPLES == -1, get the predictions directly from the "est" elements of res and add them to \code{d}
#' If NUMPOSTSAMPLES == 0, get the predictions directly from the "pred" elements of res and add them to \code{dp}
#' If NUMPOSTSAMPLES > 0, get the predictions using \code{inla.posterior.samples()} and add them to \code{dp}.
#' If NUMPOSTSAMPLES > 0, \code{dp} may or may not have passed previously to \code{inla()}
#' @param cutoff_exceedanceprob cutoff value to compute exceedance probabilities P(theta > cutoff)
#' @return Data frame \code{d} or \code{dp} with added columns \code{pred_mean}, \code{pred_ll}, \code{pred_ul} and \code{excprob}
#' \code{pred_mean} is the posterior mean
#' \code{pred_ll} and \code{pred_ul} are the lower and upper limits of 95%, 90%, 50% credible intervals
#' \code{excprob} is the probability that hte prediction > cutoff value
fnGetPredictions = function(res, stk.full, mesh, d, dp, covnames, NUMPOSTSAMPLES, cutoff_exceedanceprob){
if(NUMPOSTSAMPLES == -1){
index = inla.stack.index(stk.full, tag = "est")$data
d$excprob = sapply(res$marginals.fitted.values[index],
FUN = function(marg){1-inla.pmarginal(q = cutoff_exceedanceprob, marginal = marg)})
d$pred_mean = res$summary.fitted.values[index, "mean"]
d$pred_ll = res$summary.fitted.values[index, "0.025quant"]
d$pred_ul = res$summary.fitted.values[index, "0.975quant"]
d$pred_sd = res$summary.fitted.values[index, "sd"]
d$pred_ll90 = unlist(lapply(res$marginals.fitted.values[index], FUN = function(marg){inla.qmarginal(p = 0.05, marginal = marg)}))
d$pred_ul90 = unlist(lapply(res$marginals.fitted.values[index], FUN = function(marg){inla.qmarginal(p = 0.95, marginal = marg)}))
d$pred_ll50 = unlist(lapply(res$marginals.fitted.values[index], FUN = function(marg){inla.qmarginal(p = 0.25, marginal = marg)}))
d$pred_ul50 = unlist(lapply(res$marginals.fitted.values[index], FUN = function(marg){inla.qmarginal(p = 0.75, marginal = marg)}))
dres = d
}
if(NUMPOSTSAMPLES == 0){
index = inla.stack.index(stk.full, tag = "pred")$data
dp$excprob = sapply(res$marginals.fitted.values[index],
FUN = function(marg){1-inla.pmarginal(q = cutoff_exceedanceprob, marginal = marg)})
dp$pred_mean = res$summary.fitted.values[index, "mean"]
dp$pred_ll = res$summary.fitted.values[index, "0.025quant"]
dp$pred_ul = res$summary.fitted.values[index, "0.975quant"]
dp$pred_sd = res$summary.fitted.values[index, "sd"]
dp$pred_ll90 = unlist(lapply(res$marginals.fitted.values[index], FUN = function(marg){inla.qmarginal(p = 0.05, marginal = marg)}))
dp$pred_ul90 = unlist(lapply(res$marginals.fitted.values[index], FUN = function(marg){inla.qmarginal(p = 0.95, marginal = marg)}))
dp$pred_ll50 = unlist(lapply(res$marginals.fitted.values[index], FUN = function(marg){inla.qmarginal(p = 0.25, marginal = marg)}))
dp$pred_ul50 = unlist(lapply(res$marginals.fitted.values[index], FUN = function(marg){inla.qmarginal(p = 0.75, marginal = marg)}))
dres = dp
}
if(NUMPOSTSAMPLES > 0){
psamples = inla.posterior.sample(NUMPOSTSAMPLES, res)
ps = sapply(1:NUMPOSTSAMPLES, fnPredictFromPosteriorSample, psamples = psamples, res = res, mesh = mesh, dp = dp, covnames = covnames)
dp$excprob = apply(ps, 1, function(x){mean(x > cutoff_exceedanceprob)})
dp$pred_mean = rowMeans(ps)
dp$pred_ll = apply(ps, 1, function(x){quantile(x, 0.025)})
dp$pred_ul = apply(ps, 1, function(x){quantile(x, 0.975)})
dp$pred_sd = res$summary.fitted.values[index, "sd"]
dp$pred_ll90 = apply(ps, 1, function(x){quantile(x, 0.05)})
dp$pred_ul90 = apply(ps, 1, function(x){quantile(x, 0.95)})
dp$pred_ll50 = apply(ps, 1, function(x){quantile(x, 0.25)})
dp$pred_ul50 = apply(ps, 1, function(x){quantile(x, 0.75)})
dres = dp
}
return(dres)
}
#' Calculates cross-validation measures obtained by fitting a spatial model using INLA and SPDE
