-
Notifications
You must be signed in to change notification settings - Fork 91
/
derin_sinir_agi.py
51 lines (42 loc) · 1.68 KB
/
derin_sinir_agi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import cv2
import numpy as np
model_class = { 0: 'background',
1: 'aeroplane', 2: 'bicycle', 3: 'bird', 4: 'boat',
5: 'bottle', 6: 'bus', 7: 'car', 8: 'cat', 9: 'chair',
10: 'cow', 11: 'diningtable', 12: 'dog', 13: 'horse',
14: 'motorbike', 15: 'person', 16: 'pottedplant',
17: 'sheep', 18: 'sofa', 19: 'train', 20: 'tvmonitor' }
model_proto = "MobileNetSSD_deploy.prototxt"
model_weight = "MobileNetSSD_deploy.caffemodel"
net = cv2.dnn.readNetFromCaffe(model_proto, model_weight)
video_capture= cv2.VideoCapture(0)
while(video_capture.isOpened()):
ret, frame = video_capture.read()
rows, cols = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 0.007843,
(640, 480),
(127.5, 127.5, 127.5), False)
net.setInput(blob)
detections = net.forward()
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > 0.4:
class_id = int(detections[0, 0, i, 1])
xLeftBottom = int(detections[0, 0, i, 3] * cols)
yLeftBottom = int(detections[0, 0, i, 4] * rows)
xRightTop = int(detections[0, 0, i, 5] * cols)
yRightTop = int(detections[0, 0, i, 6] * rows)
cv2.rectangle(frame, (xLeftBottom, yLeftBottom), (xRightTop, yRightTop),
(0,0,0), 2)
if model_id in model_class:
label = "Nesne: "+model_class[model_id] + " Tahmin Orani: " + "%0.1f"%confidence
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
yLeftBottom = max(yLeftBottom, labelSize[1])
cv2.putText(frame, label, (xLeftBottom, yLeftBottom),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 2)
cv2.imshow("",frame)
key = cv2.waitKey(2)
if key == 27:
break
video_capture.release()
cv2.destroyAllWindows()