diff --git a/docs/getting_started.ipynb b/docs/getting_started.ipynb deleted file mode 100644 index 6c36475d9f..0000000000 --- a/docs/getting_started.ipynb +++ /dev/null @@ -1,280 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Getting Started with Llama Stack !" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This notebook will walk you throught the steps to get started on LlamaStack\n", - "The first few steps need to happen outside of this notebook to get a stack server running.\n", - "Please look at this [guide](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.md) for detailed instructions. \n", - "\n", - "For more client examples for other apis ( agents, memory, safety ) in llama_stack please refer to the [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples).\n", - "\n", - "In this notebook, we will showcase a few things to help you get started,\n", - "- Start the Llama Stack Server \n", - "- How to use simple text and vision inference llama_stack_client APIs" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Starting the Llama Stack Server " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. Get Docker container\n", - "```\n", - "$ docker login\n", - "$ docker pull llamastack/llamastack-meta-reference-gpu\n", - "```\n", - "\n", - "2. pip install the llama stack client package \n", - "For this purpose, we will directly work with pre-built docker containers and use the python SDK\n", - "```\n", - "$ git clone https://github.com/meta-llama/llama-stack-apps.git\n", - "$ cd llama-stack-apps\n", - "$ yes | conda create -n stack-test python=3.10 \n", - "$ conda activate stack-test\n", - "$ pip install llama_stack llama_stack_client\n", - "```\n", - "This will install `llama_stack` and `llama_stack_client` packages. \n", - "This will enable you to use the `llama` cli. \n", - "\n", - "3. Download model \n", - "```\n", - "$ llama download --help \n", - "$ llama download --source meta --model-id Llama3.2-11B-Vision-Instruct --meta-url \n", - "```\n", - "\n", - "4. Configure the Stack Server\n", - "```\n", - "For GPU inference, you need to set these environment variables for specifying local directory containing your model checkpoints, and enable GPU inference to start running docker container.\n", - "$ export LLAMA_CHECKPOINT_DIR=~/.llama\n", - "```\n", - "\n", - "5. Run the Stack Server\n", - "```\n", - "$ llama stack run local-gpu --port 5000\n", - "```\n", - "\n", - "The server has started correctly if you see outputs like the following \n", - "```\n", - "...\n", - "...\n", - "Listening on :::5000\n", - "INFO: Started server process [1]\n", - "INFO: Waiting for application startup.\n", - "INFO: Application startup complete.\n", - "INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Llama Stack Client examples" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from llama_stack_client import LlamaStackClient" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "host = \"localhost\"\n", - "port = 5000\n", - "client = LlamaStackClient(base_url=f\"http://{host}:{port}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# For this notebook we will be working with the latest Llama3.2 vision models\n", - "model = \"Llama3.2-11B-Vision-Instruct\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Inference APIs ( chat_completion ) " - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Fuzzy, gentle soul\n", - "Softly humming, calm delight\n", - "Llama's gentle gaze" - ] - } - ], - "source": [ - "# Simple text example\n", - "iterator = client.inference.chat_completion(\n", - " model=model,\n", - " messages=[\n", - " {\n", - " \"role\": \"user\",\n", - " \"content\": \"Write a haiku on llamas\"\n", - " }\n", - " ],\n", - " stream=True\n", - ")\n", - "\n", - "for chunk in iterator:\n", - " print(chunk.event.delta, end=\"\", flush=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Multimodal Inference " - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAIAAgADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDzzwFGTJkDvXq8i4tRXNeEtA+zRqQtdfeQ+XBj2qpmcXdmXAOasVBD1NWK52bITFNNSUxqQyM9alH3ai71L/BQBGB81THpUS/eqU9KAQR/eqSX7tRx9akl+7SH0IU61YWq8f3qtKKQIQikxzUhFNxzSKRpWPatM/crNsu1aZ+5Wa3L6HIeJx+4Nclb113ij/j3NchbHivawn8M+azH+KXVp1IvSngV0nCNxRinYoxQAwimkVJSEUCIyKaRUuKaRQBHikIqQimkUAR4oxTsUhFMQwimkVLimkUDIzTSOakIpCKAMy8Hz0y3Hzipbz71RW/3xUmnQ0B06UEUo6CiqMbjDSU800igdxhppp+KTFADDTcU89aaRxQAsMfmSha6Ky0oMoO2sSwx9rXNd9pkQMYwO1Zzdjpw8FN6mfHZJCOQBViKVAeDUt/E24gCqkNq49axvfc7UrOyLL3gXgGs7U7ndbmrq2DNJk1V1O1CwEe1NWuKd+VnAXZ3XD1TcVdu123Diqjitzz+pSlXrWtoafN+NZkg61saCuXH1rGr8J3YZ++jU1mHNifpXlV9GVuXHvXsOqx5sT9K8r1CL/S3+tclPU9ScuWSMqNPm5p7DBqwkfzUskXOaJaGtN3L+kx7mGa3rq3X7P07VgWMohxmtOfUVMWM9qqOxjUWpzV7FtmOKp4NaU372QmojDTaHGVkfTWi2irAvHal1dAsRq1pIxAPpUOsj5DWctgic7EPmNWKrxfeNWBXOzdAaYaeelQSOFpDAn5qk3Db1qg0xLcUvmnFVyi5kWg3z1Ofu1QiclqvjlKljQsX3qkm+7TIhzT5fu0iiCP71W1HFVY/vVbXpSBCmm9xTzTcc0ho0rEcCtI/crOsh0rSP3KzW5fQ5DxR/wAezVx9r0rsPFH/AB7tXIWvSvawnwHzWY/xS+g4qQCmJ0qYCuk4BMUmKdilxQBHimkVIRSYoAjK00ipaaRQBGRTSKkIpppksjxSYpxFFADKTFOIpDQA0imN0p9NYcUAZl796orcfMKmvB81RQfeH1pdTT7JojpRQOlFMxENNxTqKAuMxSEU8ikNA7keKQipCKaRxQFx1odt0prvdJukVBk159yrBh1FaNtrBgABJ4qJx5kdGHqKD1O8uJEc5qDzY07iuSk8SccZNZ8+v3D/AHAayVJnY8TE7p7+NP4hWHq2rReWwDDNclLqN5L1cgVWYO/LsTVqnYynibqyC4k82dmHSqzipyuKjYVZzXKcgra8PjMg+tZEg61t+HR+9FZVfhOzC/GjotST/QT9K8s1FP8ATJPrXreopmwP0ryrUV/0yT61y0T0sS7NGaifPUrxcdKVF/eVZdPlpVdGb4Z3RlzEopxUCyO/UmrV2MA1UjYA0R2HUWpaRaeVGKjWVRQZhVmFj6Q03UI0hA3dqi1S/SRDgivOtQ16XTyQCcUzTtdn1CUBicVg2mjdQa3OzhO45qxVa1/1an2q1WDNUNY8VSmyzYFXiOKiEYDZNVBaky2Ky25xk0jx7amnuFiFUluPMfrV1JxgtSacHN6FmJOavAfJVWHtxVv+CsFLm2NnHl0HRdadN92mxdadN92gCBD81W16VTj+9VxOlAIdSdxS0nekM1LHtWg33Kz7HtWiw+SoW5fQ4/xR/qGrkbWuu8Uf8e5rkbXpXs4T+GfM5i/3poJ2qYVElSCuk4B1FFJmgAxSGlzTaAuJTTTqQigBhphp5FNIpiYw0lOIppBxnBx0zTIbEpuKkMbiNJCpCPnafXHWkxQFxhFMYVKRTStAXMu8HzVDCORVu7TLVFEmCKXU1T0LQ6UUAU6mZDaKUikoAQ0lOpCMdQR35pANNIafSEUARkZqNlqYimEUDuQFBSFalIppFA7kRWkxUpFNIoKRCwqFhVkionFJlJlOQVt+HFzLWPIK3fDS/vPxrGr8J24T+IjqdQT/AEA/SvKNSX/TZPrXruoLmwP0rybUl/06T61y0Op6GK6Gcg/e1bZflqug/eVbI+WlW3OnB6xMq9TKmskBs10M8W5TVNLYE9KIK6HWnyszQH96Njn1rZW1X0pfsy+laWOf2qOh8TD5qTw4MyrT/E3Bo8NDMi1xo9KfwnotqP3a/SrNQW/EQ+lEs4QdagzJs1XnmC1XN1k8GopSzgmtYRM5yKF5cGSTANTWi9KrmA+ZkjvVyABa4MZL3rHdhIe7c1IKtEcVmxXKoeTVn7WjdxW1KNooxqSvJlqPrSz/AHaZA4Y8VJP92rJ6FeP71W0HFVI/vVdTpSYIKO9OxSY5FIZqWI4FaD/cqjYjpV+QfJULcvocX4pP7g1ydrXV+Kf9Sa5W1HFe1hP4Z8xmX8UvpUoqNKlFdB59wooxRQAmKMUtBFAXG0uKXFIelA0MIqM9akarel6TPq0+yIptB+b96qsB9DRKUYRcpOyHGEqklGCu2UYYWuJliQMSf7i7iPfA5Nd3pHg+0Fqkl5ky7SssavlJkPQjPIYf0rR0bw9aaM3mw3dx5hHzIXVkP4bap+J/EkemRM8shiOMrMq7grds+n48e9eDjMzv7tE+ly7Jdeaqrszdf0zS9P0pIoiComwpY85x0/HGPrXLXOnzWzgbWdHG5HVSQy1xGveM7nW9bcRo6RsVZoAf4xw2369R717t8Nb+4fw5HFcSB2ZfMhJ43L3+vr+NVh8VWoq89bmuOyyhV0p6NHnsdjdzttitLiRsZwsTH+lXI/DeuS48vSLw59Ysfzr2ZbuYuAEYg+grRjztySTn1GK64Y+U9kee8nhD4pM8Lm8BeJXww0tsH/pomf51UHg3xEmCdGu+fRQf619B0Vp9ZmH9mUu7PC2+H/iYKD/ZucgdJk4/Wo7jwN4ktly2lvIMZ/dOr/yNe7/hVa5klUgRrnPU+lKWKnFXBZXSk7XZ4IvhnXpGZV0e9yoyd0RA/Wr1v4SuYIVn1YG2Qn/VsRnHv6e/pXsYupGPH3fXPWuH8eadNdRrPK8kdpGuXCDLSN2UDqTnsK46uY1GrROqhk9FSvN3M/TNM0W6aM7FlEbFljXjzZCOM+wHb86q674XkncnT0+03MsheeYkKieiLnt/hXmLeIZtA1RljcPNyCvmfKgJ5GR+p7npxzXrHgvxH/wkQASSERpw56A+yjqfrXHLF4ijNT3R6csrw1Wk1a1vvOGu7KeylaKZDlTgsFO3Pscc1Xr1jW/BMutTtP8A23OD/BHJGrIo9AO1eca3o8mhX/2Se4ilk6/IpH8697D4unWSSep8ji8DVoNyt7pm4phHNSUhFdRxEWKaRUpFNIpDRFikIqTFNIoGiIionFWCKiYUDuU5BxW94ZH7wfWsSQda3vDI/efjWNb4Dtwb/eI66/T/AEA/SvJNUH+ny/WvYL8f6AfpXkOqD/iYS/WuTD9T0sZ0M1R+9q2R8tQKP3tWW+6KVfc6cF8JDIvyVXReauMP3dV0HNOlsRitx+OKQingUhFanHc1/Ew+aneGR+8Wl8Tj5qd4YH71a4I7HuT2O/U7YAfas6dnkcgZrTC5hA9qiS3BenBXZjN2RXtbRmPNaq2Q2cipYYwoHFXQAVroOW9znbm2EbZxWZPP5QJro76IEVzWpxFYmxXJWw3tJXOyjieSNjButdEMhG6pbHXDNIBnNcnqMbNcsCT1q5oceJwM963UFGNjKUuZ3PVtMcugNXbj7tZ+kD9yv0rRuPu1zvc2WxWjPzVei6Vnp96tCLpSYIkxSfxCnU3+OpZRrWI4FX5B8hqjY1oP9yoW5T2OJ8VD9wa5O2HFdb4s/wBSa5O16V7mE/hny2Zfxi+g4qQCmJUoroOBARSYp1FIBuKMU6kPSgYlNPFSRxvNKsUSlnY4ArsNH8Lw2MRu9bEAHVYzliPr2/nWFfEU6EeabOjDYWriZ8sEc7pWg3WsE+QyIq9S4P8Ahg/nXbWdonh/TQLm78wqOCwAx7DiqOqeIb5RHaaRZlS3ESlcu49l4Cj3OBVe2k1JEMl1JFe3pHyQwDKRn/eHLH6YFfO4rMZ4hOMVaJ9fgcohhrTm7y/r7h8viC4mdvsmn3LxDrPKBHGPxbk/lXlnxC8UpNH9jF5umB6wsGUex4ziuh8T3movLHYG6gN9I3/HuhNxIvuf4Ery3xI0SX8llasJih2zTEKN7+3tnvWOGoqU05Hr1qip03y7i+ENCuNZ1ZHhUMYyG4G4H6gHIr6J0WCQWkdqq7AGJKEAbT13KRj8QcH8zXm/gXwxawxWxa3ia5ZQzsrhyv4jp+FeuRXMOnwGMBkwPvspIz7nkgfWurFVEnY82hByXMacclxFCDvbK/M24c7c8keo9q3o2yiliMn06Vxltf3U+J40aN0PzR7gyOP7yN0P+c1p6ZqAji8iV1xn92Txxngeox056cdqWGrRWjJrUZbnSUVBDMsy7lPHQg9Qe4NTV6CdzjegyRwiFjk47DvVOW/jUhJkK7ux7irNxOlvGZJGwBXH3+u201xhSvzHbnrnBxx+P5n6Vy4mv7PRPU6KFF1Omhvh45HLoAoH5VSvtPNxbyY3NIwIDMwBUHsOMD8Kyorq4U/Lthi/hZjk/gOpPvwPStKK5Z0Xjf8A7TsMn8BXB7Tmd2jodJx2Z86fEfwmmjXTXfnoFLY8lD3+vJJ9zVfwLq1/BeoltFI6jgrCVzj8eP0r2T4g6XNfaVLLC8EUoXgTQgqw9OvNfN0M13YahI6qA0b/ADGNAVB/LpXa4e2pWFRq+yqXZ9VaNfLc2gmaCZGXhwzqxH1CnijxDp0niXTPs9ndmMqcmPhQ/sWxkV554e157e0tNSckwllhnOP3lux+6wP/AC0jb0OSD3Nd9fpPPBC9pdtbTscr5TbUm9geRn2xXm05zoTTjujpxWGhWi4y2Z5pquiaho04ivbfYx5Gwlxj6gYrPHNeu6V4hS4RtP1Jp4Z+VdLnC7vdWXAI9xXN+I/Ad1HKbvR1ku4X5aMybnX6Z6j8a+hweZwrPlnoz5LH5NUw/vU9V/X3nDGmEVLNFJbytFPG0UgOCjqVI/A03HevUPEs1oyMimEVKRTCKBoiIqNhxU5FRsKCrlSUVveGR+8/GsOQccVu+GR+9/Gsq3wnZg/4iOyvRmxP0ryLVR/xMJfrXr98P9AP0ryLVf8AkISfWuTD9T0sb0M5R+8qdx8oqFR+9qeT7tTX3OjAfCNIzHVdByasj7lQqPmP1qqOxOL3HgcUhFPA4pSK2OK5qeJx81SeGF/eLSeJx81SeGBiRa82Ox709jvGOyEfSmRSc0+Rd0I+lQRod+K0prqc1R9DQilJFTq7GoYITgcVcSA4zitjAqT89a5/WCFib6V0lxGQDxXLa5uETVSEzzrUZB9pb61Y0SUG5xnvWRq0hS5b61LoErNeD61MjaOx7No5zCv0rRnGVrM0PmBfpWtMPlrie50LYpIvzVfiHFVUX56uoOKTBDu1M/jp5FMx8wpFGxYDgVoP9yqFgOBWhJ9yoW5b2OJ8Wf6g1ydtXWeLP9Qa5O2r3ML/AAz5XMf4zL6dKlFRJUoroOAWiikpAH05rVsfDuq3ZST+zZmgzyWcRZH1b/Cq2lW1xeajFDbTpbuT/rW/hH9T7Cu0v7230mzCPcy3cwwu+4cHLfThR+PSvOx+N+rpKNrs9fK8u+ttuV7L7i/aW2kaJZ+fFaRW7qPnmlkDbT/vH+lYeveIIY0WSa7MEb8xoigyye6g/dHua47UvFsdxqKxWbLq2opkq7nFpaY7qB98j1/WsK/DzzyveXv2u4ID3E0oxFGvYBR972Hf86+equpVd5s+zw2GpUF7vQ0dV8VSO66foqCe6ufvMWJjUerueZD7fd+tdFPeTeH/AAx9itrky6jMm+6vm6L64x6fdVR/jXBaIbafV5L65DC0tlDLHIfmnf8AvPjoo7AewHWum8U3Qu9NSKMbWkKM6f3QR8q8dCc5x6YFVKny2ijZSjJts5vTpI9N0691NmJyCokzklj157n39TgetcjCn2jWEjmEaQRkSOiYyWP94nv/AC6V1d/E8cNpasAIIiHCAfeIySSPwUfQ+9ctpDMPEUzIihvMbBVC8mc8keneuzDLVs5MXJ+zXmz2DQru102xWSK2XcR/y1kZGP8Au561c+2alfzM9st1Nt+9bTgJKg9UYY3D2yaxfDWiz3920s63DsTwLqYYx7qOn616DJe6doFqis0UDHhV6ozegrlxLSldjot8qUUZ9rp2rCzjkjkkReWUvgvGf7rD+NT78/zrJ1fV7+0uDKMIw+Zk3ZUkfeA/Dnnt9K62K/vLmAXKxLby94mfcJF9/Q+nf1rivFdx5ryYAEgG/BGD3H4kcj8a4KlRXSR2YaMpSakja8P+MQuorHNKSJuSD3wBg/kcf8Br0yORZEDryCMivmWzuPJuLYg7xHxzwSpBH8yK938M6sl3oEM+/cEjIbb6ivSwVaSvGTOTMcNGNpxRneNNYEEXkLJgM2z5WwST1we3HftyfSufsY7W4+ZxlmwnycY7BV9OOPWuU8YapK+tPas4/dHIY93Y5J/AYFbfg5IkX7VcyNyuYlJxtUnr/vN/KuDETlKpzXOyjRjToeZ2C6LH5WYwFIGAiucL9Rnms9bmbT7oRSsjIOss8u5j9F+ULSavrUmk28dzDubYctDG6ptU/wB4ntWvp+rab4gtdiI04xyyJlQfq3WrpTjLRnJUVSK5mroztR1G08jdIsiBhguGG0/8CQnH4ivAfiFpA0zWv7TsDKlrcNjeOzjqMrxn2r2fxTYXyA2/krsHzQzW5ZHQ9sj/APWK8b8bmcLtnby5RxIF+USY/vJnGfcfpmvXw8WlY82tJN3RreA7v7ToOo6fcTRy2dwhVS3WGTqAw/unHUenrXovhDUv7S0d9H1JTI4j+USvyyj1I7jj5h2KnvXjvgZdqyycqG3K5H8SfL+oJDD6GvQtInNlHBuy01ruCleroOq/l0rkr0/fk0enTnzQipdUTPqklj4hm0u8vGkGQEkuU34PaOdO5/uyL14612Gk67bxZjW4Fs6Ha0Mkm6InttftntmvL/G2pK/iKC7bEtrJGgS4jX54SRnB/vI3XaffBBrasLxJ7u2R3MM0sWLa5C7lkI+9Ew6N647g5GDmsKtO1pLsbwtOLjLoematawa3p7xyJI0gX7i+WJB9C4x+teVatpFzpcp8yx1CCDoHuo1wf+BISv61uWuvGKQWYJt7iHJWJCCcf3oW6Mp/un9DXb6fqj3miEzPbSpMmIpSn7qQnoGU8A54wa7MFmE6UvZyV0zxczyiNWPtE7WPGzzTSKs3z+ZfTHyI4PmIMcabQpHXjJx9M1XNfTrVXPiNnYjNRsKlNMYUDKsord8Mj95+NYkg4rd8Mj97+NZVvhO3B/xUdjfD/QG+leQ6t/yEJPrXsF6P9BP0ryDVx/xMZfrXJh+p6eP6Gcn+tqxL90VCg/eirEo+WliNzowHwjFGUqJR8x4qaP7pqNfvGnR2Ixm5IBxQRTgOKUitjhNPxSPmFO8L8yrTvFCZGaPCQzOK86Cue/Ufuno0VvvhH0py2gVq0LWMeSPpUF1IIs10RVjik7k8ES4FXBCMdKyLS73N1rbhbcoqiSnPbgg8VyuuWn7puK7h0yKwdVtw6nilcbR4fq+lvJdHaO9aGgaI0cqsVrsJtJV5ydvetG009YgPlrKczaEdC/pUXlxKMdq0Zh8tQ2qbRViX7tc5v0K8Y5q4g4qtGPmq2o4pMaEIpuPmqQ00D5hUga1gMKKvyD5Kp2I4FXZPuGpW5b2OI8Wf6g1ydtXWeLB+4NcnbdBXuYX+GfK5l/GLyVIKjSpBXQeeLSUtNNAD4ZWhmV1d0x1KHBx3xUnirULaTwu8zwgk/LFF/CoBxz6/U9TVbPNUvEDlvDdym3d5WJgP905rz8ww6qw5rao9rJMZ9XrqDektPn0Oct7s2Xl20UaNLKwCxjgSv6sf7q9hUkssZt5Jd7XO9ysOek0g4aVh/dzwB6D3rmRN514ZWkZfN5GDyFPQfzq4biR40EbiNmKohH/LNO36c/jXlKlY+tlUvoWZNQexgCIA21/MmZusr9FU/jz7AYrVi15QrPKWmaJS3J+/KerE/p/+qud1B4QAsfSJN2PQ44/IY/OqNm4VliZuOCT79f5V0RpKS1OSpVcXZHarMZoGvLh/MlKs2BwMAb2/9BVay/h/o9xrOpgKvzytkschEXuxx39BU8MxGgalMMKVgfaB2B/yKl+HGuQ6NBcNiNbmQf6yTsvc/wCH41i37NTkjSSdXkiexXN7ZeEdKez021Ak25aT5SSfVieB+P5V4xrHibVE1f7XM8M6FgWMMilgAe+04/MYqK88RaVe3k+p69LPqSCQi00qKQxhufvzP/CPYZJ9hVN9Dl8Q6Td+IY7TSfD+n2qfJmaRftDf3YwxYse2elKnhXL3qmtxvFKi+WC+Z6Tp3jmK4tVkeXDbTtX+8PQ+46/SqGva0upWSSEgTKSQV9Mc15LFd3dtcmGYlXhJDKfyNbumXslzN5KlnYrs6dB3/GvPq5f7OXMnsezh8XSqxulZnUwWk1zp0ksK5KqZt4/hHp+hP416J4IuJ7bwnqMLKVeA7VH1bj9DU3gjw+sel7ZI8FYtzAjOetdNpukslzeIf9VKFduO/Wro05fEceLxEXeHY8B8TvdjxJcGdsvkurf3gas2XiuSKKJkIVygUH+7tGK7Xxd4VkvobieJR5lu5Nvgc7QeV+n+NeL3pksbt02naWPyn+E96FRjV917o6IV+SPN0N3VfGE8ic4Y5JBJy0j+vsB0q94T8U6npV1DcXlrJ9lz990bp7MSM1xmlx3V3q9nHZxJLfXEyxWsbgFdxOATnjGfX+ldM/xF8WaeJEbxG9/Ikjx3FndWyvCUBxn5hyCe2Biu9YOHs+Wx5dTHS9o2tj6E0rXdO8R2C7ZY5kZcpIOCp968f+ImjO00ltchY3jzsYnIz/D83YH3GKyfD3ii1i11bvT4l0ySRsXumBj5RPd4c9PdD07E9tr4ia8LiexVbiN2AIVwucqecH1yO3f6ioo89Or7OWvYzr0oype2h80cV4M3h7eIcMt55bp6qy4YfkD+VdVq+ofZJFmgkAdCOvQ46H+lcX4amtxrbxNiONrhGXacheT09ua1vENwrOseMYJCt2I9DWqp3qyTFKpalBooareG6ukeJSEjB3RE8FCckfgc/Ste0vTHaFZVZ4FKmVFPzLj7sqHsR3/P1rlrS5Iu0aQbtqlTnuOn8utasE3lwlI5Mhf9U/8AEmOQp9R1H5VFWn0N6FVvUvavqU00+6ZhKVxtnj4EgPR8dm9cfUV6Jaa80Pgy2tyoeO9hdZAeSrjGGH9RXliXEWQMbYydyqvb1X6Z5HsTXYghLO0iChdkK5Uf3jyf6VeEw0Z1o3W2pyZvi3SwkrPWTS/r5ETZLFiSSepJppp5ppr6E+FRHimtTzTSKQytIK3vDQ/e/jWHJW94Z/1n41lW+Fnbg/4qOxvv+PE/SvH9YH/Eyk+texXo/wBBP0rx/WP+QnL9a5MNuz08dsjOjH72rEw+SoY+Zaszr+7pYjc6Mv8AhIY/umowPnNSRdDTQPnp0RYwmUUrClWlNbnnG14mQeXmovCQ/firXicfuqr+Ex++H1rzqZ79T4T1a0H+jj6VRvoGkJAFadguYV+lWWtg3at0cjVznbK0dZO9dFAm1BmhLZU5xUc1wsI5NO4krFhiMVm3qgg1UuNbjjJG4VRbVkmPDUmNMa8K+YeKeExSI/mHNSYrlludMdiWAVJL92mwiny9Kgsji6irajiqsXWra9KTGhCKRfvU+kH3qkZrWQ4FXnHyGqdl0FXZPuUluU9jh/Fv+oNchbdK67xb/wAe5rkbbpXuYT+GfK5l/GL69KkFRp0p9dB54pppp3ammgBKR0WSNo3UMjgqwPcHg0tFG+gr2d0eTalavo2pz2UuW8s5Rj/Gp6H8uPzqulwVQs7ku7ZY+g9K9H8R+H1120XYyx3kOTE56MP7hPpnv2P1ryyVJYJ5IZ1aOVCQ6MMEHuK8urR9nK3Q+twWNVemn9pbmiJlliKgfvJHUsfqeBVhLYqhOMsw4/GoNIspbiaOID53bPPb0rpbWyJw/GwE49wOBUx0NajbIZ5zZ+Hb21frJDlSe3OCK4+K5litjHGSPM4JHXFbGuTN89orFm3BT7nqa2X8Jy6VpNlcXAUOXD7lGSD/AHT+HNcznGF79WdsYTnZR6Itf8IxFD4ZFpexxxLcKtxb3rQ/NbyY5EjKPmiYcZ/hODjrWVP4b1GWbz7mzZoYwAgW8iMIHUBX3cL9PWuz1ia3m0y0ZJbeKQRjMq3BUZ91zkH6DmuSg0FLudiw2pnqVwznthfc+vPXippYpOPvjqYJ83uGde6XBIYGhvI579iTcbGyhJbAC/QZOemMV6N8OvBcjzG/uEwin5XYcMQeR+n60/QfCEVoFdIYhMV3b2IbYM/fP07DufYV6v4f0iOK3jigjaKJAAHH3z7k965a2I9tLkgjpp0vq1Nyk9TW0uyW1jRYT5kXQt379fpnFbSRbS2cYPSm28CQphRyeScYyfWp676VPljqeXUqOTuc3qGmFVnYudkgxxwFH+Jz+ZryHx14A3xm4tYtikncAOh7f4V7bqcczqCrbcHIwu4g9sDp+dZN7Z/abUxTJ5m5cHzlHzfiK8/ERcJ80eh34as7Wlsz5tHheS30iG8hurNdUFzuSMXIQ+XswFDHG1wcnnHt0pjeGvEE8aLexEQLz52oXcSRR+5bOWHt+ld5rPg5rq6IS3xMPlGR8rDqAfX+IexI9q44aTDaXW64jRoxwVRVUofXJ4/PGa6oYyE1ruZywUk/dYh0qxubeDTdOjM8MLmaXUfLKPdTnAJTI3LEvQdMnk47VPEvhjUtP1q204Sm7kmIMaltrKzDofT/AD611ujRWttexiXzJF4Ku8Ryv64/nU2vQv4j8SaZbWJC/Zz5sjA5fhgQT+PqSc1lLEP2nMtkbxwyVPke7PK7D7Ro/iOJbuEpMknzI4xz2/DNdTrVoDGpbp1/Mf0Nb3xb0dmm+2LAizx/vBJF0ZD1BHYg81mWEya74bSdGDXUK+XIuORjof5110aiqWmcVek6fufNHGoNrkscEHg+lQiSaCRWVsBW/P0/wrVubIspbaQrZB/2SP8AP5GsfbcyTiyWJnuC4jVVGS3pitJrWxlTnZXNrRI3vtVghIzEv7yTA+6oOf64ruHYuzMepOaztG0pdHsPJJD3MnM8g6Z7KPYfqa0MV6GFoezjd7s+czPG/WKijH4YjTSGnYpprpPOGmozUhqM0AQSdDW94Z/1n41gSdK3vC/+t/Gsa3wHZg/4qO1vR/oJ+lePaz/yEpfrXsd4P9BP0rx3WuNTl+tcmG3Z6mP2Rnxf60Vbn/1VVIv9dVyf/VClidzoy/4StD3pP+WlLD1NH/LQ0UAxpMtOI4oSlNdJ5h0HigfuareEv9cPrVrxT/qKq+E/9aK8ymfQVNj1zTuYl+laFZmntiJfpVxpgB1rc5RZ3Cqa5TW78xKwBravrwKh5rkb8NdMe9UiWcte39xLIcE4q1pUszuNxNWzpYzkirdlZiNhgVlORrGKNm1U+WCatYpkK4UCpSKwZvYlhFOlHFNh60+bpUjIo+tWl6CqsfWra9KTGhaB96lpB94VIzXsugq7J9yqVl0FXZPuGktynscN4u/1BrkbXoK67xd/x7muRtegr3ML/DPlcy/jMvr0p9MTpT+1dB54GkpaSgQlBoozTEIKwvEvhuPW4DNAqpqCD5HzjzAP4T/Q1u0oqZRUlZmtGrKjNSg9ThfCFm0xyylZC3lnPUHOP6Vr+Ip7fRlmlDKSAEhjHRQP8Tz+FaWyLSZr26YhGDs8QboC3JY+w5/E1yFjYv4w19Xl8z+zYZAJJc43f7I9z+grx1GUqnLE+vdWEaPtJ+pzdnK0+qJcStwr7yx9eufzr0WLVrTULA20DiacfM21Cwb3YvwT+H0rhNYsmtNWuhNEsA85tkCcbVzwMdhjFS2OsS2u1BGPL/uZwPxA6/jXNiKfPquh6OFnyx97qbbi6gvlST91GBuIK5IHsP8A9Vdb4X0pm26hciSOLlo1dwSw7knjA9SB9Kr+FNCHiCL7dcxAxJ1ZxtRR+fP410N9NALR5VjdLQNwzZ3zkcDGegz0/QV5ler9lbnp0Ya7m5ocbX96TuBs4sNJlcedJ2z6KvZa9P09RFbIpxubnpjNcj4CsN+lpczou9suqDoM12x2xqGYZb1AzXdgqPLHnZ5WPrKU+RdCWkLAEAkZPQVTfU7NEd3uEVE4Y5+79fSoZtS08DLXaZ4IOf5V3OatdHn8r2NOs6/shMhMZ2MOo7MPcf1p9nqVpcnbDOHJ6AVc3ZUnp9alqNWNmNNwdzz7WIBFvR1bynHDZ5jYcj3xnv2+hrzbxZpMiMl/ZlRIFyq42gjuFcdfz/lXsPiZHhiaeKHzGRSxQdWHfHvXnmpW0K2xZmlSwnO9Z4FLBMj+JehX9RXhTcqNWyPeoWq07nmmnK63BWOFiepiljYAH2PI/lXa+HoRZRz3l1C6S5wrxkKo9sEAH86kXwvbWNnNc/aTKwXKGIl1PvjqK4nUvE17YXUkUc+YnXoOUb6qf/11s5OtpApJU9ZG54s8RQ6rpRgnkExjJEU68SRHukg7qf8AOa5C0t7/AMIw6VqzKXs9ViZguOMqxVk+uMEfUVTsRNq+txQ7T5tw4jwo6gn0r1XxXpUI04eF3lj+y2qqYGijKmCQDrzyTyc88g16eDob016njZni40VCclpexg21jb3cNzdRfvIJ4txX0b1+hB5+lV9K0qPTy944D3ky4ViP9VH2A9yOp9OKoaV4judDvRpmrIsTL0lA+SRT3+h9a6W4lhmuHktyDC/KY7D0/DpXfhIXqPn3R42aVXCgvZPST1IMUUpFIa9JnzqG0h6UppDSGMNRnpTzTDQNFeQcGt7wt/rfxrCk6VueF+J/xrKt8B2YP+Kjubz/AI8T9K8d1r/kKS/WvYrv/jxb6V45rX/ITl+tceG3Z6mP2Rnxf66r04/dVRiP74VoT/6kfSlidzoy74SlD1NKR+8ogHzGlfiSiiPHEy05uBTEPFDNxXSeUdF4q4hqr4V4kWrXiv8A1VVPC/3xXlwPop7HpMd4IYhz2qpca0EJ+aoJlZoBj0rnL+KUvgZrWE09DnlBmrNqpuJNqmtGztfMXcRWBpFi5lBbJ+tdvawbIula3MramRc2wQHiq8KANWnfDris1PleuepudENjQjHAp5FRxHIqQ9KyZoiSLrSzdKbDyafN0pFEcfWrS9Kqx9atr0pMELSD7wpaQfeFSM2LL7tXJPuGqVj92rsv3DSW5T2OF8Xf6hq5G16V13i//UNXH2vSvcwn8M+VzL+MaKGpKiSpRXQecFNNKabQAUUUlMBaVSAwz070lJQK5z+q6LqHiHWppb+5S004N8kUL7nkUdB6D8fyNdDZpBZRwQW0SwwQ8Ii9v8Se5pM0m6op0YQ2Nq+Lq1rcz0RxnjrTkg1eSdQqRznenlIfmPfLHqc1yEUJe6jjHO5gOTXss1nFrdm+mzbUdh+5fGMt2BPv615PqWnvpmpvbSx3CXMb7TE8e0g15Nek6c3Ho9j6/L8ZHE0lLaS0aPXX1eHQvDNraWccMlxIMKg5wfp3P6CqDG91OeJrkN5gCqse/JBJxn6noKxvDE7X87S3FrcMYUCINvQD/JNd34D0mTUPFjSvFMLaA/aJGkGPm6IoGc+v5V4vsW6nL1Pe9soQcz1jRbEafpkNueHVAGwe+P5Vx/jbxyunX0WjW0MxlmhMzyoQu1d20KM/xEgj2613cj+WC+GI7jptFfP3xr2Werz3CgF7mzRYWU4KYcl/r1H0zXsRilaPQ8GUnK8upqweKdMF0TrGvMWztFrbTgRJ7c/ePqa6C0vfDupl44NaLTJ0HmqQnttGBXyvT0keJt0bsjeqnFbehnZ9z6fm1T+yL3dZTSTwsuCN4zx1IPY/lXf+HNci1iwEgcMwO0+p+tfGuj6zc6fchvtMgj6lS2Qa+nfhdD/xJYpiQXZQSF6jIzgj8aznZaoqKezO21KyE8RKnGB+APr/AI15pdM1rbXiQMIzC+WRmAADdevA56Z4616yDukYfNjA6jivN/GNhBZ6m9xkRrMh3ZUlSvcHHv8AzNeVmFHaoj08uq6umzmLPXHKSWl7axLNHEWA2hdyZIyuOPYg49q8T1eZb7U5ZIiWVnODtwR7V3nxE1BrK9tbPT2RmtInErJyVR8FVI9MDOenNYnhTwtNq+oQAwSO0h8yQkFY4Y+7u38h3q8LT9mufubYiopadFudF8OdAlsbe5164t1kFtEfIZ2CrvI45PoOcdauFyx3MSSeSTV7U7q0ZY7CwWT7BbfLEp+VSe7kdyT3NZ4r6HB0XTi3Ldnwea41YmqlH4Y6L/Mhu7O1v4xHeW8cyL93fnK/QjkU6KGO3hSGFAkaLtRQegp5NJXVZXucDnNxUW9ANMNONNNAkIaaaU0hoGNNManmmHpSGV5Olbnhj/X/AI1iSVteGD+//Gs63wHZhP4qO6uv+PE/SvG9c41SX617Jdf8eJ+leN69/wAhSWuPDbs9THbIzoT++FamwyhVHeqem2Mt5cYRePWu1sNAZNrOKjFSSZ1ZcnylHT9BDxgkdaiv/DjJl0BrtreBYVAxT5o0dSCK4oV5RZ21aEaiszymWGS3Yq4IqvI9d7qGiLcZKrzXLahoFxESVFehTxEZbnj1cJOD01RreKx+6qj4Z4da0PFS5iNZ3hviRa4obHrzPRYlBhH0rMvYlMnStSE/uR9Ky7xsS/jRDcU9i/pduoxxXQbQsdY+lHKg1rySAJ1rqOVGfcx7yaoSWxU5xWzGokNJcW4CdKykjRGVDkcVMelN2bXNOrBmyJIhzT5elNi606XpUlEcfWrI6VXj61ZXpQwQtIPvClo/iFSM17LoKuS/dqnZdKuSfcpLcp7HC+Lv9Q1cfbdBXYeLv9Q1cdbHpXuYT+GfLZl/GNBDxUoqFKlBroPOFNJQTmg0CEoozTSaYh1IaTNIaBATToIJrudYLeJ5ZXOFRBkmmr8zqucEnAr1bwf4aOnQLdyXayM44CQ7MD0LEbj+lRVqqmrnRhcNKvOy26mNoPgi8tP9Nv5JI2AytvbnLt7E9BXnPxG0Wa5v3ufOluXjHMBCJMBnHOByPcf/AF6981nUotP02a4aRVVAQWP0yf0r5y8XeIrhLz+1rKc4ciOdWUFSD0PqOuPTgV5dZyrK/Y+mwlOnhZJQW+5k+E7gQaoIcWsLlWVE8pp3YkdC2cAdz1xX0X4J0aHR9PcJBHHNMFeTaOS2ORnvj6DrXzPORLaST6S5S0c/vxGMSSnrtLdhwTjoBg819KeEtdtNU8PaNqcUn7q4tCHGchJBjeCfXIxzXKormUzvqzduRPQ1L/U4bNIRJcrYyElvLmIw47jJ4P4GvD/i1e2+ozxpFJGLqBvNhljfO32+h/pXp3im/uYrYqIV1C2P3VAAYemQeD9a8Q8Zm1YloAPtOPnC/dUn7qg9+/6mtY/FcyS92xwWpanPql09xcrAszBVYxQrGDgYzhQBn1wOaqWtzNZ3KT277JUOVYAcfnTngbnKHrjOKZBEHkIZgAPWukxN60vf7W1KOXVMXUgOIo1jVN5z1cqB8o6+/tX0f4O1TT9L0OztptVgWa63OkvALc9u2fWvme1uEtZE8iAy/MC7dyPUV6r4XuE09S6xM8ZYSiNcFosj7yg9Vz6c1nNaaFx31PfopobiVZI4y4A/12cA/wCNcv45sUvxbRPGQhDs82eI1Xkk9wMZ5B/A0aNqlzLIounEkbqdscS7kI9S3b6HH403x5f2mn6NLfXJZBBbSGN45WXazYUdCM9fw61y1vejys2p3jO6PFX0lGu9R12/gzMZd0UbyBo3B+6ysBkJgADOVPTNdJ4bvL628OX+o6tbERag5ghhU+W4x1IPYDp0rk/tyX/hbzr5pD50rR2qgeW8zHrtA4z0z0VvQNg16X4a8KQeJfB1oyMbS8iXEeSSrqOPmB5znPPXGKrD0k6ilU2ROPrTVF06Su2jjHZWclAVXPAJyR+NNJrS1Pw/qujzMl5ZSqoPEiqWRvowrMPHFe8mnqj4eUJRdpKzFJpM03NGaYCmmmlzSUDEpDS0hoAQ1GaeaYaBkMnetnwz/wAfB+tY0nQ1r+Gj/pP41lW+BnXhP4qO8uv+PE/SvINVga51qRFGcnFev3P/AB5H6V5mFUazKTjO6uClLlTZ7WIh7SUYm94e0hLeFSV5ronKRJzVC0mVIRgjpWXq+oSkFYjXnzm5y1PUpU1CNkaFzqccZ4aq8OqpLJt3Vw15c3wJ4LU3Tri6WcGQEDNHKl1NEpPZHq9uY3TJxVLUkgKHgVlW2qbIR64rO1G/uLj5Y881HMl1KVOUtLCeJ1zCayfD3Eq/WtvxOv7g1ieH/wDXD610r4TlluejQf6gfSsy9X95+Nalv/qB9KzNRYKSaUNxzWhcsJhHH1qafUQDjNYCXmFIBqq07vMOe9dZxnb6dL5nNX7jGysXR5Nsa5NaVzcDYeaiRpHYov8AfNMbgUgfc5pzVzSN1sSRU+XpTIu1Pk6VJRHH96rSjiqsfWrS9KQxaQfeFOpB94UgNay6Vck+5VOz6VclPyGlHcp7HC+Lx/o7VxlseK7TxdzbtXFW/Svbwn8M+WzL+MaCHipAaiTpUgrpPOH0hNJmlFAhKaTTjTM0xC5pCaUKWICgk+gq9Bod/cAEQlFPduKUpxjuy4U51HaCudV4ClD3fzRWEccSZZxEPNPuWPStPxF4zuvIuIdBgDrHGzS30g/dRAen94+gFQ+FfDFtaq015Kkm7goG+97VP4vVdP8AD8xuRGqSyAJDGuNwBzt+nrXlYicZT93Y+kwNKdOklPc43xtNfW3hWO1lmeWUW6+YWPLMxDSE/oK8S1+eYPaNkhZIN209CCScGvf/ABZanULO8lj5DMYkI6HIrxLXbPzrUTlf9RhUUdlAI/8AZaUH7tjd/EYWm6hLZXoMStJDgq8PTcp6j3P68V3XhjxJc+E0aWyJvNCupAZbc5L2zeo/r64rzby2aJpgc4bDeoJ6GtbSNZa3l2yO/wAwwcjcD9cc/wA6U431RtGXc9RvviTp+pwqsV4EkkbaUlDJjjucYAPTNcfqNjqd3OzO0QdmJyOi+/vTHt7a6JnjWLfjDcc/iD/Wr+n6vJpxjgu7RLu1UYC/ckQf7LD+RBrG9tjdI59/DjBSbi8bjrjgCoI9AsnyPt2DnA5FdxNd+F9VjIaa5tGOAEmi3D/vpc1St9A8MNcb21tQgJ42tz+lUpvqS4o5tfCtxuBt7tevy5GOfwrp7FbzTrNZbq/t1WNsb5Oi57D6+lXJNV8OaRHiwgm1GZchHkykY/q1c/e6jf6m+XaJY8/LFFEoA/qalzkxqCOqi+JltpMTKbhbr+HyrcH8OTj6VQ1bVNV8dXIfUZTZaNAyyRQkjeyBeSQOueOTwOcVh6bo0klxvMa8tnO0ZzV3X9X/ALFtfstvGxnkGNzMML74zk/oPrUr3naKG7RV5M5/WdSXVNZCRJ5VnaoIbaIdFGcD8T1/CvfvhtqW+wwsjN9lfyZN/VuMK2ffkV876Psi1G3ln+cKfPmJ56nAz+efxr3vwhZPaW2sNFyWi85cc9CGU/lmuiaUYJHJdync9VuIoNVsngZ3CSLgmNyrD3BFeIeKtFfQdZe1aaaVWG9HlHJH1712euarq/hjXmvLWMXei3IWWSBuDCzdSp6gE/hmqXivUU8R6S17ps0V5axgNNayqBPan++p6lfUcj+nRh5Si12Z52PhCpB/zI88zSZpDSV6B4A/NJmm5oNAx1JmkzSZoAUmoyacajY0hkch61reHD/pP41jueta3hs/6R+NZ1fgZ14T+Kjvrk/6CfpXmU1lcyatK6Z25r0qRgbbBPasqK3hEhYgV41StyJo+phhnUkn2OfVLmOMAk8VAWG752/OumuxEIzjFcRqyOJi6NxXF7S56UaJrpFBJ6Gpls7cdhXIrq0tsMEHipI/ELO2DxWTjNnZFwirHXpFB0AFSmGDGcCubg1VSMlqlfWABgNUWkX7pp+Jx/o5rA0H/Xge9dD4mH+jGud0I/6SPrXrR+E+fe56Rbf6gfSsrVwdpxWtacwD6VWv4BJnioi9SpbHII7byOauQLlskVaNhtJOKekG2ujnOfkNG1ufLUCpnuWk4FVIYs1dWEKM4rOUi1Eltxxk1M1NiGKc9ZGiHQ9akk6VHD1qWTpSGRxjmrS9KqoeasqeKTGPpoPzCgmkU/MKQGvZ/dFW5fuGqln92rc33KS3Kexw3i0jyGri7euy8W/6hq4y3r28J/DPl8y/jF9KlBqFDxUma6TzhxNJmkzSZoFYfmrljpk164IG2Pux/pVWKa1glQ3MiruPAY1sR3TWsbTXJiVAP3OyXO33IrmrYhr3YHpYXAKa56m3Y2oItO0WIMyjzsZ+dck1h614yhnHkidlboFQYzXN6/4gnlRWWbgDDSgcvTPAFg2oavLrt1xZaeGkXdz5kgHH4DrXFKOnNJns00l7sFZHrvhq0/sXTUu9TKJdOvmeTnc8anpn0PqT06VgeKb/APtyw1PVAG+yW1u0Non953wu79a4bRPFN14mlmtGDpFdTkcvl5FHMjuffhfQDIFejX4tYNASyDKQjJLIB78qPxwDWbjY15jjZfFi6e7aPP8AO0W2aWMDlkI+Yr6lOuO4zXL+J7FtPju5wRJZSFZFK9Cj8ZH5g/nWVqMN9c+ITfE+W8Y+0llHPU4/Stg38GuaLNA8WyW3DQzxKcrtYFlZfbI6duRV2sTuecW8a28skk+TbbhFIoHXOePYjGfwqteWps7goG3xn5o5B0dexra8Rwtb7VVMQyOJnA7kqMc/n+dTQaYWtoY7maKbTrlS0N0X2+XJ3XJ4DeqnGeuau4yPRdXuE2IzyS7T8vyqxH5nNdJcRrcRblzkjncMc+lcFcRtpt9JCJYptjY3KQysK39M1K1cLJCoiuxxtdiw/wCA5NZzhfUuM2i5cWbKxAGMHiljg2gLjGM1oNq1rylxEw2x5Lj1+nanWdzYTokrMyiQcZFRymqmjLht2dnBHANalrp7Ry7sfL1NZV3rcdrqE0cURIICqD256mtOXxEVit2hRQ6kiRSODkUctxOfYv6xc2ujWOZc+awyoG7B9wRXnErvf3RlZAse7GEz8x7Dnkk1pzxSeINbigWZWklcKkMQLH3yelaOnabbR2V5rd2xW0sZFgsIUAxcXHXv1CgbmP0HGa0hFRRlJtmXaxTW8kayRlbi8cfu2H3Yw39cfpXv9hdrpPh3UrySRY1dBFDIc4+Zgqg/n+FeHaQ0l/qbatdMdoYgO398np9QMV634mDnQtM0t4wIJ7gOyLwNoUEYPux/SlPV2IWmp6DY3Dahb2RlVVkEPkOWGVLKSCG9q57xxothptsmo2aLZXiH7iHG8HqVPf3HpWv4cklSwN2kRmikjDyRHuyjnH+0Rz9RWX4p8SWF5bmxnUNp90m62ul+ZVceo6qQeD7Hpirw9+bQ5sZyeyfNu9jzRyGYkADPYU2g/KSuQcdwetNr1j5hDs0maSkNAxc0ZptITQApNRsaUmo2akMjkPWtTw/JtuPxrHkar2iPtu/xrOr8LOvDaVEdxc3RjtSfauTm8R+S7Anoa6a6jMlkceleW66DDO46c18/Wpc0j7XC1lGOptzeJjM20Gmm5WZcs1cQtyVbINWV1SRRis3QfQ6liImtqDpkgCssEKc1Wmv3c5NQi5JPNaxptIynUTdy/wDanU4BNWEmaQck1mpIGq7FIoFJxQRm31PTPEg/0Un2rl9Cb/S8e9dV4k/49G+lcjoh/wBN/GuiPwnnvc9Qsj+4H0p8wBqGyP7lfpUshrJFvYpyKOaqsPmq4/OagK8mtoq5jJ2JLerh6VUhGDVpulQ9yo7EkZpz1FGac5qSiSI81LIeKrwnmppDxQMap5qZWqsp5qZTUsaJN1Cn5xTM0K3zikM27I/KKtzH5DVGyPy1cmPyVK3Kexw3i8/uDXGW54rr/FzfuWrjrc8V7mE/hny+Y/xi+hqTNV1NSBq6TzSTNQXt7Fp9k9zL9EHqakHLAZ+tch4lvFurz55ClvF8qqO9YVp291dTuwWH9pLnktEW7fUY95ubtCWl+6JOfyFait5dubicGJQcqrHhh9K4/S7gTXRumRpApwik1rTTRX77ru8ww/5ZKPlArnsewVb+5fWLzZbqdo4J/hUV61aacNJ8HwaZZgySyQl5nQZVcjPJ9a8sVAqJLlUsw4AVBzJ7V67p/ictp9q3lpM/CQQKm2KM9uP4mrnxF7pI3o2szz/R9Mn8GRNJdRB9XuY97wlsLBDnOHPYE9e5Ax61oQazPNDb2iyNcXuoT75pmGOXOMgdsKOPaoPFz3El/PNOwaN33Ed5nHc+qr27Vj213c2VhLqUi7JYYyFY9iePz55+uO1UtVdky30Oo8Qx2lvd36QgMIowr7exwAq/kP1968w07VH0/UJJHJO7LOB3Un+nBrsvNMvhyCWHefOyqbjlpW/jlb+n4V5/qNsYL0lR92M7v1FEewzfnMb6a1mZY57ltxtVQ7gq8kAn1OeB+dc7NHcw2/2e3kcQXCqXjz8rMPb1pbGYKypuwcZQ55B/xrWvCLz7PchAlwr4mQcBj6j0J6479vSpbszSKucqylGKsCpHYigHBBBwR0IramhW71KRXXKAY+mKgk0ZzuMTcDnDVSqLZhyvoURczEYLl1znaxyD9atW+rXFuxyN4x39fWq8tjdRZ3REgd15pIcRSBp7d5E7rkr+tV7rJ1HC/m82SRtrPIckkU2S6nuBh5CR6DgVt63o9vBb2U1hC/lXKK8TtJuZ1I53DGAQwI44osvDJnmhillLSSsFCJ0/Op54odmQeH9SbSrq4e2tnnvJbdoYGjPMRbhmHB525HtmustNLuNREc+uSRWun6dacpCm2O3Q8cL/ABSO34sT1wK2LDQrHTbt7W2VQqKA8gGWJ7/XFZeuXkt/pY02KBbeIX2Th9/mhQMOzdz2A6DoB1rJz5noUo2DR1U61YW0NntsZ2eYQN8xTPKHP94BRz3ye1dZ4g1yO91S22yE2cUTWvmJ822RSrBx+JI/SuDutUezvTLbTCO5U7IeMiMooB49wSKsaFZzzGBVdlEEvmMjH7yNgFvwIH55qorqzOo0tD37wXeLNpQkG3zBjzUU/K467l/mPxFec+MrRtM8QXVtE5+xzv8AaIlB+U5/qDkV1vhuOW0+1QR5j4EqAfw5/iX/AGc9R65rkvGU7T6sryReVLt/eKPulv7w9M1thHaq0cGZRToJ9Tn80maYWpC1emeAkSZpM1Hvo3UDsSZppNN3UhagLATULtSs1Qu1JlJDHarOlPtvB9aouan01v8ATF5rOex00VaSPSYzusfwry/xSn+lNx3r0qB/9B/4DXnPicg3R+teaoKUmfQSqOEUzkGjIqrI5Q1quoKmsu6TDHiocbM6oT5lcj8/imGU5pioSanW2JFGhWrHR3G2phe471AbUimtAwqWkUm0e1eJH/0Zh7VyWin/AE38a3vEN0GhIzXN6NIBd596S+Exe56lZN+4X6VLI1ULKceQOe1OkuB61kjR7ExYVGWAzVRrjnrUZuc966YuyOaSuzShbmrJPFZlvKD3q6ZBtrF7m0diZDSuagSQU53GOtSMnhPNTSHiqkL81M78daBjQ2DUqvVFpMHrQLgDvUspGhvpA3z1TFwPWnJMCw5qRnRWTfKOauzN8lZNjJkDmr8z/uzSjuU9jh/Fz/IRXJQHiuk8Vybs1zEB4r28L/DPl8wV6zLqtxTw1RL0p2a6Tz7CXcxhtCVIDv8AKM+neuF8SToAkaL8x7+tdffw3FySsURZUG0t2HrXHa/Gi3sZlIyBgIv9a89y5qjPo8PT9nRirEtowtbGKIKpkk6buij1962dtnpthnZCs7j/AFtx/MLXP2Eqw3BvJ8M54ij64qG6vW1K7EkqPMQ3c4XPpWgWOjhuI5pokVvOkC5DEYAHriut8JWtzcXN5q95OyadpsZXexxmRv4V98fzrg9AmZbqeZ1DTE7VCjqew+grtNd1JodHsNAtfkVP9cy9Xlfr+lc1V+9Y3pq0bmstibyL7dLh5ZhuGR8sSfwqB6d/euE8RWl7qaiO2DLZGTc7E8vjgEnoMc8dBXo93dQWOk/ZHJLSKsYjU8vgAbc9lA5J/CuX8WRXV5aw2YVra2IG5IAN8o7KPQfhisYz1NZQ7GRo2t28DSwxBZxDEEac8RoB91Ez2zyT3rC1gxs6GKPbGYSFz1bJwM/Xk1Jd6bcWUKie2a2tkO5LfOGb/aY/59qy7i4mkk89vuKc5I++egVR6VtFrdGck1ozPa1khCeuDIPZRxn8a0kuFaWNX5Dfu5B6jsfwNWoYGkQyzYeZ2G/0JHRB7Dv+VZd3A8Nw6jqDn8aiUk3Y2jBpXNZ4JLdnJUtIVJjf/np9ff8AnWhbRq9qXyDmPg+vNS2IF3HCksfmRNmOQZ6EdGB7H3qlqc/2LTHWDMrKSPMUYBQ/xEeuev1pbg9CTy47lS6DIZOMVGypCgEmF3sRn+6PWug8N6Ysmhvcn/VQR7nb0UD/AD+dZ2m6ZNqss13IVjt4TklunstK4raXJZbQf2HbuE2i3lMTgHIQsA35HGR7N7UumzA6lAsX+sdgin0FLbSrFpWt6RMsrXUEKyRkD5RGHBUN/tAtx7MQe1aGj6S8Op2s8inakaSsT/tHBP54pMEaFvYzLLcxMWDF/Mil7YPr9DwazJUl0+WUbU/0qTcFlXIV8cj2Of5ivTtbjt9O0M6pHb+ZGAxli7qwGWA+oycd68a8U35XU08ifz7KVFdSD95CMo3s2Mqf92pWpSOXcNcSK7ufnZiG9JM9D9a73S9UNvpPlKqi8RBNbOw/1gU5dPrjPHcH2rioYFW4ALZSSTy5PZv4W/Gu10eGK7tGhnDB7dw+U5KY+7Iv8jXQ3oYct3c9G0bxHF9uFvLA2UUSQFBktG4yCp78cEe1ZHjMW84iurWYyIrlMEYKg84OeeK6Dw1oimKMTxwSwg7oRkgx55Plt/dJ52np2pfiJZJFpRnBw5ZRyOW59e+Kxw9eKrpIjGUG8PK/qeXk0wtSk1E5r22z5pQH7qN3vVffTlbNLmG4E+6kLGmg0tO5PKMYmo2qU1C/SgaRC9SaecXa1E/enWJxdrWctjppL3keiwNixH+7XnfiZs3R+td3C/8AoX4VwHiE5uT9a4KfxnsV1+7Rh5qpcoDVodainHFFVamuGldFBQFNTpIucVWlyDxUSs27rWNjsTsaoKkVDKyimJnb3pGjLVJZ2utXZZTzWPpdwVueverWqg7DWJaSFbj8atLQ5pbnplpf4hAz2pWv8nrXOW90fLHNSC4JbrUKNim9De+0kjrTTcEd6ylueOtK1yPWrMzoLSfpzV/zvl61ztpcAgc1prLletS0UmaCT89akM/HWswS+9KZ/epaHc1oJeetWXkG3rWFFdAN1qybsFetQWiaaTGeapPc7T1pJbgEdaoSvk0WHcvC9x3qeG8yw5rEO7tmpYS4cdaXKO53Omz7lHNakr5iP0rnNJkOBmtx3HlH6Vmty3scP4nOWNc/B0FbviQ7mNYUB4FezhvgPnMcv3jLa9KcBkimoeKkQjfXQ3ZXOFQu7FS/utiW1lvf97IXdU649zXI+JmjN4vkxhUHyjJyTW9qty8t4gVSscQwcDljXPazHmCNj8pYFueteXTet+59JJe7bsZs0ggYMp3SYwB6VHNNcKqQM/z9wv8ACKjJURR4XdKeS3pUDkiXCqQe5J611XM7HQ+FpTbasXcglULeu3HSuuvgbSCyZ2BuJnEjeoLHgZ9/T0Fef6ZKbW7QMfmlOW+ldrfvJdarpWTiNihRR6A1y1dJm8NYm5DcfavGd88jP5ULi3hHUtjrgfXJ+tdQ88FkzJYWJlvX+8yjc+f9pznH4Z+lcXorTz6zHJbgb7kvNPKw5VdxwB6V2Uurywp9j09mkl6bLOPc34sflX6nNeZinZpHpYWN02czrmjxGQXWt3Kx87ltYQXdj9OpPucVy0+iTzSi6ktWtYRxDB1fHqT6/wAq9Fl0p7CE3epypDO/Ozf5sh+rYwPwrjdbvIppf3lxuHQRoWdv04FZ08RJe6joeEjL3mY8cbQv5UJWS8f5Bs5W3T0H+0azNQSCJljQ78fMzdjjoB7ZrSllmELJBCtvDj5zn5m9ieij171jORIwkHzIrAkgfePYD2rqg23dkTpxjHlR0GnlItJlK/eRiCc98c0ulWf9o6XJKVBVEPDdx3BqSDTZ4NNjtGH7+Vt0qj+EnnH14q7pNq1rstG+VZlb8MGt76HntDNCuVtlOgSSYtbl8wSMcc4/1be47eoroNV06W2mtNE0+e3QRAFp2fjzD95zgEnHQD1ye1cw9vBcanfqCrQxfuh6Ejv+dV7zRtWOpCW2kuBp4kWH7Q8hJJwCQCeR14xVaPUzeisdjbaRYRvcaVpjSXe6dJNZ1eYY8xgdy28fp82CevTmt6xa104i+vwghjeS2kUj70TDAx+OD+dXPD62tloTxXKiGwVBBcbB/qMjcsw/E5J/GuO8XSXd21lpkzAXFshikeM/JIrNlWX1BBzn0NS3dhFaFpPE95cW1lBdEmG7jltnB6ErzG31AOM+lea6jZtBDGrAhBGET6Bif8a9Jl0thZ6JGeXjlkmbH90KF/nVVvDr3tlf2oi33FjNIVU/xKDkj8iahytsbRir6nn8UG6efC52vllHp/nv2OK7Cw0+5mhin0+fydRhO+JyOJFxgj3HqPXPFVTojQ3qKjCKRx/o8k3yiQf3Cem4Dseo6VtWVnrdi4eOwZ0B3NEoJH1X/wCvXLVxEk9D0KeFg1qdD4Z8R3VjMIru2WyR2w6N81szeqP/AMsz/snj6V3HiWW2uPDc63kOLWRcNP1ELH7rHHbOORXHW2r27xebLay4+7KBEY5U+o6OK6OYRz+CdT+z3C3Fv9nJXYACAOcEYI/SsaFZyrJvuZYyhGNF2PGmyCQetQOamYgkkdDVeSvq7nxcY6kRbmpYzUB61Ip4oTKlHQsg0uRUO6lzVJmLgSE1E9OzTGPFFxcpXkNFkf8AShTZjxTLRsXIqJvQ3pR95HeQv/oX4VwevNmc/Wu0hf8A0Lr2riNbP74n3rhp/GeviF+7Rkg81HN0p46VHL0q6oYZlRk3HpSLBg5xVqFAzVeW1BHSuaUrHoQhcz0AHanZHpWiLQHtR9iHpWfMjdU2aerACM1zcJxN+NbeqXAZDzWFbHdP+NdEdjgkdHbk7BVgA1FbL8gq2I+KQiEsVqBpznrViZcCs6Y4NAGvZXWCOa2Y7jK9a5G3m2sK1Yrv5RzQI3PPHrUbT+9Zf2rPenibd3pWAui4Oc5pWvCB1qqpFQTvjvSsVcvLdlu9W4gZKw7eTLVuWhGBzSaGmXY7YEVKIAD0p0bqB1pHmA71DLRp2LiMgVqSXA8o81zENztbrVt7z911rG2ps3oY2vS7nPNZEJqzqcu9jzVKJsV69B2geBi43mXlarNlG090qKpfAJIHfFZ4kxWx4fMhlu5Ijh0gOD6Zp1Z8tNsyoUearFeZzt/BcSSyvcMkSZJIDZIHpWHegT2pmA3BVIBreu4mEky3JMhY4VT8pc+uPSq6WWdLZAVynJPbPpXmc/JZs+gUOe6Rw+WWABV+cH5s1VkRwSxPsK1mgFu5Wb70jE/hVe+tcSDngDiu2M0zkcXFlS3yb1BuxzyT2r0jw7dxz2wvdoaa2Ro4N3qwxnHsK80RFLrltozkn2rq/Ccqy3K27l2idsFF6nPasq6vG5pSetjrfBc3zvDOrSl5dsagZBA5JPsP8K7m+uTZRM8lzHZrj5VADO30UcVxNhqaaf4guY4oUzxDBjheOv4Z7+1Nv78XEzszy3tw527Lf5Vz6bup+grysVG8kz1cHsVdU1IXE7b5L26brslO0D6gdPxrDkvJ2cpBE0j/ANyGMhR9W6n8MVo3NjqG4Q3T2tnnlbOI7pPxA6fU1l3VxcWZ8iG5jjJP+rjj3sT70qcUnZHbKWlyrPmV1F7JLKR0t4RwPr2FWILS8ku4SkHlyAgQQqM7P9o+9aFjFrqEFpoIVfvcRrH/AIGup0/WvDGjug1TUre5vyrHfaxbYoeOMnksxIA+npW8Xd2Ry1nyq9iHw2LNNJ/tS9l2Il80UjvyE+YBSx/Ln3rpL3wjLNIt9ZgTxgElEbJZeM7fXPUU7SH8MaiL3+z7uGW1mbyLlHG2OZtu4lQeuBn8qzRYXOgxXsfhHX45nIEsNmkqy9CCQB7gEflW9jzWyGy8I+TdzKpEtrdZeF1OMt3X2b2PpViGa4s9FmcorW9qyR31vPEZI2Kn5JMAhlbGBkHnoelZ9v49+3QvM9k0dyf+PqONsZYfxbTkHH4EetdF4Z1YalqBuJ2jmgkT7NdHAzJE3QnHcZ60mHQvzWN7fWWoh72CO/vLeK6+yWyfKkaj5QD0zt7c5AJrldM0m4nud8yFYrdNoL9EXPAHsMnA/Ku1TwtfaDfo0d+EtYSjxTMQNgQ9W7H5cr9DxVfWvF2h2MkkjRLIkZ3LaoceY5/if0HovX2otcE7ITSNHuNQnN3JGyRS7YbdGHKxKclvbP8AWr6/2dBrUt6kyKnnlZJM8HAwfr0NcZfeNNX1OEPf6jFo9g/SKAbZHHoMfMfpVeHxRp8Nq8VjozTIQB518+xcD/ZHajlBXOqmtn1CwbUNL0y31C0uMulvI20bgfmQHHyt3AIwRxwRXKNeaYuoRxT6brOhzKfmQM238McfpXOXvxB1PTZpxpmqTpNNglLZFjgTHTCkEk471Tu/HfiHW5o2v7yLYn3UZQAPfjmuarRuro9DDSktGeg3Aa0k/tLSdYkkYAGaAguJF9Sp6e+P0rpNecr4ImubNza3DASAwuFZvUYJBIweRz9K47wxF/bsEcUd6Vu4m8yPynBCnv2zg++au+PtQtnjttKRJEurJyJVdMKcgfMpBxWODpOVdeROZVVCg11ZwzGoXqQ5xUZBJ4FfTNnyMYkfenDpS7DnpShT6UrlcomadmgIfSlwcdKaZLgxKax4pTmo3Jx0p8wvZsrzNUVs2LgU6XdzxVeElZwTUSlobU4ao7a3k/0P8K5DWj+9b610FvcAWuM9q5nVpN0h+tclN+8ejXXuIzu1QStxUmeKgk5rWeplQ0JLV/nrYibIFYtoMyVuwINorjqHq0HdEin2qQEelIFFPwKwOtHNXd2ZCRmksf8AWgmozbOTyDVq3hKYOK7rWR47dzft5AFFW/PGOtYiSsoqTz2x3qQL804wazJ5cnrTZJmNVWLE9KAJkkwetWluDjrWeMipAxFVYLmgtx71ZjuPeskOaeJSO9Jhc2xdADrVee6B71mmdsVE7sx70hmtb3I3da2ba8AA5rkY3cGrsd0yjvSaBM6z+0AB1phvwe9cz9sY9zTluXJ6mpaLTOlS8561K94SnBrno52NXoXL9ayatqarXQWctKaakTgdK0IYA3WrK261axXKrGMsFzu7Mko+OldBoYksNB1PUCMM4EMXHfuagFqprV1mBIPAsIMhRd+84780p4rnXL3CnglTfP2OA1MS2FqZ5GL3U3JklfO0f41Z0gqYIbbdvkkGct2Hc4rMv1jnSG4uiTvbbHFnoPU07SJvO1eQKSHP7qM/3R60qkeaBtSk4T0K2uxxlbqZMHDiJMeg61kW8ovo9rHEqDB9xW7qNtDL5sFucpBIEHv6muUffaXZdOCGrSFkkiKicm2WHjjhEbugZARlf73tVrRi0WqxANsDSD7p6Z7UAJPbK6kEMcf7tRWrfZ9ShLHCpIMkema1bvFoxStJHVTCK11qZxFu4zhjwB6n/CpjqtxNbny7oWNoPvTRrtY+y96m1GA3b3ku3yrf5SWbjIx3+vpXOXEpYr5RZYwMj1I/oK4ZxUkmehRnyyaN+0m2WzxadZRxI4zJcXLfO49T3/pWcmoCzZ5jcI7g/KkSBVHucDJplqZb9Ba2yJsJ/eys3yr7sx6/QVW1JmtMxwTN5QH3wu0N7/jWKhd2Z38/ukN5rk1wx3yM2e+7/GsWRvMYnAAPpSyzbz1BP0pI1JUnNdcIKC0OSdRzdiPkuAM4zxXQabczWUkc8MjwzRHck0XDKfWsaJMyqCO+a3o4VZBg4NXuc097HRT3ttrdymoPJDY6o2PNkX5Ybk/3s/wP9eDWhbS3ej6gj28UYmf52iDAxTqeCQR909iOncVx3llCQw4PXHf6ioZL24slKQMVaMrIhAJGzuceg7ily3M27Hv2sa7bz/DRbi+mlLB18iXguGHQP7jpnvgHrXi15qBkx9nj8pMlvMdiWYnqfr71f1XVZdXstDEYVbZ4muJNxz+9ztYKP7pwDk88n0rIvYiHyRtXtj7zf/Wp2fUSsRJM5k3KHaQ/xkZP6066nkitmmmEjBegfuahiGGyY9o9TVDVbrzpFjXARe2ckmiXY0gtbmeXeSQyOxLsck561btpDGwO7Z9F3E/nVEq2ela+n28EbwyXkjLE5wrfw5HbPNTJXRvGoo7np3wxtY7jVTO9pISiF/OwoA+oFS6zGNS1Se6IAZ25wcg44yK6HwPY3EGgX9zFNCtzjFvJhQSMZxkcHPasYzo7sWxuJ5471yUpum20KvFVrXMU6YPSk/s0elbfmRHuKA8XqK3+sSMPq0DDOmgdqT+zh6Vu7ovUUZi9qft5C+rQME6ePSk/s4elb/7r1FJ+69RT9vIX1aBz508elMbTh6V0LeVjqKhYxDuKPbyF9Xgc9JpowflrLuLQRtkCutlePB5FYOoMnOCKuNWTE6MUZouCkZGaxrwvI5wDir7HdJjNXreySQDIzWkXZ3InHmVjmfLkx901E6OOqmu6GlRlR8oqvcaOm37oq/aXM1SaOQtQRJ0rchYBRUcunmJuBTQrqOlYVNTuoOyLXmUvmD1qmS47UZf0NZWOhTRr/wBlD+7S/wBlj0rqBbr6Uv2ZfQV3WPG5jlv7L9qDpftXU/Zl9KPsy+lKwcxyh0r2pv8AZPtXXfZl9KPsy+lFh8xyP9k+1NOkH0rsfsq+lH2RT2FOwcxxv9kkH7tL/ZR/u12P2RPQUv2RPQUrBzHHjSf9mnf2V/s11/2VfSj7KnoKLBzHJjSval/so+ldZ9lX0FOFsnoKOUOc5D+yj6U9dMI7V1v2VPSj7Ih7ClyjUzl1sSvarMVuU7VvfZE9BQbNfSpdNMaqtGUpKipBMw71fNivpSfYRUvDxZaxMioLhq1dXFxd+FLOOJd25uT/AHRVUWArXlkW28KTIq7pFzgfyrnr01TipLudOHqurJwfY8zlSNppc4aOBsAHlnNV9CRjqN3cgf6pSc9gTV17GS3tLhyf3iLvc+5rN03UVS2+xLhftEmGI6kdzVyd4OwQjaauRWO9p5pTkrk4/wBonvWTqyZuDjHrxXZTrCxPkKFXHGP4RXLapGqswXnHU+prGnW56lzsnh+SlYyLa5a3c91b7y1qB1lHnIM45rHdduOKsWk7W0oYDKn7y+orsae6PPilsz1Kytz4g0+yXy2lGMFM/wCsk7lvYVLrPgORNvnbVQDPkoRlj70/wHqITUrGyicLA0bSMVGWZvSuo1q7gUyvNaz+UM7mmwit/Vq82pVlGVkdtOkpJtnmMenCKX7TfSRizgOILeNvkd+wz39zWZqEhv1jihYyxqzPJJjh37t9B0H0qz4jln1G4S4nYQwsxS2gX0HVj9B+WRUchh03Ro1UBn+zRb/+ByM3/oOK64wuk+pg6rTcehgyWrCRgwwQefanERxpgOHbsBUj3LxFo3yTGSEfvjtVUThpFJQb2546EVai2DqKKuW7OAtJuYfN6VvQptQZXcp/OqFuilkXPDDcp9K04JV/dsfuOuT+HeqMua45ohHsEh3QS/6uQdVNY2qo7aZKzrtlt5QhZRwc9CPYirdzdvJdahYRHKttmgP90nB/nz+dZTXT3M2oRyzBkZlO0cg7TxinFdTOUr6HoPhzQ4dWs9LcskNjbWwZ2C7fMfksT3ZsjAHtWfr8VrBIbudyvmnEMKjJI7D/AOvSa9f2llpul2ls08d3aQFJVJ+Ubh/Mjv6Vxtxd6jr07CJHlaMDBX+ECkotu4cySLeoX0cQ8m2A81h87ZzistCkf3xlz/D3/Gqkcjwz7mHzKeQ1TR3GzMgGZD90n19acomkJ23LhBC7nGG/u+lXtOs2uZGtCxWC749Qsg6H61mbi/lxjnuT3NdfoduVmMcis1tIy5ZBloX/AIXHt61z1J+zR0wpe13PVPCGgzP8N7yynm2y+Wxyx4Rl5/Lj9a8/N6/r+teweGg8OnXH2xgY3gJaSMcMMcn8q8hmtYxO4jkEiBjtcDG4djSwNqqk2c+ObozSQ37a/qaPtz+po+zCk+zCu72ETi+syHfb5PWj+0HH8Rpv2UUn2UUewiH1mQ86i/rSf2jJ60w2opPsgo9jEPrEh51GQ/xUxr5z3pPsYpDaD1o9lEPbyInu3bjNU52Z60PsgppsxT9mg9szCKMJM1rWcxRRkU9rMZo8jYOKTgio1GXBfkcYpxuw681msrA035/eo5C/aMtS7ZDUBtwaZlxRvenyC9o0O+yg9qT7IvpSiV6XzHo9mV7VnVrPH6inefH61wY8QEd6cPEP+1WxzWO886P1FL5qeorhP+Eh/wBql/4SH/aosB3Xmp6il81PUVww8Qj+9Th4hH96iwWO58xPUUvmJ6iuHHiFf71SDXwf4v1osB2nmIO4pRKnqK4z+3c/xUf27/tUrDsztPMT1FKHT1FcX/b4/vUo8QD+9RYLM7TcnqKXKetcYPEA/vU4eIB/e/WiwrHY5X1FLuX1Fcd/wkK/3v1pf+EgX+9+tFh2Z2G5fUUu5fUVyA8QL/epw18f3/1osKzOtyvrS8eorkxr4/v09deU/wAVOwWZ1Qx60tyT/Zdwo9N35Vzaa2p/iqyurLLE8e/7ykVlWhzU2jXDycKsWclqV1MNJlIO6W5kJPso6VylpIUulxkvzk112uwSMI4UG2KNCztWFpFotxdPMR8p4X6VxxnFUmz05U5OsorobViWaMtJgKO7Vi6xPGzbIumeTW1qF3a21ttxllH4VyEkzXE7P0UVnhoXfMdOLqcsVAhmPzqtTIqkVUJ3zZ9TVmP5Tz0FeitNDy4u7bPR/hRK0evSQxht5jYh+MKPqen4V1GurpdveM1002oXZPyxElgT9K4X4bX0UXiiFPLBaVSqsRnbXc+Ib3yJJOZ5nGQIov3aD3Y968bGK1U9bCO8WcZq9kZ2lvr5hHO6iOONRgQpnoB9P1NZM1o8tthxjzXAHsFU/wAuK0JXa6mLOFkcH7iH92n1bvSxSfaZljJzGqtulxhQOrN+QwK0jVklZjnQi3dHMalCyOT6op/SqZA2q/ouK6vXLHcyyqm1HBAB7cZArjVd8lD0H9K7cPPnVzzcVT5GjStLsr5OT0B/lWhBeARIn9yNv1Nc8rKCDu6CnNcyrko2BnH1rZxOZSL15qCLdThRg+WEDD1H/wCv9Kl0wwWlu9w5BlUcBhnLGqFvGjpueMlwSxYn+daen2p1GdIgu2zjIaZzwD7Ci3RCvbVkEdtfeIL8x2yOwLZZ26fUmvUvD3h6y0i0ERIZmH7x+7etYyahBbjZbokSdgoxTv7Yb+/Wvs042Of2r5r2OM8a26QeKrwRqqo7Bwq9FyOlYABJFbvilxNrIl7vGpJ9ay1iyMisL8qsd0Y8/vFzTIfOuPfNep+HdPMZt5xGWjkTEgXqAP4h9DXnPh9M38I7OdtewaDGVtI0myiBt0c8Z5hkHB/4Cf64PBFeRjZNysezhY8sLnbaFARZzhtmGjZdwOA2R/Ep6GvJCqodpwCDjg16tbXAt4bxLmLEy2zMwjOFkGOozwD+leGNqsO4iFnMefl3gBse4HGa7MqfuyPHzRN1Ezd+X1pfl9RWB/ao9aX+1h/er1bnm8hv4WkwvrWB/ay/3qP7XH96lcOU39q+tIQvrWD/AGuP71N/tcetFw5TfIX1pvy+tYX9rD1pDqo9aLlKJunb60ny+tYB1bH8VNOsD1ouPlN8hfWmMF9qwv7YHrSHVx60h2NoovtTSi+1Yh1cetJ/a49aLIZtlUppRfasX+1s96cdROKQGvsSk2pmsRtTx3pp1SnZAZn9nzf3aPsE39016KNIX+6Pyo/sdP7gpAec/YZv7ppPsU39016N/Yyf3KQ6Mv8Ac/Si4HnJtJvQ0htZR2r0U6Ih/g/So30ND/B+lFxnnTRuvrQrOD1Nd1N4eU/wVny+HOeFouBzisx7mn8+tbn/AAj7jsaBoUnoaQ9DDwT3pNreprfGgyeho/sCT0NAaHP4b1o+b1rof+Eff0NH/CPP6UD0Of8Am9TR83qa6H/hHpPQ0f8ACPP6Gi4tDn/n9TSjee5roP8AhH39DSjw+47Gi4aHP4k/vGjMo/iNdD/YL+9NOgv70XAwllmH8Rq3ZzTm6iAY8uBj8a0f7Bk96emizRurr1Ugihu6sEdJJjtfvABLaHjPD/4VlW9zHDGqIMD0FXfFtlJFerP1Eyhj9e9YKqchVyWPf0ryowXLZn0DnrzInvpIHUsy5kY8c9BWVOAkBI43cCrE6N5hAO7tmql+w84Rjoi4/GuujGxwYie7IoI8/NSzOANoqSAfusnsKqMcsT71vuzi2RoaXqc+mXsN1byOksbBgUOD716hr102paTa38QZoLiMSYZwDnuDivIcdDXpPh26h1Twk1j9mKXNq25VUELKD3Hv61x42CaU10PQwNRqXK+pis8jD96y+Sp4ij4X8T3rU09llUl8R24wXYr9/HRQP7vf3qlLaKJcSHzZQfmXOEQent/OtO1VFKFkEjkjy0A+XP49veuOclbQ9SMXc1riy+0abwpZ4pBJIT23Dhfrjk15ncWqR3U8UgwY5GGR9a9i0dGXZazfOspI3KPvuQWZj7DhfxrzLxnpD2Piq5hUkLLiVPoR/iDWmBn7ziceYw9xS7MxFjgZ/LTc/ParBjtIebh2x0wnJqN5lsYfKQZuW4ZvQf41seGtBivZRc37ZiVh+7z94+9ejOooLmZ5dOlKrLliJZ2EU8KTSq8VqxyiN95h6mrM90AoigQRxL0Va29YtHkuisShY14UDoBWQ2mzelawta5zzT5mn0KJuJPU03z5M9aunS5vSmnTJvSq5hcpkauN6W0x64KE/Sm2kQkGNufrWpfabM2ly/LkpiQfh1/SqWlK0rqqg5Pp1PtXJXdtUejhPeVi5oigXMB6FJf617JpqyxWUgit/MYsWaMNgupH8J7MP15FeW6FZj+1n8xgqrICfrnivYtO88W0AKAyglMoQGI7jnjcvUeozXkYmV5HsQXLAhvL2Ky8EalflzPbi1ZIdzbXXd8pXJ7g9vavAgSBjNez/EZng8FvAzRCe4ulDnYUMoHOQOmema8e+xy+lenl0UqV+7PEzCXNVsQ7j6mjefWpjZyj+Gm/ZpP7pr0LnFYj3H1pNx9akMEn900nkP8A3TRcLDNx9aVSfWn+S/8AdpREw7UrhYVQT3pxU+tKqkdqUg+houOxCUNRlDmpyD6GmHd6GgRGI/emsMdKkJb0pu1iehoAgbPrTMmriWbyHgGrS6Q5GaLodjPiBzVsL8lXYtKZetLLZlBxU3CxkSKQajPWr0tux7VB9nfPSquJo9kEdHl1Pto2+1MyIBHTtlTbKXb7UWC5CIx6U7y19BUoSl2UWHcgMCHqKYbONu1WwlKEpWC5R+wRelA0+PPSr+w+lKEPpQFyiNOj9Kd/Z8fpV4LTgtAXKH9nx+lH9nx+laG2jbRYLlD+z4/QUf2fH6Vf20m2iw7lH+z46T+z4/QVobTRtPpSC5nf2enoKQ6enoK0dntRsPpTC7M37AnpSCwT0rS8ugR+1AHI+MtO3aKtwi5MB5+hrzcttUnOCa9t1m2EuhXqEcGImvDbhfLkIbgZrjqRSnp1PWws5Spa9NB0RDSD25rIdjJMzf3mzWvZhZZHRT8zKQKzGikjthIyMFZsBiOuK0pbsxxPQVpQkOwd+KrVLBC1xMsa9TTZF2SsvocVqtHY5mKPuivR/AOuwPA+kZEVxKpVCSQGP4V5wp4ArQ0SU2+t2koUMVlBwx4/GsK1NVIuLOijUdOSkju9Qsfst6Um7NwSOp/2Vq1DBcyKfs8aowXJdznaPUmtTxihhvbaULGjXESs0oXAx/s+386n0uGJokDMoRSCIzzk+pHc5x/KvFndaM+gpvmV0S6TBMiySKz5CJEqP/CpOST7kZNZHxX0sz6bYa7bKVVCYZMDGFblSfxBH4116yReUyoUB37VYnlnYcn3OM/QVburG11eyvNIuDmO4gEeewbGQw9wSDSoVeSopE16ftKbifOEfytuxk+prrfDBa6vIbRcnc+5sdgK5y5tJbG9ns7hds0EjRuPQg4NeleBNDax09tQnTE1yPkBHKp/9evZcPaNI8dzVCLfU15rBS2cVAdPX0rYdTmoihrtSPHcmZR05fSmnTVPatbyzQENHKh+0ZljSVljeIjh1K/mMV5tpETQ37QSAh0coR05HBr2BVIOa8+lsWXx1qMKL1k8zj0IzXJi1am2ejls+apymxZ6dDJdtHPKsSTr5McmMDeckfgMV6FZmOfS0+3W8ywyqqXDITugmXjfxyBkfeHsaxNNhh823iaMFlcPhyOcgjA9OePxrsdDMUMUSxMZLaRf3TkdhxtPuOn4e1eC5XPdqaI5jx9bSPpWmW8zGRxIx8zOQ4A4J9+a4gaXx92vUvGdvHNZWrx4xDKUZP7uR/8AWrj/ACwO1e7gUnRXzPnMZN+1dznTpftTDpQ/u10hVfSmlR6V2cpye0Zzh0oH+GmnSh/dro9o9KbtHpRyh7Q5w6UMfdph0of3a6TaPSk2r6Ucoe0OaOlf7NJ/ZftXSlF9KaUX0o5R+0OaOl+1MOlf7NdOUX0ppjHpRyhznMHSh/d/SgaYAfu10hjB7UwxD0o5Q9oY0Niq9qvLAgXpVgxU0xGjkD2pB5SYNVZ4QRjFXzEfemmHPalyD9qYzWuT0pn2LnpW15A9KTyB6U+QPancbaXZQGoDUEChKcEpAw9advFAxQgpdgpN1LuoDQXaKNtGaM0hihaXaKTNGaLALtowKTNLmkAuKXApA1LmmAu0Um2jNLmgYBaULRmjdQAbKXbRmlzQAmwUBBS5pc0AUtX+XSLof3k2/nXiOtxJHevGAeK9n12+gtrdIXYbmG9h6KP/AK9eP6tci+vZJIoigzgZHJry51Oau7bI97C0eTDK+8nczdK+TUIQB/FWh40vLSW7trSxUJDBHyo7MetZUUhttQRj/CwzTb+Eza48YOfNkGD7Guqn8d/I5cRb2aXZm7pGlw2Hha41q8H7yc+XbKe47muSZi7s3cnNdL4p1b7Q0NhEQILVBGijp7muciTJ3HpWkL6yZyPokKFx+AqazV5byERjLlvlHrULnLlV57V6V4E8HtJPp+rXC/uo1LgH+Ju1Nq4nKx0/jXzJfCei3m5HdMIdnQcZ/PivPv7dnjlYCUgkcn0+gr1nxenmeE7hABlWVl9jnFeG3FtLLIWRSI8nDHjPvXBOlH2jTPVwtaTpJo6yDxIr2oiVmO0EtITyAeuD71fh8WXBCN5m1vMMgA7dgPpXAJKIvljBYDk+5rb0yyuJn3yDlgM8fdHYVhVw8Ips7qVaUnY6E6GPEvjhruRcW7xJPOR0LYxj8SK9BaNVARQAqjAA7CsvwrB9m0+aNx+83jJ9Rjj+tbLDmvSwi/dJnz+YyftnHoiqyU3y/arO2jZXUcFit5dHl1Y2UbaAK/l1w2sPHa+LNRnzjbFFu9zjOPxwK9BxxXkfiy5kPi3U1Q4CSIvHsoFc2KjzU7HoZa+WtfyOgfX0lvIn3eWHcyLg9M9V9+QDXS6L4xgXzGjPlqSTLDnO184LD2/w5ryVIpJiqnIBPQ+laNpBdFd2xt+47H/vYOGB/Aj8q8ieHjbc+ihPmdmtD1H+3H1ia6A5iKoxOf4smojF7VkeEbWa2tbkSnIZxt+gzXRFK9XAxUaKt5nzuaO+Ja7WKPlH0pDCaveXSGOuw86xnmI0hiNXjHSbKLisUTDTfJ9qvmP2ppjoCxQMXPSmmI1oGOk8oU7hYzjEaTyjWiYx6U3yh6UXHYz/ACvak8r2rQMVNMVArGeYvakMXtV/yqQxe1FwsZ/le1IYvar5jHpTDHTApGL2pvlY7VdKU0pQBsBqcGqIGnA1JRKGp2ajFOBoAkBpQaYKXNAD80uajzTs0DHg0ZpmaN1IB+aM1HuozQFyUGnBqhDUu6gdyTdRuqPNLmgLku6lzUYpwFILjs0uTTaXIoAdmlzTc0Ci4HFeIRJ/wmIH3g9muAenWsDULYWyS3k/IHCD1PtXdahZfatfRghOIFQkLk8nNcV4ykMtz5S4VIzsRQevvXgzlfEtI+tw+mGi/I5CKzN1cZY4LHOPSo7aCe88QrFbqWkDYGOwA61ajyjbm4ZWFd38PPC09rezatfxhTMpESnqAT1r06F22zx8c1GKXc8ouNxu5A5ywcg/nTfMPCrWp4osG03xLqNtjAWZiPoTkfzrLiU8bRlmOBXS0cSZu+F/D0+uakttCD6yydo17/jXvtrbxWVnDawriOJQqj6VieFdFg0DRYYI1HmuoeV+7Ma3N1OxjKVypr6mTw7fKAD+7zz2APNeYW1nHLah5DnzWwB3b0A9B/8AXr1ieJbq0mt3+7KhQ/iK8zltFic28hytsCkm1sAtz8oP6k+g968zGpqSa6nt5TNOEovp+pp2nh20lKnEKwKoGVGdx9B6kn+VXtP02GCSUOMR7yoZu57n6CqGj3csKo4j8yVgfJQjGM98duP0rp47W4ZDOR5hjULkjA3cMxPoOa8iTlezZ7miWhNY7I3aIZ3BfmB7EH/6/HtVoms5GMWriJ0dSVzGTyGUjp+BrQavdy2V6NuzPmM1hy1790hCaM00mkJr0Dy7js0ZqPNLQIeOa8r8b2P9n+LnuOTHeoJl+v3WH5j9a9SFcZ8R7cva6TdAA+XO8Z/4EAR/6Caxrq8GdmBny1l5mZpFtFdqv3VIwN2Mj2z6fWux0fTIHup7eWNChILf7D4wcjquRjnocetc1oUgglUxW4IwVJfoTjOMfTivQLa2trjyr2BJI5YGCvjhlU9jjqv6V8zUk+Zo+tvaKH3mmxafbxiLGNxUgdjVGtvWkSOFcMSGwU9PpmsM17uWyvRt2bPlsyX7/m7pC5o4phNGTXeefcU4pKM02gANNxzTs0lACEUmKdSGgBhFJTjTc0xXExTTTqaetACU006koAYRTGp5qNqYMaaaQKU000AXg1ODVAGpwalYZYDUoaoA9ODUhlgNS7qgDUu6gCXdTg1QhqUNQMm3Umaj3UFuM0AP3ipYoLiYZigkceqoTXXaVodrpOlx399AJ7qYbkRxlE7j8aiuNYunG0SmNQeFjG0fpUKTl8I5JR+I546XqC9bKcd/uGqrZjba4KkdiMV0bX9zIQzTuW9d1PF+xV0mSKdXHIlUH9e1P3hXizmA9OD1p3em2ksfnWLmJ/4oJDkf8BNZMkckTbZEKn3prUVyUSYpfNqruo3UWC5a82l31VDVIGosO5Pupwaq++tPTNJuL+MT4KW5baGxlpD6KO/1rOclCPMy4Rc3yrciZPs+l3N02Q82QmOuAMV5PPbfa9UaMPvcAscdq9h8S6fqyaX5cFlgSMsUaFhuOeAPauMtPh34i0jU3vdQtY2iK4xbyb8D3rwIxm5SqNH1lKdONONPmR51fWWydI05LsB+Ne3WyiK3iQfwoB+lcDceGdS1O+a60yzM8UNwFJB5BHXIr0Bso21hhh1Fergm3F3PFzW3NGx5z8SPDZvLyLUoF+Z0KSEdyOleWq7QuuQQyPkg+1fSFxHHcQtHIAyntXl3jnwh5DNqlinyH/XIP512tHmwn0Z6RpF6l/pFrcoQQ8YP6VeBrg/hjeTS6HLBJkxxPhCf5V3G6mQ9GShsVxmp2qp4gu4RGHikUTKn+0wxj3yfwrrtwrHS1kuPGatHyy2ysM9ARuwT7DrXBmC/dXPTyqVq1vIv6RokawN9oOHd5IwT1Y46/oa17BQ96ksMuJASHB+64OVwR9VrUR9PtljimYNMqKU3dcngfieaz4/KS7he38t7dRIlyVPKt99fw5YfiK8C2p7rm5XIb61iextrhYTGI5P9W3WFgcFfcelUywrWgiSfRJxFKLpYup6syjlT7nb+eKw3cAKwyUcbkYj7w9RXsZZNe9D5njZpB+7Ptp+qHlqaTURek3V6545LmjdUW6l3UCJd1Y3i+A3Hhid1GZLaSOdfwOD+hNaocVFfW0moabc2cODLPHsXJwMkis6vwM2w7tVi/NHG2JaGIAnKD947epxXo+iXkRjslnkMcv3I7gDj2V/Y8j6r2NYCaAbLU30i7UiaKNWcAcNx8pU916/iKk0SeSK7lsQQZ0GFVuj7Tyv55/Ovlp3Undan2TUZ0/dZ3Ov2zDSXdkAKYb5enXtXIbq9A08w6jYtb7iyOhUgnPB/qK8+uIZbO6mtpRiSFyjfhXtZZL3ZR+Z8vj0+ZN+gUZFR7vem7q9M88lJpuaYWpuaAJC1JupmaTNMRLmmk0maCaBhSdKaWpN1ADyaaTTd1NLUxDs0E8VGWpN1ADjTDQWphagYpxTDigmmFqBEwNPBqIGnA0ASg0uajDUu6kBLn3pwNQ5pwNAybNGcVHmlzSAkzS9qYDTqBnb+G/E1tqFq2k32GnhUZQ9WXsy+v9KnvtHliPn2SrdQMOM84/xrzW/097oRzW1w1rewHdDOnVT6H1BrS0L4jXWlXi2evxfZbhuBMOYJ/f2NcM3UoyvHWJ2xhTrxttI2ypXPf1qaGW4s5VkiZ4ZdvynHOCPftW/Cuka2pkt3WC4cZwD8re/v+FZt1pVxaOfNQ4/hcHKn6V0Uq8Kq0OSpQqUnZoowTSWz7k25IKsGGetIyB4sSpujbpuH8jUhjwjMQdx5BBpNpLc5OB0HatrGKfQzpNLhYkK7RMOx5FVG0yb+B0b8cVuKHw4WKN3cbfnH3fce9RSWksEjQyIFdTyM5oKuYMltPFy8TAeuKj3sOoNdCHlj+4cY6AjNNYMWy6q5IzyKAuZ+h6XNrmqpaISsYG+aQfwL/iegr1KJrKyTybWNSbeIKoHZR2rhLbxPpXg/T57q/IWS5mVFQcBsDp/OuOl+MloEvpVjBea4K4B/h7fhXLWnrZI7cPSbjfud3rVxd33jzw9E06pp8RkuplRuMovG78SKb4z1i5trOea2maWKNckjHDE4AH+e9eCXXjS5k06/SXUJZbu7lV/PTjYg6Io7D/Cp/wDhZl5Jpk9ldL5qPgoD2YAAE+vTNY2k+h1NJdT2JdZk0rwrMI7QiVYTNcSrzvfHI+tZlrcTXFnDPOnlyyIHZfQnnFeWaT8Rb+Nfs13E9zb7CpRBktXTwePZZwC2jSqMcc4xXTRjboceIfNbU7EsaimiS4heKQZVxgiufTxhC/37CZfxFSjxZabRm0uAfwrY5rFzRtHt9EglhtxhZHLmtHJNYP8Awldj3hnH/Aad/wAJZpnfzl+qUBY3NxrZ8L6MNQvrm75JWNYTj+7ksfxOQPzriT4s0gdZ3X6xmvSvhlqNtfaLfXdtIZIjdeX93GCFBP8AOsa9NVIcrN8POVOfMiHUvCUtzdSN+8Z35JBwsYz6+uAB7DPrXPW3hUS+ZHptzqRd3cl4I1CkE8/e42+n04r1q6iS+sbi3BwJY2jyDyMjFZHhq9jl0W1G/wAy4wI5XxyZB8rZ+jA150sDC6s9D1IY+rGNjj9B8Ca1pzm5j1do5/8An2uUVg6553Fen4V0dz4WjuNAmtVh8qVQXgTOfLkHZT/dPTHvWnq2tNpNxpEc0Adb66+yM6niNijMp56glcfjWx5ilFfkA+tdFLDwpyUo7o562JqVk1PZnhCTFlyQQe4PUH0qQSe9a/jvTYNG1/zvNSKC+3SpuBwHBG8Aj6g/ia51J4XUst1bnHbzOa7+ZHmOLTsXA/vS7qhC5KBZIWL9Asqn+tSrDO5KpEzlRkhfmx+VF0FmO3VQ1yWaLQb+WB2V44S+V67R94D325q4UlAyYpAPdDSDk7XXKtwQw6g0PVDjo7lrwnBrmsNN4n1WPN5eBIrCwH/LKFQdpbP1z6nr3qfUvC914furXVGR5iG3MqHlmYDcPzGfxqD4aeKJY2u9KuHbz7K6aOWRsFmUscHn1/SvY1lgul8t1RgVD7Tg8eteVWwcakpO9mz2KONnSSVro8i0vUtYkvJriysrq5tmfdE9vgSR+qOp4yP1HrXTX2mS61EtxqWn3NnPtA+0xAEkdt6d66Cy1byLmaxuIoo7iBwr+WNodT91h9f5giteO586ISqF8o8hieq+vt+NFDDeyd4yaYYnFRrKzgrfieZv4J1Zl32c9pdx57MY2/EMP61z08cttcSQTo0c0bbXRuqmvcDlJAygFCPmx1FcT448Pm7aLWLLYx2iOdc43D+Fs+3T8vSvRpze0jzKlNLWJweaKsHT7xTj7Ozc4+Ug8/nTTY3i5zaXAwMn903+Fa3MLENFP+z3JPFtOT6eU3+FTrpeoOPlsph7sNuPzougK+aaTWgug6iyltkKgHoZ1zUcmkajGpJtJGA7xYf+VO6AommUM2CVPUcEdxTd1MBSabmgmm5FMBck0hNJupuRQIUmmk0EjFMLUABNMJpSc0wnmgCwDilBqMHilDUgJc04VEDTwaAH5pwNR5pQ1AyYGlzUQPvTqQEmcU4GogRTt3pQMnGB1qK5tLe+t2guYUliPVWFKDyOacNxPWkC0MOKx1nw7KJtAuzLADk2dw2cf7prqtI+K7CQWupo9nMOGSaPcp/r/OqYAB+Zqgu7S0v4vLuoI5lHTcOR9D2rkqYSMneOjOyni3HSa5kd5FrejamgkS3RmPVrOZc/98nB/SluBpSqri9khHTFxC38wK8Q8SWC6C1k+nPdytdyMiQp85BGOnc9ay4fHN/a/KNQkjZTgqQcisLYmm7J3OpU8HVXNse/KdNPP9r2ZUnAwT/hUg/s7buGp2mOnJI/pXg5+I2qHGNVOB/tNQPH+psedVJHYeZ/jS9riew1hcJ/Me9LBYt8yahYnA5zJ/8AWpF01HGY72yOen78V4Yvj3VCcjVQP+BrV+28beJJwWtpHuQDgsiK/wCtHt8Qt0gWCoTdoyPVtS8Ix65ZNbXVvbXcROdomU4PqMHg1x1z8F7AkldMuk/65zFhWMPFniiKLzJNKmMfdvshx+YFMHxJvrf/AFtiEx3AkT+eKaxVdbwTIeApJ2VSzNT/AIVPpdv/AKzTbpj/ANNGepI/BOj2rYTS7cN/tpuP61Vg+Lsox8uMdhcH/GtKP4spLGBKtx9UkV+PxBq442S+KmZSy/tUFGjW8XypFGuOyqB/KmtpcR42irI+JmkSKQzPG57vaRt+fAzU0fjvQ5VxLPp8hPXdYhD/AOOvV/Xo9Ysj+zZ9JIyzpEZBwv1wKiOip3UV0cfifw5MpzHp5PbDSJn9TVhdX8NP1itgfa7df5rTWOp9bieXVUce+hIwJKnPtiqz+HlYY2k++K7xbnw/Kf3WV90voz+hqQW+jyYCS3QJHUeU+P8Ax6q+u0+5DwVZdDzG48MbgTgj04rrPDniO38GeC4LMsDO8k9zLz6kgA/gv610B0nTZyRHd3Y7EC2DfntauX1r4X6Xq8pn/tW9jkIx8ttIAfqMGoqYilNWUrGlCjVpyvKNzr9K+IunaVouipetuvdTspbzdnjeq7tp+vIH0rM8KeLLTTNKuNQvnMTTTy3AUn7okJbH4CuDf4O3gdHj8Tp+6H7vzYWUoPQZPFQX3wt8SXKKr+ILGZAMAebt/Souna0kbaJu8WegSeObXxv4Ll1KV4tP+w6jbPAZX6yq+dv1I6fX2rqLvxppt1b+ItOnuPIextfP35wQjJkEH1DcflXiSfCDxSLU2i39obcyCUxLKSC4GA2PXBI/GtZfhFrFzdSXGq6pPNLLgSrENocDHBJPI/Cr0b0kZuUYrWLOg8RavLrPg7w5baheQXWrYM8ktuPl2FcAn3ORn3BrnEsGIztOPTNddpvgabS7ZYINOKxr77i31JNXT4fvUG5rCfnrsjzXTTcYxs5XOOrecnJRaRxC2LbhnjjnApwtpEGRlecgg812h0K6AH+gzj3MZ/wpraHMnW3lI6H5G5+nFVzRfUy5ZdjiXub6FRtubhF9pG/xqlc+I7q2y0t1Kcdd2TXftoR6NCwPsh/wqrP4Zs5siWNcdxtIqrofvHnngK7vNT8W6lq0mDDKAshJwC5PyDHfgGvcdP1/TPDtk0+oXu85Kbt2cADsPfH868xufh1bb2l0rVZdOkY5byyGU/UZFY158OvEM8hb/hI7eYf9NA6/pg1zTpTveJ3Qr0uW07nbah4xstZ8eebZ3KTWLafHNFMOBjOGVh6g84+vtXT3HxN0GxmXTtRJWGYeU7oMqucjn2/xFeK2vw58T6Y8jWV/p/7xSrASHkfiKZL8PvFdzIxnvLQluD+8J9vSpdGpzXRSxOH5LSZ6p8PvG0lmp0HWb5Z2t9Q+xWl0z5MyFSUJPfjAz7j0qWbxvqc3jDxN4dOlpNYwypH5omCGHcv38H7w7kD+teaab8KpFlR7/VXJU7tsAK4P+8en5V6Vp2m/Z1SBGaRvUsXduO5Oc9O9bRotO8jnqYmLVqaH7SGKggbsY96fHK6sGVnXaTwGwQPrxWlDol9MoZbaXBPJYbQ359qnk0mztnUahqltbs52iJDuYn0Aq5VIR3Zzwp1JbIy0dx9522jqNxp0Mctw5jhjkkb0Vd2a2YRoFrhil3dAcAmFiM/QCprnX7G0tnSK3hjhA3MJJNg/IZNctTG0o7anXTwNWT1RRj0a53D7TPHbFh/qxmR8f7orXsdIs4FWWRZi2Os5CAf8BBzXF6l8TLCxtj/xMoY1x8sdrGAB7bj/AEFc63jfWNWDfYtKItj0n1B2Cn3C8FvyxXP9ZrVdIR0OlYOnT1qSSOy8ey6bPaW00BQ3Ky+XvTq64OQT3x19vxrhs0xnupnEl7dyXU2MBmwqqPRFHCil4Nd9CM4wtN6nBXlBz9zYUmkJpD1603OK2MRc0hNJupu7mgBSaaaQtTWNMBc0wnmkLe9NJoAnBOBTs571AD2zxS7/AEpDJx0609TjvVcMSRil3n6UAWdwp3QZqrv5pfNyeOKALQalDVVEueMinCU5znpQBaDZpQ2O9VPNwMh+tPDqBndn8aQ0W89809ZAO+aqqzNkIM7RuPPaozO+wMq8Z7UBc0raCW+uo7W3XdJIeMnAA7k+grsdO8MeHkHlXmoi5uv4lEm1QfYDn864ixu2stNurxCQxyC3cKK56Gy/tbTptZu9ZttLUs/2XzY5JJZtvVgE5VQeM4PeuCpiJyqOEVoj6DD5ZShhlXxE7X2srnsN/wCCtAnRZPIHmIjJHIkjKyBhhsEHuK8H8c/DVtDc3WluZLMnDK55jHrn0rtPBvjq6ureWxvZllkiXdHMpyJFzjNT6tra3CPGTke9Z+2cZHdSyr2sG73XRnkXivwZf+E7iJLh47iKWNXSeHlGBHY9x71zzJlA6qQvQk9M12usfbJp10yxeSezVfN8mXiO3JPIDH+E9cVkz/2RY5N3KdRucY2xfLFH7Cu5arQ+clGVOThLdMx4LGaaDzV2bC2MlwDx7Vu6bqj2IWCPKBT09T61Rt/Et3YWd1aaesMEFzxIPLDMR6ZI4/Cm3GoPLottHOg+0RykxSYAYxkcg+oz0/Gsq1LnVjswWLeHnzJHtXgrxK7osMr70Iwyk8EVZvoza6hPAHLRg7kJPVTyK848HXTxzICTXeX9yZrlW3fdjCmubCOUarh0PTz2lTnQhiFoyGSGGViHghcH+9Gp/pVV9F0mT/WabZN/2xA/lUhk96PN59a9M+V5mVW8NaG3/MPjX/rnI6/yNQN4S0RuiXcZ/wBi6b+uavmXigS80uWL3RXPNbMyX8E6W33Ly/T23I/81qM+Bbc/6vV7hf8Aet0P8sVuibFP833qXSg+g/bVF1OdPgiVP9Xra/8AArcj+T0weEdUTmLWbc/9/V/xrpfOHrS+bSeHpvoUsVVX2jmh4d8QRj5NSgPuLlx/NamSx8VwnK6ghPtdf/Y1v+bjvTfN96h4Sk+haxtZdTIW88b24xHfSkdwl4tL/wAJD43i6vdN7b0f+tapkB71GWBqHgqXYax1Uzv+Er8VKS0tgzsepNmrH8xTW8ba8v39JXPQk2HUfgtaBYA0Z560vqVMr69UMr/hOdURsnSowe/+iMv8hQnxC1KLJ+x7PfZIMfqK1dxAzk/nSq74+8Rn3o+pQH9fn1RQj+KN7GMGJMf7M0i/+zVNH8WLxAeJN3r9tb+rVb3c/MxPt1phRCMtGmPdRUfUY9x/2g/5UC/Fq6GD+/8AfF8f8ani+Lt4OB9pGf8Ap43fzBqt9mtn5NvCR7xL/hTf7PsGHz2FqwPrCv8AhR9RXRsP7QXWKNgfFeV0UygkAf8ALe2Dg++do/nUv/Cx9KuVAAsYZC25mkstykf3QA4x9cn6V5/4q8Mxmz+36TEls8Ks88cbFQ6gdVHqOc47VzEGma3OiGK537xkKZC2BjPJ5H61P1aUdpM2jiKc1dwR7pF4z0mSYnztG8o/dHkSq3484qePxdp6KpeXRD0ztgl49cZP86+cP7SulGGlBYHoYl/wqx9vnWN3k8j5cADyV5b0/wAal0Kv8xaqUOsD6Jfx1psakfaLIEEkGK14I7febtVC8+JtkiALqtyrDg+WI4wfyBNeEQ6tGUCPZxmYkDeQoUfht/rW/wCMYNK0CdbPTbyS4uiod2URGNAegyBkn+VT9Wm95GixFCLsoHeXfxMtGYmOG4umClcvcSvkHrkDArOf4oaskIgsbeHT4u2FSL9T/OvKF1K88xXMzMQeA3IPtiul8HXSWusxXerOg023YGfzrP7RGueigYIVzjg8dO+MVSwsV8TB