#' It uses d and dp because datasets for estimation and prediction have different covariates (predictions by cross-validation and using all data)
#'
#' @param n Number of iteration
#' @param d Data frame with data for estimation that contains coordinates (coox, cooy), response variable (y) and covariates
#' @param dp Data frame with data for prediction that contains coordinates (coox, cooy), and covariates
#' If \code{covnames} includes an intercept, \code{d} needs to have column of 1s for the intercept
#' @param covnames Vector with the names of the intercept and covariates to be included in the formula
#' @param typecrossvali string that denotes if cross-validation is spatial ("crossvalispatial") or not ("crossvalinotspatial")
#' @return Vector with the cross-validation results
INLA_crossvali = function(n, d, dp, formula, covnames, typecrossvali = "non-spatial", family = ""){
print(n)
# Split data
smp_size = floor(0.8 * nrow(d))
set.seed(n)
if(typecrossvali == "non-spatial"){
training = sample(seq_len(nrow(d)), size = smp_size)
test = seq_len(nrow(d))[-training]
}
if(typecrossvali == "spatial"){
# The validation data needs to spatially represent the whole region where the prevalence is predicted
# We use locations of a spatially representative sample of the prediction surface
# To obtain a valid data set, X% of the observations are sampled without replacement where
# each observation has a probability of selection proportional to the area of the Voronoi polygon
# surrounding its location, that is, the area closest to the location relative to the surrounding points
p <- matrix(c(d$coox, d$cooy), ncol = 2)
v <- dismo::voronoi(p) # extent?
prob_selection <- area(v)/sum(area(v))
test <- sample(seq_len(nrow(d)), size = nrow(d)-smp_size, prob = prob_selection, replace = TRUE)
train = sample(seq_len(nrow(d)), size = smp_size)
training = seq_len(nrow(d))[-train]
}
# Fit model
dtraining = d[training, ]
dptest = dp[test, ]
# INI CODE MENG
# Add to d[, training] 3 variables with names lasso, rf, xgb that are predictions at locations coox and cooy calculated using cross-validation with the dataset d[, training]
#dtraining = fnMLPredictionsCV(d[, training])
# Add to dp[test, ] 3 variables with names lasso, rf, xgb that are predictions at locations coox and cooy calculated using all data in d[, training]
#dptest = fnMLPredictionsAll(dp[, test])
# END CODE MENG
# Fit model
if(family == "gaussian"){
lres = fnFitModelINLA(dtraining, dptest, formula, covnames, TFPOSTERIORSAMPLES = FALSE, family = "gaussian")}
if(family == "Gamma"){
lres = fnFitModelINLA(dtraining, dptest, formula, covnames, TFPOSTERIORSAMPLES = FALSE, family = "Gamma")}
if(family == "lognormal"){
lres = fnFitModelINLA(dtraining, dptest, formula, covnames, TFPOSTERIORSAMPLES = FALSE, family = "lognormal")}
if(family == "beta"){
lres = fnFitModelINLA(dtraining, dptest, formula, covnames, TFPOSTERIORSAMPLES = FALSE, family = "beta")}
# Get predictions
dptest = fnGetPredictions(lres[[1]], lres[[2]], lres[[3]], dtraining, dptest, covnames, NUMPOSTSAMPLES = 0, cutoff_exceedanceprob = 30)
# Goodness of fit
val = APMtools::error_matrix(validation = dptest$real, prediction = dptest$pred_mean)
val = c(val, cor = cor(dptest$real, dptest$pred_mean))
(val = c(val, covprob95 = mean(dptest$pred_ll <= dptest$real & dptest$real <= dptest$pred_ul), # 95% coverage probabilities
covprob90 = mean(dptest$pred_ll90 <= dptest$real & dptest$real <= dptest$pred_ul90),
covprob50 = mean(dptest$pred_ll50 <= dptest$real & dptest$real <= dptest$pred_ul50)))
return(val)
}
##################################################
setwd("C:/Users/Usuario/Desktop/Projects/2021/KAUST/INLA")
d = read.csv("dat2.csv", header = T)
head(d, 3)
#=======================================
# Data for estimation. Create variables y with the response, coox and cooy with the coordinates, and b0 with the intercept (vector of 1s)
#d$y = sqrt(d$mean_value) # response transform sqrt (GAUSSIAN distribution)
