-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunittests.py
111 lines (96 loc) · 3.04 KB
/
unittests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Unittests for key components
Dependencies:
- Python 3.7.6
- NumPy 1.18.1
- PyTorch 1.4.0
"""
import utils
import torch
import dataloader
import numpy as np
import robustclassifier
def unittest_4():
"""
UNITTEST 4
- func: robustclassifier.test
"""
# model configurations
classes = [0, 1]
n_class = 2
n_sample = 10
n_feature = 10
max_theta = 1e-2
batch_size = 10
# training parameters
epochs = 2
lr = 1e-2
gamma = 0.7
# init model
model = robustclassifier.RobustImageClassifier(n_class, n_sample, n_feature, max_theta)
# train and test
trainloader = dataloader.MiniMnist(classes, batch_size, n_sample, is_train=True, N=20)
testloader = dataloader.MiniMnist(classes, batch_size, n_sample, is_train=False, N=15)
# get K nearest train neighbors for testset
robustclassifier.test(model, trainloader, testloader, K=5)
def unittest_3():
"""
UNITTEST 3
- func: robustclassifier.RobustClassifierLayer
"""
batch_size, n_sample, n_feature, n_class = 5, 10, 7, 2
X_tch = torch.randn(batch_size, n_sample, n_feature, requires_grad=True)
Q_tch = torch.randn(batch_size, n_class, n_sample, requires_grad=True)
theta_tch = torch.randn(batch_size, n_class, requires_grad=True)
model = robustclassifier.RobustClassifierLayer(n_class, n_sample, n_feature)
p_hat = model(X_tch, Q_tch, theta_tch)
print(p_hat)
print(model.parameters())
def unittest_2():
"""
UNITTEST 2
- func: utils.dataloader4mnistNclasses
"""
classes = [0, 1, 2, 3, 4, 5]
batch_size = 5
n_sample = 12
dl = dataloader.MiniMnist(classes, batch_size, n_sample, is_train=True, N=20)
for batch_idx, (x, y) in enumerate(dl):
print(y)
# print(len(y[0]))
# break
def unittest_1():
"""
UNITTEST 1
- func: utils.sortbyclass
- func: utils.sortedY2Q
Expected output
tensor([
[[0.5000, 0.5000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.2000, 0.2000, 0.2000, 0.2000, 0.2000]],
[[0.3333, 0.3333, 0.3333, 0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.3333, 0.3333, 0.3333]],
[[0.5000, 0.5000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.2000, 0.2000, 0.2000, 0.2000, 0.2000]]])
"""
batch_size, n_sample, n_feature = 4, 7, 5
X = torch.randn(batch_size, n_sample, n_feature, requires_grad=True)
Y = torch.tensor([
[2,1,1,2,2,2,2], # 1: 2, 2: 5
[1,2,1,2,1,2,2], # 1: 3, 2: 4
[1,1,2,1,2,1,2], # 1: 4, 2: 3
[1,2,2,2,2,1,2] # 1: 2, 2: 5
])
_X, _Y = utils.sortbyclass(X, Y)
Q = utils.sortedY2Q(_Y)
print(Q)
if __name__ == "__main__":
# unittest_1()
unittest_2()
# unittest_3()
# unittest_4()
pass