4u+kII66XVfG17HE/kzIki7/ADbiQBSD0I6DBqv/AGLfXz79X1fzO/lQDI/MjH5Cu6h1nR9WlE6+RdhuRv5H5Vp3Xh6w1i2Mmmwx2d+oyI04jm9sfwn3H406P1ZS0RpiqGPhT5pPTyOGstNsNPPmW1rH5v8Az1f53/76PT8MVddyTljknvnNRANG7RyK0bKxV1YcgjqCPWgEc+g9a9GyWx4F29WPzz2pDg8D86YWzjkcj0phbOAf0oAkK+hzTTuHamAnucAd80m4joetMLDskDpTTmjzCenak39SeaBWD3zimkZHWkLAt0x+NBwDweKYCEcdabtx1oPrnp2phPYEmgA3YOecAZ6Ub88889MCmLngkHnoc9RS7Swzyv1PNIocXyRjPFBkIY4zTSvyk46d8807ywTwVJxk4/SgAMh2n175pnmHsPc5qQwHPIOe4AprQnfgrgZwcHOD6UAMMxxnp+FNN1jnrUht84Ukc85pn2cFscqcd/50AMN5gDIwPUU034Vuee/Sg225Q24cevSoZLUsvy/XGcEj2oGDatH3BHPODVaXXAqgIxDYPGeKjntW2rjJVe/9Kybu0nUMqQliDnPtU3KSR6R4FmXW9LmtpAGfLqc/XI/nXGalqWsaLflNNuZbO9tlaANHKImCFiSOeCDn6gis3w74nvPDmpiXYY0J57gH39q9Om8SeG9et1udQsLZp8cnAbNefO1Oo5M+qor65hY0o9Leqa8uzOI8HaJPZ6W+sTORC7tFGOz4A3MPbOB+Bpbm/wB0zc96t+JvF0NwiW1sFSGNdqIvAUVwd5q3ylY2y57jtWcYupNysehLEU8DhFRcrtF+W1vtavJxDcJDZhgrPJJtXIHPHU0288MWiWoew1WK5nX70Zwufoc1zOSc0legkkrHx9SUpzc31HOjRuUcFWHBBqaAKzhpXyB0BOarnPejHpSab0CElFptXO58NXNuJwzTIoHqa617+JsnzM5rx6KZoH3JjNWk1i8Q/wCtJHoaVKnGGq3NcXiquISjLZdD1QXSdNwp4uF/vCvLV8QXqnO4Y9KnTxPdr1AP41tdHD7NnpRmX1pPPweteer4smGN0WfxqdfFwzgwNj1zRcXIzuvtI/vUfaec5NcUPFcHdZPwFSDxRbH+JhTuHIzshc85yaPtPvXJDxHakgebjNTJr1s4B84c07k8h0xuSe9J9pPrWAurwNgh8j61MuoxE/fH50Bym0Lk+tO+0kVji+Q9GH508Xa44agXKa/2gZo87gissXK+oFP+0j+8KA5TS84etKLgEnPPFZonH94EU4TjB4I96A5TSWXIwABTvO9QSazhcKeCQalE2cZK/nQLlL3mE8Dj2o8wZB5qqHzyp5PvSeZyQFJI6jtSCxZMuDnOa4PxTaXWl7pbN1SxuWIKRrjyzjkHsAecY9x2rstzFQQDj6VFcoZ4niD7CwxnYrAfgwINKSuioS5WeXabpt3qt7DZWcRlnlOFUfzPoPeva/DHwNtJ4km1u/luJCMmOBtkY9tx5b68VR8AaNYaIbq8kbzZnZvnK42xqemO2T/Sl134janPeSR6fIsEEbBCx6ZPQDHJPsK4J1XzcsT6Khl69iqs2kn1e2u2nVndy/BbwlHFtTTg/HUzvn+dcZr3wW0x939l3M9lKOiTHzIz/wCzD9ar2XxF1/SrsQ6sWZOMsVZGTPTcrAMAexxivT7TxFBrempKAPMGMkVEptPqmXHCKUeZWlHa60sfMmo+FdX0vX10Z7WR71yBEsQyJQejKe49+3Oeldbofw91XUSNLsXmvIw4e4KsRbLIOOOzY6bj17DHJ9wN1aRQTXclkLuS3gkdY1wHYAZKhu2cdO9eO6n8afEct+r6WsGm2MZDQ29vGCrDP8eRzn8K3pTdRHmYil7CpY3vEnw3uPB2gJq1rMxmiwZ44SWRV7tg8gDuRkewHNaPhLxJ9riUMcOvUVyk/joa3qKtcGeWTaXuo87gse07wT0AwcfkKyfC8stpPEDkZAyDXLiYKDUl1Poskq1MVTnRq6pbPseo+M7WN5bbV4gP9JzHOB/z0UcN+K/+g1y5LEDJUDsBW3qN6J9CWJzn9+rD8AawCQBuAyfT0r0MPJypps+YzLDqhiJQQ5iwAJAH40ws4J6D6Um/GcYOOxz/ADpC4+UjkdRk5zW5wAS2eOo6kmlyfXIPem+YowMfL1pDIuMHg/SgBdwPQZxwaQZz0JFKXHHIwePpSEgA/MoHt1oACB0ZTk0qeUsgDqzqOoDYP500lNmSwxnuaadgGD1PTFACFhzgHHqDUTODgYIx3p5K7c9B0IHNMYjAH6ZFABGWbO3LMBlgfm29hnn+VODxqCS+3IJUheT27fjUeUCjdswOQXY4U/8A6qkRh823cCxxIcfeI6gj8uakoeHXjAcgfe6g5/LGPxqTqdpRgw6jcOPrUauWIAb7xO0Mc49+p/KniQbSpkOBhtp6e3HU80AOESkFgoB6FlbcPqOvFLsYn74HHT1Hv04pQWYjCgErzg8+3H/66RnCK2cEqQCp6kk/pQAu1WIGWII4yeT+J/pTsAgKMqf7pbAJ9M0rFgWQZz3UcA8cZPOPpQjkjheMfMCAcnHp/jTAQJ5mQxJOeudy5/DpjFHkqysSBzySvT8Ceak80YxIxwCASSWYcfoPc0q/3nZMKQUGTx6d8Ec0AV/sqsd20DGCSQcD6/8A1qrzWCujDaWX7yjGPr7+9aSL/wBM2+XHIGR789h9cU1mGDyGXA+nHsO3vSA5u88PCdmEgMR/uk4yvZsd6zf+EOjG1Y55VcjO1SeR9K7VlJBx3weBjn6d6iZOGGARn5lzyD6D1pWTLU5R2ZxL+EY1JzIWIOPmb9aF8MxRuAFXPOMnrXYvEoPzgADv1z7H8vaoXhIBDY9SCRg+xx+dFrC5pPdnKNoMWOVHPUVE2hxDA8vnoOOa6xrb2wT2xzzTHg3MSeGzu3gYP14xzTHzHGS6EnTaCfTPIqs+iYHQ/nXbPbgr90ZAzjI9fc1G1mpJ+RGIGOFx16E4pDUjhX0eTBwG/KoG0qZRXePp453qAFHUg59ahbTk3ELGhAz8zfKfYH3osPnOEOnTjPyk49qYbOZeqmu5fTlYjMYzjG3cajOnxnkcYIPLcsDSsPnOH+zyD+GmmJx/Cfyrsn09eSPm5OMCoX04EMeCB3A5osPmORKMOoNBB966ltMQMAQMdflPUVXbTuDlOnOfWlYfMc7RW4+mgE8DcD0xUTaeOmDgfpTsHMZIYjoSKetxKudsjDPXmr76ftOCMHuKjNgQeKLMLohW+uVAAlbgYpy6ldKu0SHFBsn4+U80w2zD8e5o1DQtR6zdJ1cn8cVMPEFwAMjJ9SazTbuO2aaYXH8Jouw5YmwPEMmD8vX36VMniV8dMdqwPKf0NHlN6UXYuWJ0a+JiMEgHjp6VYj8SRg9QoHUf4VynlsO1JsbGcHFO7DkR20fiCFyfmxjqScYq0muI3QsfQg8Zrz/aw5waXe6MSCQaOYXIj0VdYiyuNxLHHynkGkk1pFywcA91J6++K87EjqcqzD6GnCeUZxI3Iwee1HML2Z7T4ckW/wBGmWL5pZFY4HfkiuS8M3UuieMBNKALmLIhLIGCSMQNwB4LBd2M9wKPhz4lXS9QjScbljbcF/vKfvD+v4mu01z4ezeILmXWNHEMltKdywuQWAx/EvGRnpg5rz+VxqM+qqyjiMFBJ2sl6XWjX6o4zxX4t1TxPeFb+CRvs87RWs88Kx3BiOd0cgUAMON3T5T9a6LwJqE0OkSB3OxeATVTRvh1r97qJjlt4LWNhslumZnKx98FiduRx69qt6kLTQYHsLObeqsRvPVveliNbWNMmo+z5/aaabHa+H9Wzeq8jDZnnPp3r54+zySTsyERxlyVA6gE8V2t54kOmaVcGNyJ5Y2iiAPOWGC34DP5ivP1uJVIwx4q6NOcU7HHmdfD1K6utux3Ph/RnNjI0s5hsMh5gWwJCOQD/e9hU0N9C1+XiGEBwo9q4k6retGI/OJUdqltLu7hmWUFcD++uRn6VDws5SvNm9POaNCnyUYWPV2vA9vGoJ6ZH19aj8wOSysG7dcD8MVxsGrTNvWaZiyndu2Y+uCOCPrV6HUvMZmLd8lccfUHr+FejBKMVFHzGIqTr1ZVZ7s6IMuflJYemMA+/vSBjvXLHdn8T74rIW7kdVG1pCc5wxCgnoTx09qnW4YsN0RAI3fMcDHsR1HWquYWNFSFXO1WBOQTj+pp2SVBVd2RgerD69qpLIACSNuCPvfw+mDT1lDHJABPGcZz78UCLPHRY+P7oboPWm/KTuKnYB1AG0//AF6jDZUbm2kHJAUrj6mjzWbBYAkH5udxz2Ix2oAeADnoTjr1waO67Ad33jzgn8e31pm8kDcruQTv+b7xPqcZH4UhchdmCT04fnA9vT2PFAWHZO/KOwOM7hgkZqFvk+UYjABBJB5Prmhm2qT8pbqMKAMfT8ulDYDrwMYONvGPXrwf8KAsLEzAB9sg4/i7/kf51J8q/OVG5vl+YnJ9M47VXMmWBOGJHcfdpxk2gDILHrt5/WkMnOFyucZ5YEdT6+36UuQOd+VTkYYYH9agMi9xtI75zg1IsjSFegDcYx1oAlIRgxKryueQQc+npinAqqgLtQYAGVyo+o/z2qI7hI2Dvwc+maPMx8wHzHrg/pQBOWwmQFAbjLDn8M9/pTg65/g645C5J9/b8ahzuHzv8vTCk4/Gj72QGUjHGRnPtQBZEhjOCyhwSMhRjj+Y9x+dIznaWcDjkndgL+ABqtvCkYQ/Lwfl/wA4pVYA5CcE8gDgen60AXA6iVdyKGxndvIH5c5pS7bGY4CkANkhdp9hnPP05qor4BJA567R1pQy/KpQYI+UE5x+FAFhm++MK+7jBIz+DdvxoZS21TJgDIxg/h6fpVUSSyKMqWI+XDrz+HqKkEhVmPbOQAvBAoAc0gUAl1GRjDEn8hkEfrTHcEja2T/fI6H6E8j/ABoLoEQ+WroRtUn5iO+3P+NMwU3mKIJu/wBnBOBjmgdxxGWIVAcnAAZc59qb5RVihi4BPIOcf/qppKyD1U8Yx8wx70mxSqNtU5PHYfQ0CFIwMBQBxyT+mMUzG1eQwA4II4pdozt3KR1OOg9qbtQAZCl8dvWgY0qrDAAUHj/d+tMcOoO4rj0Yfe+vp/8AWqUkE8nOf4SePyphXqCQu3PII/KgRAyJngpjsN3J9+Kj8oYBCE46n/69WDg8qRwccmkIJBXkjsOuP6UDK7RDgGNVUgnd3NRNHuP8OVHZP5+9WCiAHIG76daDlxyxwOcGiwXKRiQY3KwYcjBAqMwAtzkr7YBq6QG6FsHnPXFNKDBGMj0C9aB3KZiQ4AHB+8cnJPc596he1VRggtk5AJrR8sBSDtPHAYHj3FIItw2BSwbqoFA7mX9lGflHIH50z7HknAwe/Hf2FavkjspIxgBskU3yMk8AHsc0WDmMo2IxnABPIycY/Co/sS5Gc5I7AHFbfkLt57dcEUGLn72OcgA9PxpWDmMI6eOQI/xPej+zOo8vqM5Ire8kAHO4sD+FAtV+8Ej/ABJzRYOY59tNz8pUbhzgf40n9mrg/u9/v0rofJUDACY7/LR5YAwEGPQd6dg5jnm0wgnehBA70n9mozqoUkn3z+ldEseAAFQMP9nr9fWjyyMhmPPUBf5UWDmObOlZP+rf3JGKjOkA4woz7jpXUCHO1t5yDgjJP+RR9mO0chgP4Qx4/nQHMci+jEAkryRnA5qtJpTr2H4MK7Q2fyncIjkZxu5z+XWlFrkgssA+p4/IClYfOcIltcwSCSPIdTkMp5BrtvD3xG1LQ8BXaJhwylcof8KlaxRky6gk8dePxqFtIhLE+WoJPr970zWc6UZ7nVh8dUo3UdnunsbmrfFu51G2Ky3TnIxsRgF/IDn8a4K71q4vpiY1Zz6dh9TXRLpMYLOqANjnP9KlSxjRScc9AQcYFQsPFO71Ompm9WUPZxSivJWOP+xXVzIZJlLEcYKnA+lTJo/y5MYBKjr2rrfJQYKqQOjbT1oFvhlAjyfVlz+ArZI811G3dnLf2MgIAB5OFOPv+3tU39nMn8ICAdeuPxrofsoOQsTJ6ZXgUfZ9uPkHpgrjNOwucxVtpEGV+badox1IPoM9fWplilHyl9xGCMcD8RmtUwjbxvLE/h75pDbnadpZefmzzRYXMU0DKdzODx/CSp98jHI+tWI2+b5duc5C4z1+oxUwtsNvYEntleSKGjQZG1eB1xnFMm4sbAZxkkE/dPP19/oasISVJZGCnhjnBb6H1/CojlMZIAx7GlBfbjLDj1/rQInLgjCgJu6DHGP5k+9L5hHUKV7gHt+VQA9Tk4I54HH0pQfulmwR0bH5UwJg275ssMHJbsB9P60nVRycZABUZA/+v+mKjyZG8wsS7HJJOSfemsxb5OT3bc3UUAK8qglgVHzEqA33f/r01nIx8u1SdpVVzlvX60hkB5y2AOuOvoDUZ+TaN2S/JKn9DQBaB43ZBBGMd6MsVA25FRIx64qQMQOmBQBKu3buYY9qdhSTtPHbnpUYfp3pTtPXFAEoAIznJzyKeNoUbcZ9DUHU+lOGRyOtICdSdpI6+1ICT8o6GmBgWye9GQCVpiJMuG+8R64pxchRyRnrUQPI5yaXILHdwRQA/cQuQx4pWPAKlSR3IpoIPBOKdlcbQaQDn+6rZzz/AAmm/LtUKj5XnJNOzGq4I5ppcHGM0wEBZgcJj1zTdrNG2CMkde4pxDF9w6d6XYqgYkXBoARVXOQuMjkdvwprDDoo5+Xkf4U5QmwjzunpTiA6j26GkMi+UsygNkUAbiAMA8HPckUpJV+meOtIW4xgZpiEZAc8c+lNKDcDgeo9vanbt3XI9aQjB4NAEZTOflBBOTzTcAD7vHtUhORnFAbjIoAYAegyARnr3pGTPGe2M4qXfzjFJjOeKAIzHjnjPr60nl4xlhx0qUgEU0r70AMKjIz29KTZ83OdvpTyp7GnBcgc0DItgz3Io2LnkZqcrtBx1owBg45oAhEa5yFBz60nk8AbOlTd+mBS5A4oEQ+WB1JFL5a7uDkGnkDu3NOwD0NAERj+9gKKRoiTksSccHNS4GOOtISSelAEe0qccj3zShRjBIJ9TUgVcZ3c+lLhgfujFAxgVRkALinGP+IbVP8As0oxg5605Mjr1oER+Um4Hbz/ADpTHkdFHPpUgw33qMEtx0oAj8sDOfmz+lAjDAg4FS4OOlBJ/iHSgCIR8A+lLtGPl4Y+wxipDn6ClKgrx1oAhMIAOTyfSjy1UAnP+FS7cdTTVUk4J6UARGMZHPPvQRzwzA+1SlsnIAP1pnU55BoAjO4Hnn3puzGQfmz0qQ4J6803BAJHftQBHtwAMZA/SkK4bC8/h1qTJHGOtMyRyDg0DGbQDjocUh4wTzT26jdzmmEjNAASQOpIPpSLgHG7ikbG7KZpCSFwB9aAHHkBiee2KaxwSuR7mmgjvTGyTTCw7eGyoPFMYhizcBuwpSRg8DIphKk5k49MUgP/2Q==", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAIAAAB7GkOtAAEAAElEQVR4Aez9B5hlSXbfB758/uVL7zMry/uu6q72PdM9PTM9PQbAgAMPkCAEUiJlSIofKX38uFitVkuK0q7M7icKK65EiQJAAqBAAjPwHANMj+mZ9qa6q7q6vMuqSu/z5fPv7e9/4t7Im666qqe6Z0AhKuu+EydOnDjhTviIllisrSWRbG9vGxweGhwZHBzs7x8c6Opub2trS6eTrelUItHSbDTK5WKtXKnVq/VKORZrxM3glEgkks4SM9PS4CfedBZ967GIZQ29BjWbInBfhwV2xhO1tLQQiP8ChCTNWr3uYfCYhFGmE0lgx6GlKf6Yhn7rjRZJiCsckT8h3jISo8VRNOr1erVRbzQa0AdMIBb7QBJ8gTcE0gQAmAb/zBASwfN11kRMMjtJwODRvs1kKpZMxjOpZCqVSififDOpRBJUi8mfSELabMYRpdaII/9quVRsNJfKzely41ahcmOJv+JMubHSaKklkk1inUikk/EErBS/ZqIl6YILQ5TITqQtv17gLV03IxVJM87jZu8b8D70DXjPeTu8J9gAbKCvv0dx2+BbueJQG/h4uo14Kye4bsQbBqTDO+8JEkclqFotVzCNSpVyRQF0rsqJRLypck0VTKYy6Xgq2RJPNYWQicrgrY6/D4Uy6cg24L3fDQC15fb0G/hsFy5VYwNnrFSJZr2OSEQBPvVmTchEjMqFjaqWUdFOJlso88lMPJmOJ1LVllRcJTYNhsKflDUZa+RbW+Mt9RReEw3qMlqGKhGPJ2OUaFXtZjMRj5m2iTUaysRak5RuNOKlRm2pUlsoFeYKK0vl6vxScblYWVrhU0YkIl+HyguPH2plXT/kVJz/tWpLvdasSmUkqHEytZhFJBGr5VPxvnyuP5vpTCV7Mpl8Jpki09CRzRj5W1otLy0vT88vzi4tTM0vLBVWSivFWK2eqMcT1UaiQeDNcgz9EyhFcp6UoZCQyGhRpZUpM7QEBiT6gsijCUiYeDqdyGST2Vwmm0dfJJLpRDpF+aFE1WqVWq1WLBbLxVJ5tVitVGrFMgLF6hZQs4G6I9IUFCIo1mYchHYgIBVEZ8yiIuUAVzqRB6uQJpnz77/OyVv/HIimAIljpS6Ku2dwkCmhCrhnfL8HRtvF917htxNtO/7b0W+H347PdvjNfDwlABX+NgTeySgDm2D+m/EEmwHcP7hytTm494dBSDzSH0O3qE9CA0AHpyWRSrSYAqMliOdSCXoqtAdo0Qy9FhQ9zUNM+ki9JTUlCWKKacTAqL+BSgaLJkel0a7EUdwks3R4iyl3tc2icUYirDNOqigqmpjO1WOixMDe6gBDkBM+xwKE+wmCMDHousXVvaRArCsSRhkq27BtjsqGbwoEGMczUNOkZ5JGUX1v8Op2xtSm1pPJqlGAtCSKcloH+3YgqdY59OPCcIQb4KhvCzKKkHCk+jrUh27ZLNWHLsK6AH2aAJCLuDmMl9OA73OirZP4e7NEo+ni6/jdK/x20m3Hfzv67fDb8dkOv5kPlCCjcd9ME8U4eofxsAD+m4kSe7a4+OLkkVHK7y+MeFIuoTZAtaClUP05Brn09FOJbCKlPn6CZiDBCCCLKmtqIE6rAEGS/n2sSbcUjyhWqXw6r4xlUYLUFcbCgGh99WgDFU9DAAYmpEYj1lKtM1au1xoaaHkanDDIhXgQ67s+p4QBZ+rZXEWDwZd9fZ4YNvzAhP67hjh81MwFhugAQWWqm649rEkW1wCYzYmiMTreRMzQybjisJZ6BgaSAxOES0wSlJaU/wSUqONRQtartUaqXk0mmb5oJBI1eFpkSUtjofjTVIl/OA4Ao/kBNTHwkDDEJkgaWYLpDqU8bSzuDQhCgyug+4a4LX63I3D5sYWHu0e5IBzD7YK7e67v08cGYbxUpPHmKBuxyuWdG7yQ8PZ3R+l/55wdpYl0N56sRPhoesCx8FYPOP7e6oHt6G8vivfugbUCenufoauj9949sJ082+UW8XJ+8ejTUIApLgBv1K+1uhOKEPw6Aiwb+ERF8rAHNjD50KxbRkGJgwqxoo6E6Dd0Gz1T5nAyqTQdfL5ZZk0YBCQT1gy0MOFFlz8BJQYFJw2ERo3RDqCSmJdBt8Za1MWHn1RdoOiZlEG9M6uiKbUW2gJoNALQdA7qn5k2awYgCpoBnzJRyYFdSjpXOfHfcg0MIwzBmABpP+FHgpqW55tgkpafwJjeNBiljeps1KV3g5LjC6jjAwfSiPnkYFbKkjAiFb6VotYiwlKpxKx7ggGThgAkHE5JU+OkMyZlDUAtmYhVSTlcG6RQELRiEhiPoQEIBXORdARh3BzOiepcgPFi3yB1HBxy/rB/Cd1noZfq+ysSSeCl8oBDSh2EPRET0mfE+0k3F02+Dng/LO6RHwTw8fLZ4aJ8T/DbiblduNvRb4ffjs92+O34gI96cZULTJTeEzhip1w8TQ1FQFcLPjhHam5AEKYzvlzCamLZjPsNbQHyw/9R7CzafFkMQFuh/dOaw05mE+r+51jsiKOn4jQATP7EmzUmgryhJUBmlh2d5HQ76dRL6WNH66BPNVfPhD8LDA2b8Kmj/flTYrEMxgig2awyk19vVmkabHKfhHIGHi4ZJSRM4Wdf+3XWIDfU7DCQgQISRKLni2QEgEFk6ysL9qq+GTPNrE8Loxt0NPMzaGEUdF0KHC/Nhto0NQkwtT9mhRwTvsIowCDeQiCi2TyNC472Av4uxVDxULFWQfvnjMI2wwigSUuqWJCEJA+tKsbN/azBGgGAU5TUCtNeJ/RnLVsYsKQ0z8FngxWsMJHCenti5xrGLkr7PcFOqs2yfU9M794zArio+TQJRHKZ6dLq7tl6H8ZNhdUAj75nwF2zjTRpaxE3cbzVA6Dh760ecNJ7qwduHytP5gHxv72fTa6qGmGT7AFH5a0eAB9m4yZGYc5CHE1DxdecAJzxIwCsG7hEMZ6PC50q6cXwgLxvU+82cL7n1qioUeaKfNgoAWpRO2mqP5lgxTSXSuVpDLSCmdQIQP19VGZQnqHHWOxaqtUqbEk7MIwMWMJsMDzQoEDrpBV18VmrZQygNQA0dB2djdJuxvDGXIiZYL0XemdgJZ5mAEB6yeUUFgNHg7sj5BvIR+EKVT8K0ylJvmh0vnGNAYJmgDZAzUAy3ZIs0wqpycKj/uAUFCE0vEY2tC7ib2IhENZwGwM2goZv9GsBhUJYypAiJqc+aluMwnmp0/wQtIVAVDVYCA0hanil5Rb5M9VPu0FemWHY5qPqSqnYOyhk4TAbkKHjh/rrZNiYnR+qCOsCQx4njAdwdrDHADjkbVXKOrbeYn6Dsuv4eKfvCxCN1IZc2JwOSHi39NtFajs+29Fvh9+Oz3b4Lfl44qgryNsraBGE1UqwJY7DYHUYzxDrlunpCX4gALrj0p2u066pfGb20SsMAnLJdD6VadNWH2aBWmgGNHXClhimP2xih9jV6dabKbGJRTPP0mfaKoVB19O42NQ/e/9cA4APduDYAIEPujbG/h1GBgwC6P0z9+K48d2cOEresPviXIWhfTYtDIwzG4z4xbOz6rvJaLIdXR7oXkmKIc60ARoB0EDQEUd4+tVq0JgPUkZrwCLA2nXH03QBoNY4ZCR1C7uirA2gFdQuRGHWGZQ+LQ8o2tqqXFiVUEeeP7Yb0R5o+MJEErNk4ml9f7dMQ3uh6SNia7K7gYOW4a0ZEDFO640LWflrcXCOUXg9+YdhI3Sfu06S7688Pk28VB90KhBfi/IWRfyDDtrzR4At43uv8D6gDcB2/DeQvad1Oz7b4d+TYZQAJlHr7WER89+MowT0aRuFb8/n++VK15KCiLJxALIjM7opzcwPQwGNAxKtmheKsxJAA0A3VA0GKlsTOux2rjN7g5Z3IwB0p6IsdUYbYLqY/rT2mtaqeLTWgkn+hFyUyNoQpNTSogAGSpAAPjXELeiCBzjzGBAgiesmezLHNlDZoT50SIilCdWJVxPgjJYtUKd0qcFJr9LE1cQUv0iFjKJzSj+BeLhopcG6/k65o8+h8DKLmtaFJsZ5tWgGgdgasviFhqZCQkXlNJiEcEhF3jip5RNpLJnIZjo6Onp6eto6OzK5XJrN/7a7KBgKkOo0ozQcZqrlMmEoac04kRxMRomffQ2STcbhHRz5Olnx63EOdtw8kqgBhxEMfp2ro/Rfh/T0nsNtAEcMgQt6S8qoE7K61ljfSJYgopNMHCKRj4CEsSV7MXRmjYMRBlairxRwtrWkDO0KwUa71jHSUpknXePniR0QjZGj91+ADa5g7tDAHEr3BXhPPndIv4Hhe7J9T2kdB88nKLeh5BuC28xtXZ6ud8YvZj3/INfBk8tkNvlEGkHjyJRMRqJfM9JZIqaqrqUhNT3owBGikyAsCyiZQIqQkbPCLAp4K0wDevtBsCgZsMN4PIATzJF5V7rgngYnRyPh6fPiIFUXGK0BsIe9GWPOhzUA9H4mkeKAESMAbcqPxWvNSrlabaHL3qBnX2MXO/13vqQY8zr4csJrmwpdck3sc7CiWm6wEKADSTqIpC5uExWFoqqybd/0FU54tIph7YPLAhPKMQwFXPfrIkIauZZAiSUdqq37JAQ8iBktVCASs+WiAG9jFIJEHpugl7DkOKnBHzSa7+dPrYXaKSSHF/udaCLiMb5kOOvXjRqRcqpFM14qKiYdKUosAVXZqxxVaEmk6y21