d$y = d$mean_value # # For GAMMA distribution
d$coox = d$Longitude
d$cooy = d$Latitude
d$b0 = 1 # intercept
d$real = d$y
# Variables for stacked generalization
# d$lasso = d$lasso10f_pre
# d$rf = d$rf10f_pre
# d$xgb = d$xgb10f_pre
d$Countrycode = as.factor(d$Countrycode)
d$MeasurementType = as.factor(d$MeasurementType)
d$AirQualityStationType = as.factor(d$AirQualityStationType)
d$AirQualityStationArea = as.factor(d$AirQualityStationArea)
d$urbantype = as.factor(d$urbantype)
#======================================
# Data for prediction
dp = d
# Variables for stacked generalization
# dp$lasso = dp$lasso_all_pre
# dp$rf = dp$rf_all_pre
# dp$xgb = dp$xgb_all_pre
# MODEL 1
# Model with covariates selected with lasso
# covnames = c("b0", "nightlight_450", "population_1000", "population_3000",
# "road_class_1_5000", "road_class_2_100", "road_class_3_300", "trop_mean_filt",
# "road_class_3_3000", "road_class_1_100", "road_class_3_100",
# "road_class_3_5000", "road_class_1_300", "road_class_1_500",
# "road_class_2_1000", "nightlight_3150", "road_class_2_300", "road_class_3_1000",
# "temperature_2m_7")
#
# # # MODEL 2
# covnames = c("b0", "nightlight_450", "population_1000", "population_3000",
# "road_class_1_5000", "road_class_2_100", "road_class_3_300", "trop_mean_filt",
# "road_class_3_3000", "road_class_1_100", "road_class_3_100",
# "road_class_3_5000", "road_class_1_300", "road_class_1_500",
# "road_class_2_1000", "nightlight_3150", "road_class_2_300", "road_class_3_1000",
# "temperature_2m_7", "urbantype")
#
#
# # # MODEL 3
# covnames = c("b0", "nightlight_450", "population_1000", "population_3000",
# "road_class_1_5000", "road_class_2_100", "road_class_3_300",
# "trop_mean_filt", "road_class_1_100", "Countrycode", "MeasurementType",
# "AirQualityStationType", "AirQualityStationArea", "urbantype")
# # MODEL 4
covnames = c("b0", "nightlight_450", "population_1000", "population_3000",
"road_class_1_5000", "road_class_2_100", "road_class_3_300",
"trop_mean_filt", "road_class_1_100", "urbantype", "Countrycode")
formula = as.formula(paste0('y ~ 0 + ', paste0(covnames, collapse = '+'), " + f(s, model = spde)"))
# Call inla()
lres <- fnFitModelINLA(d, dp = dp, covnames, formula = formula, TFPOSTERIORSAMPLES = TRUE, family = "gaussian")
# Metrics (for comparative purposes)
lres[[1]]$waic$waic
sum(lres[[1]]$cpo$failure, na.rm = TRUE)
# # If cpo sum is > 1
# improved.result = inla.cpo(lres[[1]])
#
# # Cheking
# sum(improved.result$cpo$failure, na.rm = TRUE)
slcpo <- function(m, na.rm = TRUE) {
- sum(log(m$cpo$cpo), na.rm = na.rm)
}
slcpo(lres[[1]])
#==============================
# get the objects of interest
#==============================
res = lres[[1]]
stk.full = lres[[2]]
mesh = lres[[3]]
# Get predictions. NUMPOSTSAMPLES = -1 calculated with estimation data, 0 with prediction data, 1 with inla.posterior.samples()
dres = fnGetPredictions(res, stk.full, mesh, d, dp, covnames, NUMPOSTSAMPLES = 0, cutoff_exceedanceprob = 30)
# Goodness of fit
APMtools::error_matrix(validation = dres$real, prediction = dres$pred_mean)
cor(dres$real, dres$pred_mean)
mean(dres$pred_ll <= dres$real & dres$real <= dres$pred_ul)
mean(dres$pred_ll90 <= dres$real & dres$real <= dres$pred_ul90)
mean(dres$pred_ll50 <= dres$real & dres$real <= dres$pred_ul50)
# Cross-validation
VLA = lapply(1:20, FUN = INLA_crossvali, d = d, dp = dp, formula = formula, covnames = covnames,
typecrossvali = "spatial", family = "gaussian")
(VLA = data.frame(LA = rowMeans(data.frame(VLA))))
#=========================================
# Get predicted data on grid
#=========================================
library(leaflet)
library(gridExtra)
index.pred <- inla.stack.index(lres[[2]], "pred")$data
pred_mean <- lres[[1]]$summary.fitted.values[index.pred, "mean"]
pred_ll <- lres[[1]]$summary.fitted.values[index.pred, "0.025quant"]
pred_ul <- lres[[1]]$summary.fitted.values[index.pred, "0.975quant"]
#==============================
# Plot of predictions
#==============================
shapefile <- readOGR(dsn = "C:/Users/Usuario/Desktop/Projects/2021/KAUST/INLA/temp", layer = "shape2")
data_pred = data.frame(pred_mean, pred_ll, pred_ul, lres[[5]][, 1], lres[[5]][, 2])
colnames(data_pred) <- c("pred_mean", "pred_ll", "pred_ul", "Longitude", "Latitude")
mean_plot <- ggplot(data_pred, aes(Longitude, Latitude)) +
geom_point(aes(colour= pred_mean)) +
scale_colour_gradient(name = expression(Level~of~NO[2]), low = "yellow", high = "red") +
xlab("") + ggtitle("Mean prediction") +
theme(plot.title = element_text(hjust = 0))+
geom_point(aes(colour= pred_mean)) +geom_polygon(data = shapefile, aes(x = long, y = lat, group = group), colour = "black", fill = NA)
upper_plot <- ggplot(data_pred, aes(Longitude, Latitude)) +
geom_point(aes(colour= pred_ul)) +
scale_colour_gradient(name = expression(Level~of~NO[2]), low = "yellow", high = "red") +
xlab("") + ggtitle("Upper prediction") +
theme(plot.title = element_text(hjust = 0))+
geom_point(aes(colour= pred_mean)) +geom_polygon(data = shapefile, aes(x = long, y = lat, group = group), colour = "black", fill = NA)
lower_plot <- ggplot(data_pred, aes(Longitude, Latitude)) +
geom_point(aes(colour= pred_ll)) +
scale_colour_gradient(name = expression(Level~of~NO[2]), low = "yellow", high = "red") +
ggtitle("Lower prediction") +
theme(plot.title = element_text(hjust = 0))+
geom_point(aes(colour= pred_mean)) +geom_polygon(data = shapefile, aes(x = long, y = lat, group = group), colour = "black", fill = NA)
x11()
grid.arrange(mean_plot, upper_plot, lower_plot, ncol = 1)
#======================================================
# Posterior mean and sd of the spatial random field
#======================================================
#==========================
# First option
#==========================
rang <- apply(lres[[3]]$loc[, c(1, 2)], 2, range)
proj <- inla.mesh.projector(lres[[3]], xlim = rang[, 1], ylim = rang[, 2], dims = c(300, 300))
mean_field <- inla.mesh.project(proj, lres[[1]]$summary.random$s$mean)
sd_field <- inla.mesh.project(proj, lres[[1]]$summary.random$s$sd)
dat <- expand.grid(x = proj$x, y = proj$y)
dat$mean_field <- as.vector(mean_field)
dat$sd_field <- as.vector(sd_field)
library(viridis)
library(cowplot)
gmean <- ggplot(dat, aes(x = x, y = y, fill = mean_field)) +
geom_raster() +
scale_fill_viridis(na.value = "transparent") +
coord_fixed(ratio = 1) + theme_bw()
gsd <- ggplot(dat, aes(x = x, y = y, fill = sd_field)) +
geom_raster() +
scale_fill_viridis(na.value = "transparent") +
coord_fixed(ratio = 1) + theme_bw()
plot_grid(gmean, gsd)
#==========================
# Second option
#==========================
# Second option
library(fields)
x11()
par(mfrow=c(1,2), mar=c(4,4,3,5))
image.plot(x=proj$x, y=proj$y, z=mean_field, asp=1,xlab='Longitude', ylab='Latitude')
plot(shapefile, add=T)
title(main="Mean for the spatial random field")
image.plot(x=proj$x, y=proj$y, z=sd_field, asp=1,xlab='Longitude', ylab = "")
plot(shapefile, add=T)
title(main="SD for the spatial random field")
#==========================
# Third option
#==========================
par(mfrow=c(1,2), mar=c(4,4,3,5))
image.plot(x=proj$x, y=proj$y, z=mean_field, asp=1,xlab='Longitude', ylab='Latitude')
bnd <- inla.mesh.boundary(lres[[3]])
inter <- inla.mesh.interior(lres[[3]])
lines(inter[[1]], col=1, lwd=3)
plot(lres[[3]], add = T, draw.segments = TRUE)
lines(inter[[1]], col=1, lwd=1)
title(main="Mean for the spatial random field")
image.plot(x=proj$x, y=proj$y, z=sd_field, asp=1,xlab='Longitude', ylab = "")
plot(lres[[3]], add = T)
lines(inter[[1]], col=1, lwd=1)
title(main="SD for the spatial random field")