GvxsLFRnK5QTyeRX4uOFoYDaIc5iIUE8LSTpYTnjmkYwydbW1kxrLptvzeSy6Syr9IzVNASwuCBkxNjoY335gcOfm6DObJkQJJ/LmC1dP1CkhUue3S4QxLud871zu9t02I7+bvHbxWA7PndLvx2f7fDb8f+g8R+mPOr7o90iU9joOCYyUhxu1AmAllRLLI3Vyh5LpI26jlg6hRumAzMWNc3uqIeN2jLSOOuYrBfAXp1vlL2dRzUlp+kRqV6iGdf+R2a/TReHfWTocQqZb/yNJo4Jr0qDopRITgGbD8h8uwZZ0KcGG3BmqgVBMRZzkFodcF+I1fIjs2IDNxsEuOGDgjHVCq1iSxiaohEjeecPCyRmTBDBaoCJok2aAathYEDExJibTDP5kZAxEulCG+BaEiWk+AXxIhbJju6ufFtbe2cHR3/z+TyNQTqTceMAdfppmIK5Khf0n3/XUkA5FJoo7HDCWGsJYLpYWQrGUxoQKV8hq/f368pHkLmurETE25Lnekm2JLkHSELx0XfA7ZluR3+3+O1C2Y7P3dJvxyeKdwVgO84fDj4qz52k/x1KBdvNlBYW/VybHcFixnUl6VbStdTaL1pFG2SYF0IpMWODFlNH03HzEqKb1CmGRFqXmZWmWgNN/9gsC1pNrQYzEzQq9MNjHIJn1htqptgrNdobdkJqldmF7vl7mcH4sECKwOqrAQizfcVc3yuGDVLR/GhAFBoC1YYaRjA2Ie+22cDStR+EIz1AowCZU/IufFovJQZBQ1DX+AW2TjaTm8TQMInjzs0mR3/xBD1Kn5MP+ta0+1XOmu9Xmom5Rh0My5L0/cVPe5AIXDvNjGUz2dnVhepnFijf3q5xgGl/26bLOAD+CMNiigYsztwmZXzi/p8BIDWIpvu6+AawJawrW2A8ANrB0cQxL9sXtSjpncEEYaG43L2dHy/5ZuB23ja5USY34YRwbE0YwR7YktgjPZkHbs/Hk3ng9jH3ZB7w0fcyRAFP5gHH31s9sJ2c26VPNJQPAt5OnqADeI+C9KEEgCsMmtnWvLEWJKWk/DynJkWsr46T9iiimliErFlVgp7ERMFL3zebNBjoLi2ksn4gdQ8sbmg3NCf6jPkTLSIkWmhU0PPsZmGAgVLk3gYukEg2NYvBZvl4XGdjnXibIw3e5aBzEpkVZ83U0Jj4f+ZsOlv5D5kzxllruQBoe/xo9t+NPoiq4Rv0+2kG6IrLn9MCbuLImkmtFHBWgIGQaX+GAywNiIqmgAZDTaBaBJc42gtl3XySrCXBVBd+rAHQFSM0CeyL4mtNgLZGqQUgBWwOX42HJSxf/rl4Ik6SqX/1/dvb8+1tOaaDclmO65F4ZADrwTTCBEiroY6r5acy9s9NJAWULptqFTivGnwJc4QeL+s22jPC/v2ABCEj5irFtzEmg9w9cBvi9+EEWwli/B1weybb0d8tfrtQtuNzt/Tb8dkOvx3/LfGqqJZrVvGNJNBLW5CbFhHeEa95cbRh+pPBpL9TJVtweV8oIhsGsk6NbseMSAVdYHyaoVxIsbC7R0MBYAC0vNQoE0RoUFSjjgug0OneS6G12E1D2lFvMyDq4+tIlBZbiWKCsUe1oduUaDe4X4izUprFsAYAv14wB+tLp1hGTQ4/FFV9PR2pKqdgtmctsvISGjVvSl3s1gxoDQD5mfq3xouxiflTM+HCQccTGg0Y/syvqX548A+keu40AvS5tVRACpg/eGj1g+NtOuqAUCh41j1wdA0ADFkXqVbdUED88aEAbZxhErg+P+XFnPjR3E4s2dnZycxPW4duf2M9IJfLMQhIcVwP/U9eMHrRqERJr8HDn5swBVzihrYgrYW0wgRecCQbHBzgvbd7ByjPCc597yCnovJ72AN3IZfFcTM9rCRPRPW/J/Mt6W/DZ2v6zaKEmK3prZKEJOt+t6a3mgNdVLANVu+RCqMkuGNzV8S35xoVz8uDOrvbNsD53RyWy0339TQKNEIKHmMdUjZo0nVMydFUvYYC6L8Y+3eY46mjLtlGj+qk/66zXtI3rgFAmzJUoMsfTynJUarcJlSHjNYMK14YAeC7pWY98UazTMuAcmxobSBpobgGICKXQPwim0diXVdDyTlUsmuvQiJovNEQIWxXHNJp/+gXPFbNvquB09kytLvVUBoHOve0LoqCddRJBW1dEk+lCTfeoXptHIIn+GizFGd6uaKSBXLYcMFcU137FlaCufZCvX4AVs4hsY2yipoTTMlpsE4Eq40xEaSoyIpmko4/pp3rQLUGwBhA181xapsBFw1Ak6V2jW1kHMcwNf78VyngksWlhYcBXNnygKME6TGO2L5rpdDx+ZC/ThIn4b0NOhrZaGXbLpTt6O8Wf7f875b+XsmzXbj3Cr+dnPeKf5QPYWG1QWeAJsedsQYgHKg4zY6aQ2ezTV47OJlviCW4ziHRYBqHuWYpTVt3RPOBofuv2+JoA0yhcecZ+2OS6DK0F2y0pKzmQaufsIg1GCuozZBelT7FIFsgnlVAL7aQYXfNIYXZVB3N81rzsEbpNCwT7KGmFWU4FBDOrnp1ap8WToEjCzGlacOivrn5MF1MyBJVu4Vc3GokhKgkpKUt6BrK3d2Bl6DBi9dZ81CjUG/o0Bx3Aem+ZjUVAfuAJyyVNZrGJ74aVhhA7pBGyVwum81m+M8mIIFpbQXlliHYIA8thHJGAmilI8xGWf8sGrW6avcku8Vp60g4J5GRbFuTrGE1dttkVBBI3w/BBHmyOawgEncogsrEB2DuNh22o/d4iqJ6Q17YMJ3X4q+OFd2pbb6oGHW8AldivF3+Bgw386dQqB6t42OYLfAM0XFiEM1XYXmx1yc1YTkyurrQbEO13s+d2Xy6eXKJupZYHv1+AJg7b9FQXEwVCuGo+68L4dmjCKUltakfVCZRVQWDSmqbDUJp9BM9d5YEmN+wCX0QVC6n32kAtAIgEhoJOsmsuWrxWJM//MGLOSF8Se9KKgAC0cKAYUASmpu+Jvr6M9GRQGoxovVdHplkyi8Apvb5sQyCUMoUkSUJPs0YRkwCu1v50FwWBik0r6Tw6PbDyHrz1s0nUWAvA534qkWwzrbGHtLAjqdcTG+TdipRjZruuyB8uvpxLr+rKH1tX1CtWokl0moCcJd/cbWNPKb0FRcyRXGRscCT7W1ZFoA7O1rzWVR/hr8057RZhElnCakeK2t0lkhUWjhix34tskj3FjntxlfGIkAcxNS+jr+sGIcnOFOI7gvaA0bkCOVPwyTFQJE3GqWiElBZH3zNC1aFTCcAYkqaI1bELXjH33xhhxKEUtzL5soB5cN6CfrAFiIjFQ/3Zxlj4oFxRce+JLqJZWRIZv4oMY6PSbjuA2OLh5AmsA33bFFLmelcRSGzzud6i4qUSgNiKiwjJv5sH8YweqaQM+nopBYr6TvsSrswSsY/khAWQBim8ncr40Lc7EIt3IwEsx29I/auHtgu1pT4wIv9EG2VDIdSgQ5gj3Hz3MikvIh8SWI8eowyw/x4jyHL4JckDiAXfiRTVMSs7q59Lf8JkUovb2ybUGmRoWqzaaMRT9S5qSwQWOdTKQOaKSZ2sNJ+Qbp7KsRMWauU42DGyYAT9kCeyA+oLbBGYDUoQhoB17I+gvT8FVYk+xRRBeMK0JqHoJqFlPIjEowi0sLt9y01TVOjDXVnmSYUKIoqjbgrQep6qoKFWu5zYMN7MwW64ma01fNVbgXsbOe8lLDFFk70k1uazO7AiQDppWqXY7olw2sLmg5pqFVAW2ikoGEC0qimaGreEsVktAMZFk8mXlSdMCpKklBKxZQ1lUk9ZmFYbgbmSJeEkiSoXlPxkkLVEPbkcSyVqKcS3MjJPspsMl60xWmKHVHVeEVBES+9X2CH1+DCBlnmtYgcR4Wt0dIGV5pB6FS18KVJJGkMxTUBVCmVSTM66joIoUPDtGy4BjqBeSDKIeJINUhaVQTyBgrLItJaeSaL0pj3SLSGEudwtq4XtUvmOAkmvyqsZGnYjilJkTdsRsXggzLKC4lnUlogiuh6pMOAs2xTpJwxMlW97aqGVVCjXfMUeo78QuYo+Sq/tzEqgqSyqyCisbKxDfGWaKXxmvctSdYjLRvcLgtzQNU44wFnJQMx60R3YTln992MibreQ5iAXA76cJ11A96HuCWeqPPPctwVayV3UEo8f7NboQ9obg/7EDcAztcGpLfK1QYiyCOVYZo9+BreueKguqzbDpQRKhybjZUfGKIpqfQ073duFLClyJ17uUPKLdP/Nn6j9NKNqpmmwAAtKYMbHsh1qVXFUt1Za80106xZ7ybnAyC3MZ4aDgVn3TOYy6i9dGlomom2leSVfkbX8WKSwtEQQh191/hq/CH1j6/QqF6rqIASe1MgDiO7SUqOSU1bjkGFWjZSkbs65b6ymwhQIonCpVMODTaGKHJWNNVOgVMMnaogl7m8jU2eCg3ZxFyNCPGza6/BMAzU409ysgkjdTahp+NYU/Nh7UelWMJ/2HQF2l/zYFxApITReoICsD8TRukgO3xJM/4rIWJqqtzWTwBvxELdfYTULUuupwkS4xPDuIkdSL73ytA8khqSz4VkchKEkoiglPUWnOYA2SQrIhGbAcDVfe+VPNvxcWJEv1AGsm3n5w7w3zuH7QLZIGpU2g8uUBeKyyBC8VmzGfBiO7KoR+ckvKstxuc96T3BBwRsJ+cdBod3T+lhD3inOwFcuxJWl8DHlo3Nutq7Deu7jVeU3nTWOgHIaAwdWLqw9kVVJa0XLAWo+NLHVb0JBuJ0pKV8zYAMa78IHBIdB736w+KriRDT+HrCi/lvBgDMjlT41vX8Gu+w0QTQX0ZR6OY41LBjRLAoZYxJrK+sZpFIpihDZRJIE4rkrOKzjdlAQORgZ+0IkE0cKW/EHdk8D82zmOIXkSUNCSSBJI7iruGD0/g1LkPVvD9Wk1RcXaB4YKmciIiteaNdkX8zjkZfq0ou+kmv/bXv084AMy4zIrU4NCPOOBbGVuzWeH0wkGWNNPuGsJwYLkxc1QZY3BUZawbcr+APXsgNsn3vKeEYRuN4T3huKadHbgC89XsPGg4uU+DpAQe7UEBuCM6TecDlo7d6wGXvhiZB3O6ybDqGmyO7QbANBF6MDcAGsttbTdqw7t6e9O5dt5bfVIY6k9uYDdHZmknE73b0LmqOMNT70Eo38eM65uoU2wyNZ4IvaZuw2JieFA8IjEZZiypXD9+pfusAm2ZkBBBjLrzEy4j1apFvtVIol1arZVoCLZPaCSmYbIgRVuPsJJVm89Z1lML7ycg1BRg0XZBGDDEgGg6hKSONh9Dc8mWlkxzX9XD05CFSkni/Gu9Ix8OBRMNiDQBaWJuatDSic7/o/liNoQApSXqIg0YcjofUvXBrJmp1MN9oHNH2gaHtdcayQGQMYQhN8QmNY2GaVsE4qwOA74khPZRYFA2SgEDsD1m0tg9MdF0Vdx0B5YuSwhkEMMBiKOk+DOPTwQLbvm5tI0uYtPrdhuQeoKNCRgPysAfuQWARFrB1pc0DOG4Oy9E4p8307wMfEeEDAX10PPC+gxGHsNK+byZ35ZF6ta0J80tVzfWotiU1h5DM0VvddR14tId0GEww6oFrlptpBf1pOzvz9dRpdTIDI7LgTVzjEEytogxIHghR/KpcQc9d7Kn6LH6JgKaE/THler1YrRUbVb6FanVVzQDv49oJKd0TutG4vOMrtqaHnWZTAQW5puZIijW/jt5I9ImqR+Co1bkSS+YtrBmACQnC/I75ZmlES9kKLWgD1Nt3GBCEqXQQqfsgA02BYm0RV6pIcrnbl1bACIOvPK43kDlKB7ivnZSwsxJo/2gElCZOUAsAauWkpQRsnWcPRDl+jzC1gai5gFygfAnIYxx/iYJxQgWiKRmF0yCI7wdrXNyjX8Jz1vcdMN4dB/d933yiHo3luoLiXKNBeNgTRzm8b9jlAjw9ACsfFkgHRwFHEKXHg7da0Qg4UAbX8NFiGZTNO5XaMdlM7eXc7LRluNvx2ezdYRx/viqvH0CF8jw3CrB9+mwZr43eI/Yt6FE+VF6+FitoUdruj13qrFnWaslKtZGO1UvUcrR3zTS7tHfQEugmUFspZWHSqX40N5qIsFBHMATk2S/4a3KaqRDItarA+S+6//VirbJKG1Cj+w9QLlUrpQq746tqKugymhGTQN2vaQllhFMaKlhBJNeQAWINj9MGY6o/1JgwYU4p7Dkjr4HkNLdfW9cVEF1PzttSR6CzNQLQSjG+xdxGAFoOgBarAg8kk5LUQ5gWCmgnvJGIMATExEwgd6SkeUzQAHjt79PIRFgrLKROkEDeqwHw59d917t8DzYipr8gn2DPH8+8EYqlsjgjjHoOEIWKwCGhwekey7NNVO5tKJ6bB7YJ9h6jfXAeuFcBwNCVGQ/A2YXi82gDsJneedkWb1Uiyv9eCX8bPj44D9yG+DZOLikcQRS+jZfNTqGyCnSDt26mBLNWn7dy9tHxwFZUazhP5oE1twhE3lFTueGTzeqoY7ahaBc/K6Fs/LeN/Oqw0QCg20PDMjEnmvAolOEFs5guQhUqR4hOwNBm0CSU6tVyra5pHzr+NAOVSmF1dbUiJIsBamGcZjR9BQcJGMJY3J/61EwomCFSRiJFJDhAO0d9PQGAjBAy4a/gUJebpqZDj6ubEXJO2rbHMIl8kWZjak5/CrZmkzlq2EgXFJ+Cc2KgGR1gAYkhWhHvYd7ikchZ2EKJT1R+i7jYWYRJB45NrDPyaeFtii+epHZdABLIyIS9h4aZH3HbInBymhARIBAPSKVBAsmDGUegtHIZfA8Fey9WYdDvRbeVO34xW7ncM9x78n9PgvcnCmy3zAuP94Djv8HqA71bvPf4AQHbyfM+ghOr9+HtfXlRQGiM7cO723htSR/lT+6jtVHQWpVtiZXj9UwtXhQOJc5JXbb/J+mdU/rpoqvzbz11TfSXpf3MO1VfAD8Ibp15zfjo5jM9+qh3waBnsl8d/1KRaR8ag9VKuVgu0d4wf27z/0H3EWUndhGzRRTWV0YjiHiIgDg5m4BIqio+YBgEgBZsnXWpftv6E1Iih9SXRkHs8GT5W+vC2gDKyjYazP6RHlA5pW9cLUzaCZFreyscGDYAyMGUoRfQiee+JKCCCQX2NNrxiUWJG6EAVkpJ9jXdCgYhacpxDY25GrMwUoGC9iHB18Ee4/z6bMDqQhEbGitlNsMgRBKhSRdwkINJZAEqaIBavapUtukqrAjJl7CcK/Q+XI90BFidwaqQjBswJnRxvmERIqMuRrn5g1+PXIPE0wQOhzWOjEDVRJsAJAhjXH21/IORFPImAsEynnVEZufivp7QrLJFfKwDvZMDvDWaDlEPniCKjMLO42bvG/h7L56hA4i2d4oCYbmK4gQH3jfFT7XGzAZ5XMFwTtGvF2M7+g34zRGMctvsCsYZT6YQrerSdaVMKJ/Z661sZ0P8pvh4b9sAMI+6+OhEkRthC8R59N7X0sfxC7kGpd/KG3w8PUAQlpPZCraQ9EVltDed28kqzVillqrEq0Xtc+VsUaysuQtpf44Ap9JJ3f1PnUf1r40AmDUSJ/6TKurgB/eboehb9Nwj/q0BqFbrPBzGagLzPyuFVVsEVpefmR/ejKSFgAMHjklf1jmd8DQYAMiHk08W4o5VGK0/2uyKuTm8aSJ50U5/PTkg4xZOIUBn88Uwl6NrK1y9VQoolfXlT3rZGgFCaOpEM2ETNz6OBiILXh12eUAeXjWAiuMCqFzzS3pqV6kxJhSsgPhilzG9Zh0k4RdpFIstSpEYm1E0QwMyaAC8c+j0gf+6EJEGwMsE4FJFpYFsViNoaUQSuNQMi53zYvT4UXo6icHIWySSwFukxwcevz8bAdzzfI/m5veSBNvx2Q6/XVgfNH00XMLCqvIWKdKOwDlFiX9A4M2i3l6w29NTCanMTgFBiYEbSpwrDFabVfQUEw6c++Iys2oijr7OcKiVCyFsyEC6YSCmNgPoSBdfFHZwz7F7AZjNnfT91flnTYEGgMdjqlpdaDDjTyOKpzJTPlonACR0JFjfK94UPYQkoE3o90a42CmSFk03d+GsDkPgWrZQGlg6IIrTUxZaKJ01Oeh10bAqoN6sesFmjI+GBRsMYakpgY9FLgjOewmF8L5AuDj6mHpADaPz73x5Pw5wTh6OWjdQ3q0VVgjhvs6vycRVGdL5DO7cCMDRkG40enxNgCC3jF5DBQPkBA3lR40yntUcKt2jRpgws4Fl/RCNggsbMIK10NeEdMLwdcCHIJcPyAPfS6AwsYxQvBzw/rh57x5wfGS1Zn4DfrtQPJkHtqNc429l4w7pN3DDV5SPY8LXGa9gsALz3eD9fVttZfQufJuyNXqfTQZ4CR3grWus19MThygNMH8WO7ruHGrVfIas7Mrn4SqO+OpmHBHUkrWMPQ6TqfNQcILbmjXPjXd1/vjwI19FW7l1ir4iHW9tQbNRlJ7XxWc69suxV/BaAwCnDj+dZR6JR/WjL9QnNmPqdy0eDrJeoyRWiCa8wZKQ/w6x0U9oF01ogIgX/X4XX5wY07k/SAJuljRYhWcuShM8ev9LEQdQ02G+LWCpdskAX5cwZtX5YL1KBhPQziisTWVJ+0tBhn9qWQy2WArvAH4cE40AnAm4hj8e6YHQ5Z79whlpooaBYE0HmxFPc3z6IYEIkPGXS5gwxg6PX80WKcqBJoWnlL9NBOFqcVcKitK+xkwsvQGP8dYPCCAIk2cdews3KDk4fAhi+OB9WJsBTxMFPFkU6WEXNWg84J02AJsTwRE4/t67B6wqBKU2yj8ovxu4h2novXtgE2GA2C7c7ejvHO+ldV6wCuMkDKvfnXO7V5TIACufLB7Yjv929FGPwAGZNBr6W5mmOmg3GmsqhpmgdJpGoFnlgohG2W7+KTUaadtk7uSBiTS7PoBNdvCg1qXjazXm93XTsd10r339GgEwRKgwiWJvIbpzs0pZxUKXT9Da2FQUNk0PBAa2IRjUNY9R1qxXEfBykQrYequxCJwMCRw1RBwrVKh7+XV/wFqHtuJsUqgxIJkCdw1UbMnY0k1zXXLgvgtaNSCUvtP+Uflh49d+PX4D4CNIsnonh3TftSkgJ7QncoBHOsBbN5C9bytCOOOynaa7ZnemMIRj95jWioi9RVRFi5ZVJUsYxUZZqwKnZRMbIjhWZIoDkBbASx7ArpCQvmbueYxukxQKS2MA5T+wrGG7tcGXOW3AfSBWH5AH3l8wePfxcsC95XO3/D9o+i1j59LQFbMNieCctvT1fUHek/TxkfLciIv0rmYoqJL02qia6Gvb+ii1ruXDap3bPZkL4h5/5sx5lFxP/mJMrWvCR6P/GG8Co9/1Urw1AUFLAA+CoJHg1zSa2hnC041wNlPCF+NmyqU3EEJvagWVTvb1MFbRR5BYzZ8ovTGmIhNg9FHYIfmi+r1xSHHAH9pfKt04o/fR/dr+iW5DOxknY0w0dHYCWGsSyIzkctefsOroOuFILnNRvIIOP5AWR5h0ov8b6D1CdHLydQ2APJrxQDACcFi+zo+3OiDKaIPT92JFCGcQTtmu/j7vG3DVneQ15a+Bmrtgi8SSwtcyqU5/q3xpQGRLRZaOITMjMrHAiCo0ygCLv4+Oj6wHQtoP8He7sDZL9QEKsT6jvUge2Bz0bZx8qnpgs3ePcTTe6gH4e+8ewJVi761+Csh8kblbmO34bEFqqLulvw0f5+QY+i+A4NAbsFXl0P6h/0qYsBZ44DZS3J5e0VmvPdVFM74WaelDqi0Inn1nJqgcq6P9tV5qWpphPeumuEqPaQbf9L90ga65B2tzO9rqg6tmBJglt8E9e+PdtUkSwO4IIlWtw71W3/GObOjaaOwUkqVA9OsILC5KHADlUlhH1uWdkRpBwFakRmlI6U8MsXYAX1Op6rrCWC2jtL+TwXmzNjMAzZMrH+ZTW5dwl+KTMZsBQih+tCEYVCJf82HbSIzcEXsvLjUCb5EsW5sCgtRTO3bOGv2Cv1eGDEUmjLLWGzKe/gLdCOvjq/KrldRtSqx660vcdFTCxgNE2bWgEZm8tHCORseRgFmvRITeTBbhd89ABR0WPh+oBe0KXFCMXHgfjkgbwnrfgbqouUgRR8f2fXy347MdfrsgPmj67cLdgPdiODxWYTYQfT+sEmN9G3B7Ke6EHhqYSCMJUN+MmMojX3V2gwsMGLVXGazbZLimvjGBdlMz4NQASl9DAHWARUGl4bZUKQEUPTgLyF1R6dc/oFXDgJO5Stli3JfQxcQsklDGfSE2MrMaHIhkNP5DLDDOTwCHbs4qV4ushR/gHImcLBGcYOqbq4tvyxNS3urTy12aARnNr0hpHs1m3owH/EKp7ddLDkCTQtLR6kBEG+qTRaGbURiW4+KyHmCWCXUrSSwSyKPJFfLCbhVGCFmtw02wFnKAcchgU5Q5IbYjNh/rPuAJxLk6PoFkdPnV69c2MO6FhUIqXukhOU3SlqReW1ZLoDSCCz6VdFAoySQ2RcilEcXCBeszEh8BKpTHJ4pDbLCGVO/zdy3cu2bgxFRWqIKsMxEnjbB9pjgiT+wB4SloNnNIam9IgHWsveV7TAe8+4Lleb4PYDs+2+G3C2JLeoqN6tr69JCKIo0+WPntakeFqwKiyq37Qa3S6EcZByqAyH0nk5w+KHO38d2SHqSTb50rSBVgqW0luNzcZhjN21BIKjE9MUtxoebLaC1UxpgIoNuLV83samMjSaNgxMcuQkfTgVEakY4Qm9FAwhS9XJSgxtmCM1VKUyIlKcE0HaVWiq8oRcOvrAYofP47ozyxnihaBp8hOvhVSBhFVqsdmqTX88YwV/Q0IOEqHVkQxxhp0p+gXLfe/GIjkYRVBIk0X6dlhbJlAwEYfCFrIJrGP2om4Ypk+NdhYVJTl8lyJ562kZtm1IKwiz/DJINFhQ9aWMPzTTK7ptZZu5C5olTz6ZKZbTialuHUBbupKrVYtRaraG6GvVyKLOmFUIiO5qbt1YqLNQWWRmKuhHMf0oGsNi9a3Vd6I6lT3urvM7DjQjeWhnRdnzLBJaZSzozN7gFZMSALkU3JoNRXymnJl6RTjwA7RDAgS4IOA2EDO1L1K1SsRGNxxIPyyf0pA6CzUoAHggj+bB+uRYbANhUCvGwwQRJLTmeCXzibjEoZFWLabURR8xQQ4IoBKcMN4YoxCWZhqpDhg1GQMaHJs7QiLCs9xFF+lHY2HrYIsuNODJUmyjNVJYuGSDGWSZLQJXSY3KHdyR75BkkQwQRg0IMLbIToIA+4iuW+OCFPQLr+Z43A8GvBrUHrPWxns7SSo1KcKK/5d9Ca3Tj4cIOMCKVj2iEMwaHCeIXyO48R7yK3YS2/QUmncFnlhxVZo/4RCEt5266mu+153lxlTffJM8FRrfEOHxVYORemJOyisVAwERPKG0HdFqTGOvctU0NOQbgB44BaMsj41DMlYxinCwClwlADRFGEolTXDFDxJtmopRQ+ckU5Q5Ss7BJpozbGpJb8qWYmUzropJIesMMBPvZQCuVbNUjBiLPpAqegg0wRHvVrbYL0JNpPAilJVUmcaLypjm/7s5wxSAglPV4JGp3Or5SXBijATkeZO1ULNdyIZbjc2fyTb2Q/79nwLj35jeExG72CSXSkldREwJv9UTF2KiGN9DhodJceN5BOUmopdP3CTkpaBLYFCPXFGzFWjaWbQUKEJlPzKoUGf1AcFgie2lHkxDKIEbGBQrEIv7SEuCZdG0obYG8Oaw5Ok+16mEKzc8ZXX4llXxzxZmztl4+ir0ww4wtMiLACp7SUUegGyAshAZNBWOyuO2GIoZUJF55qApVDXhQZpQz5wD4zEFCqLlm7CgcRGrWIJZBkNw3rQgwaSwJ0BHf4VYpZuRTvOzPKpLszLvUcf5+SnoXHACD8BvkDvwTqkjjw5gqEiL13z/D/jECgRyyNfeNHQqjY3HV+rSUgpcLq1NYYAlW4aoRVyAlN3VfpRQXMFwfz6dpncurfgsxyMVLCyljqSIUGFR+8HNQDMnelh8icZQ1w+SVXI7R0VhK6vCNFYUyZ35z+IaPoL0GgNaTESXcXhst02ZGHH/fnPCmLlHEmWaBGFbQRI4Dzi0cMGapcNGUjhUnPCqPBj7RWQ68z0bwT+6B2umbPCydWeDFNpXGiBSmkuMhivbrALwg4gyT22iopV/2gujWoUuc9xnEJ19uDTBfLbTAu1cO0J22TtAOMJujns7+KV4a5cyfVTMCR4OGlFXmaA9ubaTdqq23gP0GbhJsC2BDeRqtFST2CwIgbTZv+4Kp0grfa36ATRGtGONa/lw9iazco0dEIT3RbjVGiU8igcFJZ3oHE0X3NL96/B+MkcwwM/h54fcBeg8rzAYfyZ5F9VPV7+bdMri2R8uKLvFf9HpCrFJPVTMHq3ajWej8qn0ZlveAIHsFYjotSKqw/m4akk5byStVFM0S59FFMqelSfKrBlmbmJdRNLqHAbwACZoYnKT1BEKR4bGFg4oNwsMtfUhy8E9jBzjX63cAOJ29wAg6+FsGok3cVB8gsyoLNyKNFVl5CjKjEck1aTyysGQ0t6jyDaHNndP4R31oF+ufWyqhBkC9x9YCxCdMWNxc0QNIlhLUB9UStpo6/lLwO1HHYgkcmK2UO22H03BqPEKCqybFAZAEyTsotv7By1JbOQU4ryQOR5K7/yksXdzHU9IXOcNu40fgHc1Zq9Tlmgg+Wg/CkCTb4o/1Jl7UV7WhxID4KSy23zlKYNyHu2DjxIAfw8B37/pAIN6g2i/KHEfTtc//DkOCDCWO7eDm8KwbAHnBS+OIRONGXZHqV6mZFW/1ZCqA6mJH8sQkE+jgfTDw+VK7ElAkOjIu+SyusJMuWGNVFHFwzGZJtpnfexVfkATdZjK2A9bV6XVKaJZovzlcgW6gTZXXcwpwJCBxz5c4aAsgZ6WIpK/vqV8AGI4mdgAaYFloTEGKiIfkFCVZJCFmAR7PRhwXvcBYECx5NZgulRCU/nWimk2SzUYG8W4iWWA4CA6XHW3jOhRFAjL4/9+Wx8Yrs09VJ8LJDWDpuXeU6D9YC6nV25VY1IND+fE3lBTIGId3uh5EXQqr3HWSDZmkBZfNfXIkbKYAEdPmZyg4aAI2pxF0z+4oghiRy83eMhFiTQBJNA7kHoHELZsSJLeMzTQPSQhJ/OKigRZsG8X0vIymVekFPBPIo/F6+P1h3aZZICCoCGrx+qMblzm2CdBKuybkG3cbT+3dSIpjx4XjMBqYQhLQbXN7bSplTwbB66wDvByfgLZGeBpFc/VFjYEzkZLCn+bcDcKlBXLasNQGStQFLTFLCA5pmCBVW4BimqucZum9M7WjSudwPssr0x4YKYtwUblBOFKyMk0SQ6n/AUlYzXtd7IMzSkCL8DWKh0mbFDaUHP01hYVWvHUIiYF+pe2LpvKLK6C1YMgiBm3xpRoMJQ8074egaCH5tkUHdZS+qT70AcKFHk8YwyXK1EucwRtmeVuextkaDJV21yYwkWAR2J/C0QZdTd2h/3FlHlVjOSLK7NEpZRVm/lgqkBEGqE8+/ZDxFPPnlFAmLu/Cmqw8pk1xM+ulsmFog8gftrpTCm1sPoX0Itb9WL4KGU1NAmlkyGfkqwe9SXomKF5N3Db5bJveW/k4ioe7YvQ11K27bFQCXaFv5+L7hNrdVViC0mLTZbBcvFScrD1HAeQfvkWACDnRQLOAgy7AaFJbJ9SHffW1a7//7byMtXQVz0fdp5SRzSbQOtsT36RYF1pFZBQyS1Bw8KwdEa3UUhtYR8HUMAyaWjz44nBx+A8b7cn4dGTTOrGl/7GKw0Th6McGd8NVTDQqAY4gHKSVvlHphe4Byk+je1RaW0ZQoebA0AEFpQfOpg6zw+XFzHC4bLESFq0Csh7EJThaLq3JsNLnfjms6UPi8YM9kkmsAdKEfR65r3Kutx3WYCFLTJcXt5H/vbxB5JLO40MJYjsi/nMy46HOhHht+4wk9apzguRzFUKcESQECtPxSwGbASN3TCDDtY7dEaKVfbQiR1bqJahl/rihASNtlHN5b4PekkEhB0r8n7b0nCPSIZajjvjkrvKYDsNJx78X4M8FRZSAU1KeJx4QumqLZbDaTORrlvC9JHgjdVDhd1phTtGmhzESLjS+fQrq/zUL82cSsS7pNNcUlkVNeSvhQCWyIq0srX9c84MicFe9r+G34QA8ryBSU5Z2bf1OmI5sGGiYC8HoOTgB9TbXiCCxraBxsOPsE7gHCUTkaBSTFHviVKKad1kqnUcun0YkTErsQ5eTaAHX31YTQh6DlYbcYjLw4UnxqKywU9F/oEAJiaeTQQOu+6OJkpVzWS2AsqrIflBFAvZ6iD857bbDX0TzuYGIcwFRQjcUAlgSyaZttspBNYJP9th9FRZFWboWEmo8xJIIqeohAnJj50SIEAwDJRPVRs6Emw+3FUqcfcmtCxIw5qzqPS9i4iIjaYrp8i8hkE3OLtY0D3pfilsxhYobCf59/KbsbdFZU0znhIHAx/z7L+oMRvE8u0uSeGFWntcK8kaV3JVyrbMG8nAqyW4wK5YDSIX0Rk5L6t9pYxQxUgZIBlRWmBrYNqepT0gMubbzVA3eSZtsRb8BjjXKTNSIhTmC88fI4Go93gCP2kQLpOAE4J1NQ4iGMuUGBG/pLKLaVglQZ8SJRoHRhvPq6KltGDbEfENB1Dnt9LpQwILGIhCsYBkk0caW4yhWq6SRvwlcqIFGkdR7r0YQT24EaVV25SjOgHTgtLdzRkWvNMFwAtukgaWrgMBctYopRaIKoyKpj4TLQMlJhrGJC4BsX9j8nUjHWcbV716YuqAoWa+y0BMxH6XBCvazNSQ2ekmNSqKlN1PUKcafZ0A5jRGeJWomDQDAPIqwQNXhQpQ2YhtK956/kNSJxNIEVWV//DemYgDTAkTvc2td7kQxmcDPeztca5e0hJuEgUKKTBOGqiDE3BzmJu2OuqULoLCCQwHILXbcMyLlu6bQlcuvYaoe002xberoLZJj8SivC8ta1GrGemVegXjCv/RNJegt2yQxbblwBrtYodhr12nuoXD8AgAFz1+lgxWRNvEhlU4pHDIVS+WJ5SFFQBln/h4uR+XVxhA8+iJn7Arh8XB9X2XyIDvBW73GzF4fZzJ9Y40TKwMTD3vsGhj4gTxCwDe0b5PH0HlhjGK03YbaFv04rWjSNjMQKQxAEtyAiaAEzwkSSJSiFpp9UEzB2dURCRxbcrnN0iEJzIcJtjadjaT1xcgJ1B29XQkRvR3nIl6BWKa/kATwGwBnBEStCi87lu/ZtYpUfY256ygKVOrVwRWDlQ2pRjwnQTdYmIB5WY57e3R/tGGpkAFv7IWiHdEAgylY/yXq5BL7eUqnxagIzMG6uxtYAbIsRC788t8ARsDoqFuWcTW/R97EIm+BbhbENTtISedUF2i9eB9I4hPy1FCLRwoTQBncCqFdQ/bE6t4lUE2xXtb1A6EDaKzr9mg5Cco0ZZG2Jc/5is7FSsBn9ZwejWP6fwxDTaC3ykb5bvKZKrfoxkg3qhNIQ3qpyjHDhTJV2bPnqIAwbIu44nTfI460eoGhrG4c+ioRvjUSgtS7NVeICnmogpEUVwH7v+iMOUXVzxwxo/FzESRY8OQHunNt2lH8m8BuExBpNNlldG+A0cugKfp1RNsqA9F9DCEWJc8TWEdWI0K3PUQbcWqZ8Wd6jwygRDumKrjHEhxS83PRFU9NdllzwVRGCnWlBCpDR6+uME2a7UpFslstkue33p+cvXawSQFebamACuW2XyVQ8nU7TbcqkMkGs7IcwotbNMASakw8GwQBq2kLR6PFQXokY23406dOkAXJHKUSFYd2Zo4s2JKkUW3glxxqAlmaNA2xqrGgS4aHU1M0HNM9KC0sTJaOFhN1JBVptyZ8pY6kXSKykjtRtYorWcH+WptZkQmJ/f6ZiuU5YRdmi6QHnbEmhErkFfhO99GyEj830WoHSaNHGimGYhJVIpaT163VaApX7ep2i7mQIqbb6DfkHAVkxk68IYEUw8IvYGBVyhDO/qtAQ23/nS2JbBJ0fudyxgXjLdLtDBghG9CF2gd550BvCdVFQoKE8DlDOObMe75SMXNbjA+L1+Gj5l4Sb8t3IN+KlE0wtumKgRteyyWcxMqOEhNM+QblGv14ShWgGwMPeFcDh3ddbAwJJayAl0G0CRg4llrBIiAmYukghDG0FH7SaxEHXQWJFl522LbpED43HH5vi5RHdqesDNFIUdSiMA/huZ1hKYJm3WitVqhXt9KclsCpQxyqNqvXYllQynsvxigNaOu0YKUgzzuoSdOswaFRcIcfZUlZklsJ0gHS8WQKz/Ks2jUPVPByB+DSAzD7pZH2N1YhaC3tRK6V4k/mfarxR4ZZsnYWws+VEG6+KsY5EsB2WsRFZSCcOlLWyatUsjW3xQHDQGhn4A/whXSgdfO0/ggaViB9XYm4jOwSULov5bajuwsnXlg1+Apk2YO/eqmgSr/VV2uIuXpvxRk6KKHwlVOgRmzxE8FBAEMz5mJsLyyE1aIzHmdikC8wcKO50gFCF1AKj3frjg/MAdMCOswdACkPdVSG3LySqxaIMMAgPDleHCRWFXM14wFk3fJ2rF8MDG8je00qU1ThZMkLsYG/d7P324XoxPOA4eKsHXCy91QNb0ltqbl1OglwPi4HjE+QHbuvxCO8iasBaEVZfNMx2F0EnhsFhDpnEYJzxKRMi9Ou0MACufBWAz3ECBk2RWBeQFePAxVoI+Q0EA4QhrYZGjLY5JsG5Leo24dAGWOmS5Kb6oXSBuq+kMTFcgoDcYJKU9JZqtVEqV4rFEt8yj+yoCaABQH9SLFLpRC6X0+RPNqsm0qWcRez2rH1IIjONRZNn3hERhU/zotpn5Z7ZmzW5pch50U1tUY0NSLGa9H6ztsr8bZwZf768nhpvpOnwa8KK1QSYpNQeNhPWCpBgZL0PH0CpZTKAtTMEUccfSNil7QbRtkRuoPnwrWudvkjYWyLJ79sbIugKmAccvbd64DZ4grZOgFWqkCEdf+1h1nVK1EX5hhU6j8Eu2t+pe74gaSo0CL6t8WJ4wDHc4MnHBTKMKifdETp1VCKbQXaVltGrN75Jc6zAb+C5pRUyH5YDtiS7DdKlAASej+d5G1+exgOO2Fs98P3FoyWJVzAOcJ0DtK1LNH7UZVRjsTnuIFWajBjAG6LjYB+vqKt3Cuily8UHE4D0M+CqZh+joHVdUWhEh77HUauacgAhDU9xsV4tHV5e2cSmI0762n1sru/vOsPmxYVJNcC720sThrD2m4zVqmoAKsVqcbW0wv8Sb/HwsDJ1gBVZxsK1Oi83cEqMYTJHgTXK2GyUcGvyr3NX2E4a0GH9V3zieuxYMdL0lbUE6nyp268pf8ojTz3X6PiXm9VSvF6O0ww0KjwJhwa37r+69zCp6yYlOm7UK2UwaQob5KGS65/GHyQargSPdVs51wn9A2NZSz0roLYL6i6E21IL34X/CKmrGxGEQJefYa5ucNzCijzbtQGKqfUtooBYKNMs81SQAkDoKH6NwDI9JPMeoadMUKZUqq2fC0BAmjqkTajWWltb0fuFQgFX2wtRcaMBCbDJeLYeiJKAFGcSxwAswMJQg/nqI4Oz2oPA4n4CSvMhliIz4wFnjX5x8mJ4AAIHRylvD5fZDWhrIS6JHHwbJtuF64OOErigvXgeAG8pEeZvmI+3ozdlbR6tOoepREqtsQ35uORbKzYh3nmPxi4qrcd7pJPH+QLpjcNj9YB3WgfIGSLh9BuWTysi60qsGIVC+uiAxKM0vd16yYKV1JmVH016C6ulX7ShtQQMKEkjdJ4C09fBaFXDb/jSk9b9P7qRmcseWPsvljkZUK7oGc9EOsU3ldIZMQlm0USsNclwDuOjON6BMXrlHACS62CbOKgQq9/PAgAVFcAefeYhuHq1HKuw8FtK1ovsV4o3ytx3yj1yeOCUmO7bUzRZGIcjvKhRtuJgakZRdSJJdAeqibBtVXcg6/eVROlieaevegPIr3rijVfuLl88HmAdXdThBxu2mEp2Dzh5vdUDa/iwLrkyuYa3WgQjj3cAWh5DirkHp0DSKmDtGxxggHvp0iVmgnJt+WKlbB0px2/T17P1gMkMnUJRTgWAiqHKZ2Ac4FqgIJ7OJSynimCYe8AuYA9skiNAyNd6rbEd5W3wLmUgYCrMkbnEoSXYztd24f7A4tEXRMolq6oPgtKlckXFIgnCR9bB+lrtUy5Gssm7rgHmitUZ+HjA8wwAcwjzeQtHZPJY14F1rCg56vPrvC9T52yN16iAUSz7XuREf8I6GcRQxcgaAH0drKUEw6//Jjlvi3eKO4nDBArbICgCsWqZ+1jjDY5mMS0f4+lmx9867DQGa/I5QaOJCMY5u7TUs6CI6aIUllQSxyWPGi4NTghcfTQbojP60Y1DTP03a+VYrdKsFeO1UpPl36b+uAfC5rctgdmuSn3WrA7CUrFhq4GBm/0nt7XOov1eBB9krVLBp24EoK56lRpBB81eFHM7mGh8kMbGicRO04fWxgETuTClFXFncFR+YxBoy/gGhJt+tovAdvhNDN4DsSUfLyEFfUNZ4iggHIkLPRgyiOxUhLSuQ11QWI7elvfVTYHEXUfD/bLQ6N4oUVmdSsS5ZDifSUNTtrMt1H+2O6Djdnd3tOazM1dqhdpqW6KdYheP8RAFyaghr+WqSgcdFj7GLww3rKu+WHn5AfCo8i0JmLakLtN7s84Usmufh2qwrpMkCJVbZyQxKLzqawoodNKvNEDEuPQBQTtGglDZlQrybvHWJTHYlHIqE0rIBh06UMbF0TIaimVz2VhKOx2LJc7+SMvQM+TuLxJH6awED4ylg1hhJ9aqtrIEBJYn6tb5dAj96fd7xEsQC4Bw4W/hii1RW4dX9EOB5L5luAis3ERS222PD/5QVhYpBcAlNDbxzs3M3Mms6Nq8DB6cDGSNQjENIz1jY0qFRaa5vLA00ZyEEpAMpwSw4VLWiFGGou9AW54RjqNQgKGBn1S59JvlsXhqQEAZYeMMXWm7N0Fv5qjU4ctwirbBfNHjfC12677s60kwxcOf7tKhMjTqKSsf6BoahgzbMylYtilIOtkGzmhripHKNTyJozU/ioBMUA4EWZKp5NnoIyhDioIElmfJR3zgxNZ+XmrgGUhVEqb+6+VytbRSLxcb5RW0f0u9WK8WaJGSST0pF24B0u1vqZYqQTObFKOdorAm0814htEBu4PEX2mqFxIY7WuZgdQh3axWW/hIS6MKBgq5qkghDslNfmpGCgmDmmmCw5E6LK+ufKseK2j3pyzEydJh42cD3lkdLTDGtbEOxnMAKAYyBIch0ZXnNnNBpqC99Ade+SI5iR6KgEiQfRjs8ubls8Lh5JPrVgZ2W6FVpLbGMxe5lY8tqZW8W/GxbArZm2ROPNskQGvHNgAqjga97OWUxmwy6ZdgH4Aix3/uhlJTX0Fb5xr1YmEVe7w1V08mSixoJVrS2Wy1Vm7LZufGbzVz2ZHujqP7h69fuDg/NdOWTLdmc/WxczvvO7SQb4wXV4rThXgjFWPnQzJfaiQr1XomEafZaFTLxeWljnwHxcLJSrJrAGFtAD2xMAJqMEC6GSeO14iMrdTMXyqvdICGGCWSKRV4WFHyMDb9QgzRubl8K55LlTKl2HpFjXiKZQnLR1XKFNUP/hRONjyk4MB2VoLnJH+shcOapVqVCkdTR3nPcragyXVeRbVjjVq5sDDc1R4vl5fnFx584AT1/fQ7b/f0dbakE09+/PHJpflX3zhZLhQrleTA0O6lhXKcdG5JlHUGKJbKZKn31XKFRCdB2Dxi+sTKVizB6+5cvEUg8XpVlVpG30gpQ2RnzDFwJdfCNbmAVK0uBlJ5BzDyIMUND2yszcF8Ga2sKoqhB5BrcqyhRWU+VVeVkvxZcyJtzxZ7JCIWaFKnPLRoJAJmSJhpIKPCikON4858aTKqpGgVsKqnMY8xhcjBDlOUcERPUnctBGkhNTxY+dV6EN6w4ig95hol8FK3ll4I5XQDTipYhMA/ULqTB76mjghUgF3j75YTnJxKRiuN6EMnmEtY9wUTzOlL/lgDXa8qR3nla39S3+bm2PGN5KhjaLFXLDYaBFKnwzjbbiZFFyKUtaW71d7Qk/XgJCkKjX1JLEJz312zyvNBlRbWgevlpB4SquEHBSKFLYDURgegGbClaIr1lqQyQOkCY4IGSeISKWshlEYUUiQKcslCh0xWQyEweeDMFlEKnTb8honivAYNxgaa7azOb8hhO6oonsi6xlVxDBNesIylsIqPRYl0vitjvlQl7tzcDW3AdQN/0t8Vlc2BrjGnAqqLpRbORVkdamUxvt1/EdAPXl0ttre1pdvais3YQrHIshW5UiwVluZmk12dO7o75sauLCxOPjzUff9jD7z0/LfLK6t7enua5YXdmUZ+7+ArK5OL1Za2XHaqVCjWWqrxHNOsPFJdKFc4AJPLt5Upm1Q/ygw1gRKoA5PUxhizlRRtTrOjcumI4AoN1YwZ1UQqno3n6pkkRxhRxqxtUbPLVDJGNarIZCfqG4ZSJxrgc9ySFh00JhYjRIYrqWwWX3jAF45qStCdzQbb99DjnFvTcD2RaqbYspGPp+I15k/LhVqtzMn9TLOWTTTSPMTekj462hcrFVr62k7s7l+amr2+NDPam/nspz/XNdz361/61vLNi3v2HBnYcfj6+FKJNqqttVhZak2n4sksDU+1RrtlQwPkYt5YGcbAQj1lX+k2Z+IGDCnjtM/dlHlLbeIfFoho3QQHXpmPNNLmpnakkg0VJaXAhKGLWuxUfKSopCJw1p38qBe+UnRETfoK3YCuJppkcVjRREzHUmWPL7/mJvkIQqFYR0fyCAhVjKSEA7kHCYqC4QC5rYKCHf5utIUEymkwVtYVihkXIUAJ5w6vwVuCKhQFYyp3nXbDbSsDE5cL6o9goHFfBzjYtxIbCBxDkA6/Ff81nM+bNVQEIggzqirkAGnNplSZCrdPsABQZT6qWavQ3aA1xR8hos1pQ1VTzJhSAAIX/hme9MUDza4j4wul/t1r4xLBvveA+Z0k6YYYkHQbMP/WWNGBjZYkWaj+Lj0elXq+dNXoh6paURBMK9INr3I+XIUj21qIxWfnl5aLq4l0pr29ldQorSw9MDrSk88+efzYpTfTl069Xrx89okv/IUD6Y+dP3tuoLerVsmMZmrDIz2F6Z7T18aHu0fqs8X5Rp2j5vFclspYXi2wF411ghKdefKZqolIVm9d1Utmqc962K7MXomKNRPS8/U0/TGKtmo0U6s0AVX6mKxxZVtzpgvgRRllJwZlm3knOvWM4WgcKiA5HEl5YAucxhDq/hFdFXumbDV1K83Tks6kWpop7nBhrFOtl7get15fbVZbSqvLA53txaWlRnG5pzPfXC1mErH7j+wb6s5MXLv5qSefGmrr+P3nn/vhYwd/9md+guH27Nx0euLWA329B48cSvfsPHf224uFWqZezqWZgi0VmRtje1Q6l0pnEa5QLuVStFwkDOLQ9GquONZiz/1uX/hc2b7b4oov50WAU4HbB6HEQZs5vRl6dOTr+FjGRSWRLxUoU7UGOV98jWFgA/bG1TpvVQZGjPMAwvPB3QkW8HSczdnIXNDQRH1EvK+hBfmgHIwnMTGsw4jIkK6UOqvHeCAYAUSdHRxNHUftgvSwI1OokZg4ZORL08p4lPRW3vFP023A6jcIqyoCkgpBGVcDwHYj1wJQnNkJWm2pMRSQBrApKVoT1xhS5IIkUFjiKf2+2SAeHsRXgqrfFE3fzfR3jhFDi/ude3lPSsfQGG8VGfPv8iX6vT1bkoUu5p0bUvKujAZid8zfsmJr6mhiehHoONXpG0vH6JYCVL/uENHgGVuFDKXo2diRBoCJPt4tStRT6arajERrkoOLiUw8Vi4sx5fny8XFUjp28CMP/dy/8/PnTu67ef5MX3Xp8YcO39+dWpifbmvtKNeWmfs42JmbaJTb4vXFRLNYXGFHHItMiWS6zEl0xqP0Mbir0Dr9lNdgns22LFQaFazqsycYFTAfSYT4TTJsRTHXuEhRZxjpNTdzacYIqVpllZJJ94/CDbn6kVZIGcQzBEilZWcGCC6CWxK1pu7sUkLY6WXqD5MzjG/KpRKzTIkUUnI/GFXNnZ6pdrcmmoW5vpZqT197VyaZ78oOdnftGu6em7ry1KFdOzKNyXdef3RH92c//vFdvfmrl2+98/rLT+0a2v/oR+J9o989e62N5M3nVPcKhdY0U2hZVgXp/zPC4UoA8oCLWbRAaBlA/qhdonITFeWNz0Cwa8YVWuw+rwE87OnWeV6vyjcTi5v5dF8XBGQecM7euh3gQnf8XY4IQ/urHoZ0jgtHmiiUD6T6lN5EQKNfiyaQ4y/A/QX2LX7kd3375EMwz0RILFRkzPiwBJhIrj46vIsvhFErsE+HcAoIzyGR4+u+zhvfDcAGGh9MFO9hdVvc1ARAaPBC5lrXhjl/qq8aACYxGe1yLZ29UEBPiDkflvGoaTQA3IMh/wyPKGUq/ooUaAa/GkUTig3JBJBthCOZPRCGe29/fbIEwZEtW+u3bYOFgzfbEq13cKm96RsWsvXE2KyYkhoqw1ZIRGEZvgZ4q1B3abZseu+Sx9bkZCWnUchDxY1aoYl/Cm9NA2wmKdWVYBRNrdQfPQpaiRWmUjmvmE0n2Ui2WqA87e7p2Htwz8zFd1PFhak3Xxje03vowcMTHc3i3FgmWz7SE5un/DEzE2+OLU4lZ6bv72u/Mnn92I5DqfjqtRVUd4ErZ+OtaRaoKIJLK0ucHGbKnpupkIXdE6pM5Uo+16oCiRzMyOvtJKUKrs1ygfErMzLcqUUbgurEM7PDyWqNmX1gFu7wCCldatqLqfnZdLoDRuj21WKBCSf6QUwoMyq2/UvauEork0qm+aKf41lmfZCEMHWBI5KyVlEvrXblWy+ff+f4nl2P797VUizs7OvaMzI8dfPK7r6OfKISG7vQX105cnzvrvbY6rnXKhM3jnandx55sGPP3rfGpq+++M3sYjmR6lopa2tge3d3IpterrXMrBaWaytaa0ulmFCiM0fFVjNA88VXtZP5sbU6vmWmKgNDtb4lQRS5jvgOqlaUPqggKjoq7s7qAVVTh2QoZT3TNauW/mSgMf1hHETueAlwZR6AXHBfeHgrAMZ5A1CvEyuISBSMRFQidG1MqDrMi0JxLAQ4Y7TmI8SEv+YSyKlJJxNedsUR9shmrrJaMCGwcQooZOjIHYcADmQwPsY5oHVwiF73q2TS2oZiyI8bM6OQ6Niovx+8NUmNYemLok4XghGADN1/Sj4LISSeaXw1AJQslrTUzzKFQBSA0REuQmoDCEdhqYlQM2BZQhroWHAQ6wBYJ+X7svjUAICBfS2M98XNedrA8z05ubwMcvQ9qT8YAhf9u+AdqQNRX1E+QYGTM+MXKXplKoaibb1OrDYNzlES1S3rf1IoKD7xZCZX5P7y1RKLtvFSIVuvZErxjmru6acf70/WCzcvXX/9W4eG+nYMt68uj1XHz6Vak92JlplbtwZ27q4mmm9du3T4voeuXz17+P5HcpnW7PTy9aWVxaVCOpPl8GGtVB/MJtJMDNHY1MqsgzLjT7Dcll5fWUIbqH2q1Zm0ZPVWajrO8irPhsdTmXQznaqm2Wet+RzGvAvLSywVSIlTC6zBUHsSjx/euaOjqwtwlXkXpvBpNuxqir6+PojZvbq4OM95hdryapERSnG1t78PQVhpqJTKmWQq08qcDSONQnHsxjPH9h4Y6t/XnhjZOVpbWixeefdgV2uSAdH4ZKalZaSvv62xVLxxrl5eqS2OPfbUU7Fs/NaFN2avTLQtTzzSN9ps7Sy1pHceOHR1auri5PxSqUqCJNuz9TRbQ+KrxSWaG13BotR3QwGlP5lkQ5po3gommkQqCjgKh3RwgAktrmBD4AGr96Fz+OtKi4qIFS0x9IDReLwHnFdndbAPBavBUhhS7XBDAKHUqzTEGiC/jsjROWf7erYBQ283hiKPGLNaCSeGoaby0jqujg/etmsAxMRII4wD0HHwDD2A87oRwGafDuP8uy8YD2xHvx5vCtpWVyQ8hcXiSDVggZ1Bow788sc4miWtWPACDdNAVAv2pFqFp+Ol5oM/tW3q7tHzX9uoreaEyWI1BjQtZIhREZAklYaQoW6qIXYWw/yAfUxWyeSBLQV0mee+WxL8W4ZUB4BMt+ZdPWVloGzkOAcCG80E2z3ZDsPcIYUZJH3pdCqRTSXa46nWbCK7ulSZvnVh7MwjnR8/cGBHe8ee2Mpktr7AlYKtXYnYwmpsfoWV2cTKcmw+396oxuZmps+92xurF6+eHx7YlRrI10qL5Zm5ei3XyCRbSuX4aokesEarpdVMS7KjPZ9Npem95JklSWfyHJrPZDMZmo5cHpPLHjmwP5thBTdLtqLQ3Z0TxOGdd95xa8UgS6USePKURuxHPvO5ro4c0SyVQDR5jxUCZngG23UHF5G8NT07Mzm5sLAwPzczsbT47vSNEgdkWrXW0NvTNTowkGfLUKlQmZ/93NNP5hkvLC0MtOWuz4+N3bzY23rgteeee+SB42Nj1yZmJwcfvG9ierzeWD1wcEesdGtqbHZyerG3pfWvPvNYtmtHJj9Ua+s5M7M4Pn5zafLWCtWxo69Uby4XVum7pdtbtYGHk6GaWFU1I+kFaBywhSH6mwutIbcgdihVhFCVb/a72ZsPwgOej/O+GQ9BlLOFKE8CpDtkLHIOXPf1gwCIZeRpzUCKZZ2HO7PI11adJMNvZOGC4Eu1EGwheiTUxE6u65PRYyBYtwbgfG4MZL39TmjW+0ARq0wgCF9g1WXaA9Q+fXN+bFqXNQDmcWXF6ASA2gRKL45MAbHpjAVAXit218U53Y8kGGNoW7YpeRokuAGBgsDOP/JJ/z4YgwDfO2OLx13wcdkZLbhR+HuX5weKg7X37N1i/kV7sU31k6dJtH+tmWLZl/JjAmu6hVpQKSxlmDWvFBeX5jgicmR04OGHD+7rSseXJquzNzp6MuXKYmxxvjm13NKZi2UbsZXKjfOXB4d2TF+6Wme3TqX64te//uCTn5q9dum+0dH9O3fm07GefKyWYyNPrrRa7o+n29jhZ1seu9o7Rnfs6OvuSSWS+VYuSc8QNJMwbNXkZl2WH8hUlq2hdgb51HmhjMZiDw0NRvFufwnryJx61LI1Z/2zWiFoxjJsQ6Vol4r1fE5bTfv7exP9vapRzHfVy8uJxEqM45urtWq5K5/vasF3aaUwO5DPTVy71J1Ox9L5c2++3rKyNNKW/NYffamjmT790isMUnY+ev+F82enZm985KMn0m2J2ZuXlhcW+jJt2Xyqf/fozORqZXWi0CinVst7BvtaO7pW0q03is3zk3ONYpmdRqUK26yoZVItThUC3YvaYBELP1SNuyrb29FvhyeczU5e4wswo3ZNsVPfnxz0Bgyw+3oAq8d4SksaV1ADnKOx7zr8mheDxCtMVgdJm5kwDh/9bvC72QrxhvTU3d+OjgFm1Fi8FKJDumCgFCqMthvDYkVpQ+bwjhtsnUGHWztE7559EzY5o1kh6q2us2DsW+MUAJM/GsAzMpbRe8fVGqNLTeTQALTU0hz5VUcQda4zKkwFaS4ASqkCtSh4t4MwwJo0QGiE0eKybZqDsZoZ1Af5RVAaScgE0aHTYvQuu0nfqCEWLkYbvlEaB5M2RuO+G8iDpthhkRy2QaAmRpBYYVghw3VMHI05BXiHwQJSgykzoV85AqtPbBQqghoa2Z/DGL0wESuJ5tAbvmK1lfGVZCtH4RDDfwE283F8A2nlQ0bSa58NGWsR0NomfMDR5LM7s6XSZMtjpsYeTXoN7K5nSIjk9XK6VExXCr259P77DjxyYOfRoZ7+ZC1VmDl86FiqOFOaHsskSo1asbA8lSo0sjv3xpIZZkdmZy/Wm8m55fLi3NLK7OKld97de/8DN0+/8ezhPQeefvAvdX2mFsutcilVrNwbS2fUL1G1oJwRrFolpm+QTGdztDlb/TFKpk5rWr9Hglvp2PCV8zo8LJJpqRihdfbNGgyxibXl9KN5U5ZnqUCmi/K6BaXaQSvDbtRMjt5cMrYca1a6aVsK8zvbUtWl+UvvnooXF1ZnJ9985UVO0CcS3affPv3Ik4+/9Ppbl6+d/fRnn+K+lfMnT8aqhZ6O9s4cg41K89aF7kRrpaVQLRYPjR6+f+/x5Vjq26fO33rzTLJSzMaaK8uLHBxz01OkAj05Vu7IWZajdX5snZKU8M5AgCGzsLovAMnoXDfgoQQfLXMb7c6bpwnrTogOfm1gIti5eyqqoJD2hzqRs9zQTKzuqEThplUNbc0l3bXuQmvumFre22qUq2LKLKhMQBMbMie/o7eomc528VXh0YwSP5CLm4qJFlG43AAVpikRExQmUoj8sPwuMrnildEeihG0N4gOLLRixCdURlZ7cHAMwcst/AKsGwGYkzkrYt4WAApgfcSiFASAcTQO1pdaoEqsBJWCRjQqD7WEFGW6nzNapqBV4kPjeDKxr50crIpxFtPeqNRjCDpFo30GaH8nCT9kFpMAJJ7tFbJqSDXij1RStmq/ERMFqpWETgxs7c7JGZX/w4QJnei+Z4giixBhdYUsgtsIiiQ0UTjEfd9+EeZOorxZPrrCIBn/2RYgKiEJx7x5Op7OlujvA1NvaN/pNNRq6XqpNxOLry43lldn5q/fWLmx6/6DRw+M7t47VJ6+1izNtaYqvHgSK7HAVGKCPTs1GcuODAzu+q1/9Xu5jp5qI/Xu+Ws9vcOXLlxgr8uB++9bGrt830hXuTxZaTRbc609sUyuXuYEl4uLjQMojKQ59Uy1UpKq4CGntieoXnNvu/VZ1tU8l6+bvvhHdTs1g8KgXpjyV6rgJBduQ2G3OOWCs5MsD3BFV7OZVcVXHW9RP4e9mFQIdpxWVudn6qtLXdlkobhy/dLZhZmpTLp1pd7o3LHzzJXrc0vTHZ0kwNKZ+tny0sSDh/f1tXbGkqnYymIjvproHswl6olibbgn++LJl58/eebMzemleK6/o7c7284rspOzc3qfA4EVwUQVkdi1yjGBUkHivpfZrjwoIltVje3w24VzG/4byuGWlJo2cHPNYQ0E4xQIubqhiyTZzDiArwO2k20TsRXq7anhFkqxLdGGEDdYN3sTT0tndy7RCpBp4c2kDuM4Rvl62DHa8HWdXBoAVRY6/lrvNUONpWRTJRg3MOHDn1oFjZRpDOjcYUzFq8GjZPFH28chgBQzAGqPg3VgapuaSmoDRzB02FcXS9OoSz1YH1YTTPTC6ESqI6nmVvmnmkpubUxPaHx0tkuBe4v3wTkg+o0GJPwdZH/Ui4M9f2knjOkPwe7PYcxFmKjVIe/4G/C/DX1Y1BQR0vk2lFs4MVBS6bGusDk32fKiv3K9WWTVKJ7IsKNGG36WYuViJlbqiBXaYuV0kj3sxcZUYeLM/OXlK+Wu3KHRgUZlqb66HKsVuFswn8leG7/5wjdeffaTP9M9sPfWTOHGmbGuwZ1XJ5YGEx2JdO7a1atdvR2vPf/cnt39PaM72pKJSqPYbBZjRVZlKbQyKH3tQ2OtN55EG9NXYVTATnkWorVEFSS3dTW3iNoWKGUOCxooGEFwMCAgpNfExbd8UbvVWLXSUinGOS2MyiYsdiVpZ6aOTKr5YeF8aa61pyMWr964MPfKKy9duXB+aKC/rbPv4vhyLJ597bXT3V3th+87Pjm+2LKwemzXSL6cmT97gwNt6a7WRltrpVZM9/X2jR48denUmTcvn3vzzPRqtZBoXWqmCmzMzbT2Dg1X9SJVnD1Z7MqiClcbNMQ1ninRyvD2hpJJ0uHuAUfrrR7YAr+p5m4OB++uCbkdHxNggwyOXt5V4wIV4Wa3HCUOAQABoBtPr5dA3s0ARGF1qMNAHRP/jQLm9XYf8QxE25YsGu5mIlyj6a8RgPcArHK9jaCQRU2UNV5wchhgDVvMuAbA+v6oe3Qxg1ddY4qqp+pSmFHcGLo8+glbINzhplJN14L6YOMwAbaSq6aDNiQcUcET/rQcqh0oeSpIMM+kPmPQWpOfDJn0JdeUF95YuGvCe/z7Bnw6bOBg8QuS2sNOEufFfwEcvIHD7a3OF2nogM2N3O29e9f3EbT3GwUcHx9TD7hatI7SWSKlLupKxmkETpZp8Ke1X0aGGj1z2pbBXKPa2tJsSzdyyeRwvn9fT+vR3uzuntaR/m7m7lO1YrK6kqktA8yNnevJZ2L5DIudi9NTHa3cfZNdnF/92le/df+Dn+ge2vfHL07srM/XUh2vn776uR/62NiNyzMzM81YeeLy5Z7RYfR6bGFelyxwTl2FllJHoeO+BfbgZ5vJDDMhlG1pPzrtbramhU1KlDgVzmiMbgMzcBCpuv6AwUd5SnZqJsBGBXV2eRaqpVVux0LjZhJZVG+sQpWyBgC/9JKknBgVVQqLC1TErq6ug4cP7dm1e2ZxdVfr4G//wZf3HDy8e8fI6Xcv9HKGrD039e6Vq/357lx8z77hgfbOQrE8uTibjlcG+0b6egY+cuLA/r2jK83U+GLx/NjkrYWVUjMxPnGl0ZKq0/im87V0WzOdjWcyTDDFKjqxsdlsVx5cjH3x8EDAwUoFfjfiIwEEiWs/nswDrop5qwei8sDMBWFfaQ2pCbqYTv1roTEwga8gSCEdhu/mgu1dA89GbIQR/95tGwB6CoAz8uv0XogSxgnvJHGxNWrn5Fydd74++h4IRgCewgHmHATiwwBwsCeGzCiFwMlZnerXUi5GM7ea7kcxuwZARdjaMPpFNABYqSPW6RcDkpofjJvwSjb1UCT7DNgFpL4/NYtkpnmwUQSdQ0KEBxWsJr2vDUWsBcBU02WqPuDEUPFmLKDeFXZCsVRUKHeREz7W7w+waAXBAft0245bQC9ZnU7nS2K9h8CKbGiMQ2j5Pv36mHrgrgSx/DP9SeOtvb1MuBNBZW42mSyXCrXicmW5yLpua6zaPdS9s7uvs9BsTeYy6eVcNpluqXKJbEt5hWXRnq622YvnGqVSZy7XkWgtz7NUkH7w4EO/+i+/evZyYXa1uhyLXZlY7BsemSzPXbo109nZ00wkd+3Zt7iwEFtk3FAvLa4yxa3DXDp1THeckWW5yp4jNuOnm219wzqsomNrmrZEaFoD2grOZzmB7yTiVBdVCI2SaecAZFxrwCSn5pLi8XK1tlJerpZXUvEm45IM5365ypl3/Zo1Sn0ynaDWaDSNhQagXGZWp6d/qLunb+/+/e2LhW/91h9wZOH4sftf+s53V2bmu/bs/z+++s6xfCy2v7vn+L5GPX/27PXFVLXnyK6+4VE2M+3tHxkZTqxwSiLZWkvkFov1ybmV6eXVk2fPL1aaE4XSreXydCW21IwXGcZTq9GWoXraHGVfDDzgaLwVgJz2HrfDe4INQJTeVzH11n2NCwEhXQorRGmIIFSsXt8bdwqhpHIaNvIFGcVHCRzefMsv7EPXdVGTfzGXfnTEW34dkb6hkT8zIPj1XwAnO0jH0QNBAGH08eZiHIwAHBfHX2mBwlwLTmFsMI7Sf6FH2yt4M9rJ44z6+ISkBV6qAV9SkyKuzZqqyZb00sIq2TBhVxl9fu6Toj+V1ilKXVFnPSrpfDfbqpjBCD1uXwVIsPR/OEzGNDAVhQ5iSwubr2kRnC96amog5MAGIy3YuetNbV7IVIqPyfcMEPSWPBS7MLcseV2KrqWtd93AAWuQeVvy3Qa5gck2VFugt/Po5N/CwzYoiR1G2QPQbm7DwvTaOpZ2eSLzdqqwphZFTooUlha58Ka3MzOQSQzG4v3N0u5cbDi28NCu3W0Jdg0UkqV6Ks5r741YshpjZXVmvPfAvtj41Gtf//bS3OKR/YeblfqpV95ZWSy/+s6L9SwbgGLTpXqmGhvdO/rCm2c//7mP0KXt7RtY5SKh5ZV8R3dXW2elxO2EBZYltO7JFgY0HsOQajNRacm2rrYkcvG0hqkao6gZ0IiVj9qrOzOMbzYQuvrM15SI4k5iYmgMOUTGVe21erHWXK1oCMCJsCQPAzLypWqUVgutQ0M9vf03b97s6Onp7+0rFVbfePWN0sLS3/or/+4//We/trJa2TWy56svvnO4O5fJZToG9l6dWLk2OZ3rze5/7OjRww/Gd4/GUtnq7M1YPJ+ux6ulxXy2s7u9e6S1c6GQ+8jhz40trJy8cvPVi2O1Kd26VKxxXJnVeAm52WxXHpSZW5UTOGyB34p3gFPDEVaxEJDuDpJOFW2NwGoiVo8kOGAL1ABA7NG6vGkc4OLoaIxU3r0XYcw4pPRpKNVGzhFfjudtvrC01mQLEjnp/5rxNgf46HsA0q1HAGs8toE8a++OHoYvX6f52bwsgJlB65FTDTTTgxrX2ErbNdlBhF/4sGUOJS+P5Ae3eXLZIWU7XmfJl/Ul2gD8YMW/deJdBXC5bcGh9RM6SMwAmBdkLDQ9ZoCOpwHQUgEBUiG0EKfZoxQ7IcBY6CxRa6wQTTMfn3sNbE6xDSE4Av/dQG/WrVWk4wMBBgoHqNh/v43kCQu9A+5WIrQ+Sp8vHWOV7lA/MrZr1kr5XMtwe/rYcM8jw233dWV2phtd7OJcnE2yvaDO1Qw8IFGm1LVwUKpU4p2X2M1bsWLtwcPH33zpjV//n/+PajF28NjRbCq3VCsvrmj3DpPri+XK8MBwW7Ewubi8a+9oPNuaziRvjc8e7N3R0tmfKI0n6mycoMzoLkYeDq5TRKX3c9XlSjyb5p6IGG2AJi/dZJCGrXdRvnymWTV32j/IX86hNSt0dVKNRGs6T7Oi7W/J+grnBegztRIys6oMQSzn2Z+USbF1NJ5Oje7a1/tgDxL/q3/5r7713PP/+d/5pd/8jX99bOfec1fHvv362cF8eqEWa0tmXz5/bXl6drAv9sM/+sx99z0Sb+uPTa2sxhaTmdZMW0smz90QnGJYiFVLrakcLc3KSim+sFieurE4fnV5lpuC8sl8T5IbQ7m/axuzXXm4Dd4rzTspP7fhs2U59PTIG4U3iI+Tip4ZwXdpxNkqI4A8+yy+Mz7mXaTmXcXCAfqacU6bueLoQogCm9NBhxr5Qy4pD3WtA1bqqoeGkqZNT+hqMQ0cQALxxQsKVopfE5WsA6kfzuY87efnrAhnuRRp1/cnMWzBil2jDI1lg6UMel5DAMow2jrJZuoa91uxDSHB2+/S0gy9JY3CsvBFa20Bo2ZCrjHS4B4YNpDCRZGhk8YEDw0NHX8qi5p6uldsn+CRM/oo9CtdeOKpOFHXaDAYwaoLZkkRxlPB3hujkiCuhBVUbQmo3a4YRHMpj5OaRgwyG0qC0zx6XzhZV1GrKVCrX6zNVoogcbET+ZAoeV1aidedGRfendHeEZWiEJYo58ENuFwerrFAfoqAZg8sMUIH5FFOKldowCkElE++ZHyjM5+rFWZvzlxquV5uH2nr293X3c4esTKPhrJjWP3zepWH7FSeSGU4Ly8xIFydnFycXtk1svOZjz317W+8+Idffrd1bx+HtFZLzVmbumBr4+TM1NOf+Nibrz7/hc8/29s/0JHPXjx/gQ2Oux94iE5JLG2Lrkz6x5I5hErkYrn2WLaNnUUCEtq1QJgUR/JC71MTF5exYaSC3y2RERo8Mo6Qf09JqWVTdDyXzKdizTZdu9AoLhVupXM810o7pD4W26pJLgpTdnS4PjmV6OnsHxhojk9865vfnp2d/qVf+qWXvvES1fPcO2cuTZXYcdTM5mdXVpZuTjBbO5yM9efax6YXXnrxtdHJoeHdO1qHe2KNUmy5ElvhBohcsiWr9ef6aoI9WNm2xUQxX5tPrszUlwo1FuKTrcSd1tHJS5lU1EkBZZ+yl5v6pDCsPGha2CJrJcGKOlmrKm0p5tMhUn5UT0Nf3t0DLiBX3tTx94lm1VkIVw5DfECAVSGaq3NyJdDwnvlmQFVLlOuKqyPTvgBNW5hiMaFVW5ndoLtJJSUwZaPqKhJZ0USpbR0xlziwUvd1vSFRla7SEprxsFiC8T7kYq4eo+hJapcOYamiSHOQkDlNOhdVrWJRxySi7l1Wr9lFkrxs1FlxUk9aIVOhJD16E5UJR3QwihxFzA2eus2t3hQv+l71WJm9AdZ8oMS571Y3XbGsS2HQjf3sn0jampVyAC2nc/7VOqU7zjQr18CpunOkhnqkB7up1NrNr1aGvppkYnhRjSXLTT3qysaIWjxbj6drLWneDNMiIQbNgaDcFE8BTCrgZlkj5TQba5UFpAmRZeRBTGGOEX++utGFyNkeXLCiW29whT09U3eeU2G5XFKx32CEIigCIgjEtlGQZrSIslY9EJBUdSwsKNZHqOiSRF+8um1TWnhUY6hbvxk46XwckvMekDQDRJQHAFyVgHQW4au5NrJLrYJJS96q0XACmVRBmbGkIHA1mw62WK/F3ZDmc90Hybc0OscXMc63CqgtrSGeWrHAM4BKnc2Ay0H3fmKIoq5nr5K3nPflhv5UPE/9oWPBcxGoo0ceOnFi5yf7Gwt9Kzd3JVaHM8w/EM08p8Do8pOuyThTP7wpXY1VSpSOWLa1tb+vuli+fnV6qVTpHN7ZW59/8cbsXCy9EuOlOXVCCivzXV2p8srcT37h8yfffO3xE0fYPDPQ1Xb29OnayvwQa8t93Zpx7GiLLfOKaik1Osi9c7GVEswVI7JXik8FXGWJrNaqgEto/b6HoaDbbnPirz9SyyWv7WnTsDWe4X0DbgKi7iyxG3+ukMujt4tcZaQ9EOwQ5WRAUjunq7eupVqZ2q8tnT9/+tSZ/t6un/jJH70xNrmcSlwrFsYWS61drF1nx2bmKTmcZGPAPtydqbW1z62szE5NA8fS8fLcrVprS4yLS1N5KlpLOp/JtXElEfFMZnND+fQXnj7+1DNPXyznX7lR+Pa58TPXJ6qlcoIuFtNzdpEvpU6XBTUaaVKFkkmZJIIqjFamFUdXG6wIUEpYM7QoU7+gJLux8WczgUo8Iq4fMRMdX0cviyu3cjTlawAly35Fag6B1eHNBxpCzNyfzSDzkcamRBp/ZII3qs+qqM7nUVn5OkBIF4RhNP2gSsol4IkUaoYjT2SjoqdtKCoiVDEYMB9i22HgKwGQHiJRBmKaQIov7ppO9Eb9PEqZNANbK62UaLRpyaAar/bHGe/F+Ac2+AK5LwDjSGJHjhCUNJqjIt2dPhIaY+HbV9vqTWSHJ5VMUEbk9D5Qm1UVRRZjq5w1RIny3CT6CukQVyytbUQLIz4JREroLhVFXLHBoLQ0KKB54ewX1ytqX511kxkP2AwSxcI8KDvY/cmuN9QDj22oAWhwK3qNWX5uC6OkxUl9QoQdb8g0a5RexYSuGdWcUJS10pPS+Ao8zENDEeswyUVmRkCYPg5zd1/pBZUDS38VbjOIKP5UdX3JWCq+KNWDIBcMizAUC/Y6mVU5gitdTGWaK0MoHDUsclfqiImCIc3DaMgpcDMw+DhqZ0EQH4SngcCngEe+b8BKtxUhJywiBRoTSDVVVouUFWeFUytW2tix05qhP1BYZQM/W/HzvV1dzeJKY2aqHC909Kb2dnePplLJ+hJHteoTM7qsjT/SsFwh3aQR8x2xGzca03McIeOZa+73f/fStYuXp+Zb8qvxdDGWrmiqkmaHS/Nj3KrQlkvv2rnj408+tLi42JpNT0yNf+Qjj379K1+urgwdSB+YnJoZ4gXdkd2pXHP51jiasWfXgRiNDZNDWhPQ60Ya4aKqVPiJlSLiTWBzP9H8UQqgN2VAa9NaXc9yKNGUnxQ/fqiZSao9zWsjnW3t6e2Kt7VUlsrl1UplmU4atYXOQSydSPX1Lp0/OzM+yZzq4aNHerv7pqenx8Yn3rlyadeRw1279r196szlWwsElIm1zFfrh4b70vnkSqV2c2om0yj0ZZr96ZaOwY4U15CWmtxvXaEJzkpFMEtLrUnnYvl0gktG2zNtt26UZq9duPrOlZnJxaEjhziewNUWqAQ0KPS6qzSVYnAu5UfVt2Km3qW6V0RIpdtXN5dKWDeURvi4mrM+La1I+xoaTWlqlKn+Nc6W1ArK6BWEVRWsqpYg9Q8DmkCsMjlp7Gt8zN0h1TP2skCMVcZ15KzmglFDp76bhSFto6qtcka117olMqq0W2CWLE4CaJCBomN8IoEqBDPEjsZJgjIlSTDqqbvKSwLj2WTz4uElykQwJC4dNl4GZ24uCSyk8COUmRCx9gsjmmvt6Kfsa+qf8YDOslkvGrFIadMsNALql+u9DADKhGoIIwL6NZKYfhVZjAKwZ590gVtKHQm0d4PKjP5DvUudu4yyQBkmJEqV+ir3r3MshifkuT40zhVCXCTEHlMxpw9J68ibGOgHLuUi1bhwHQkIi9LHf3IfVhgnw1qstoFE6cqQybwN1ftHE0fvWfGNZpwViyiBp7wTwHnk6wPwoAeifEBaZEmYAIi6vm9YvQ2KhhNCQxw4ucqmL/nrOBuKQh3PJjvJ1zlGlvTkWV7Fc3mpZXW2PjkxE2/MDeSr+wfiI/kit1XWZtO1Spq+eaFYml+mNKIJ9cJWebVZKiZqtckbE3SZS+XYmQu33n536spirBQr8OxJIpfKxlu5TYHyQPeWa9f27NnD/Txc17NvdMcf/uEffvrjT0/euvXAAw/QPqFGWepcWl5Oj42lWjtQ+kvcuT821je8U1UvznuT1l1U60s1DaLjIuVT3ln1DdIhQGCjc6IeogoZdYoLghjkMYaQjtI5APqm6lMy01NpZSKmgwuCWmLFakobqjPaoJqg/WF7Zuzq6yeXFufR+zuGhsulysTs/MTUXDOV/g/+xt984+Q7X/6Tb47dWqRwIR/9JKrrjfGZemc839/el8uslmrnzl+eHR/Lt8X3nDjQOTzQPbSno62rSn1MMwHFBto0py5qhcLi0pWzM+e+/saVl9+61ox1HjxwaLZOKx3LxFva0u2s5umao1KtmeQu05ayzsZpIxfipev1jNbrYpVksooCMxWh1tK0IVI5daYUCoufB1xieasH7gqPryi9Y8IXtCv2ztV/zUVejGYd4Gmca5Qm6hTACkBgwBAFhAm4rjkZyZa+A5rNbrBBcjHbZJyTQ3vYATY+jXjY4N9Zo0hCweoxBCldKkOB1ZAENa6N/4hhQyTNZJrqd9pfLyaZoaaBYQTgGwClO10Luvia++RxjAyrXjr/yx4e7S+jr8xpMAVHuWV0TQ3nWaUyFbzO6Ry+enTPXpChs0EDoFlHRNBwmDYgwxgi1UjWElkdLNAgRW24DOEq6C3SzbkHBYIoi8zoffQDisjPVk5ivV2ORryqFGDl64xqAYEahWHW2GBdTxn4cj/mI/iIcpsy4SgcK8dNekb0G6PsaaKcA++bUdtjqN20vTYjHCQIeRlUdekADcWklCwvlCtMFKazqLtYvMLdybkEb3RV4lzIXFh+cO/gnnzm/oH2IwOtw231HIeCG8x4pGNL7IipcOkaHUDKGNMhdKOrtZbrV26xRaatvRcuO/d1HK+1Fd88++ZsbbFeK64sZtjMz2VuaV5GbU5NTb3++uu/8Jd+urNtx4G9ozevXf7Od76zb/eOHcND75w5PTQyODA0kmltnZimAammcx1c8Lm6urowP5/Ktuda6XAzFKBoKS6U2q3SfvsEIn1YtdYAQjyY6lHBUQlgOx0tYFkpo4VmNtyU6DfFktnYakGHv2iIuANPs346Es24eM8DD5RmZnnDJdbWninVOlrS8Ux7vmvonXcuzC7Mt7fnH3r4wOJSaXJ6jpnRgd6e6jKn5Oav3Vhcmojt7Ipl9nWeuO/QseP7kp1yjg0MMQuUrtR4IKG+uJQsxFldYPa2N5Hbn44/wcpLuv3acrPQ1nqzFp9eqVQLxdgqzRH1mI1YSU7GVWqrbiqENcGkdYRpDoiobRLU2IdYURhU3OndWukmUi7yFD9SE9egdIK3mgjeAzjKbMZTmqRXlIhReocxP8FHrkGpdOGAMMAFKwaBNerLw1BHjScWUhFxfjf2pULHgI3jYEF5xmuAiJVQXq4gUi4sFwSppEkVhRlI6+MOxsMeCBqAqAcXoDFZ4+LZydWUkrxYysIraADsR02B1WlxkArmpTrm3lUMNBSkK653iGkI1hoAsaKMk0n8pXhDGJDRdIotzBz6191A7N7UNRAQoP4588UWPu4RYvmiWao2irV4qdwoVhs8Z01no0p/g/OjlCO1OUycxqtJqk9Kk+LpJHc36vyQhJQhMorR9sZo5CwgKHDv4WV7Zlu4KJVCs4VzWG5UgkIDOaD7Opzg9QQgjGvgJ+plo0cj2czBRRy8T4GA1/f2wwMpVGakQ16beVQzTOuuAb4WKqQVwFh8NH9YpQygH9h/uTCXq64OtKUODvfs7t45kInv7c3vzKfamPkpz8dqy7HifH1lcbVQ4U3Etky2sLR8/crY5M2bhYX5RrmcTaZaUdbNxMR8cXyxOrVcWk1mq7EVrjiu1JqFejHeaN2/Z/eeXSMd7dmOfPr82bN7dw4P93U99dnPfON3f2dubi6bTj3xiU/MTY2jBnOJ9pHR0dVK/erYxGq15aGDxxYL0sI2O8ev+rJWVYHfq4StUZAUTFDik6lNlV55xtDClAt6U4anfVtq2RzvhNEQFnmAizXcykpZ1Y7zuKSWLsGyVoDU5T6IRJo3bhqFaT2qxPao5cLs3Dy9sUcff/TI8fsvXbn59ulzdJvGmfRZWKLVYjQxQLerTefv5+YKp85cWFiaPXh8NDk7k51Y5KBDuquX+TcbNTQbs7NMNrH63d/W//ETh/r6B//ktTPfOvXm9FJtucGxuFRLPl9NZ5ltY3GiWiJeDDTU3BMrdfDiLSXGOOh6zShbJ0A11ooApQGCoJJFVbxmExzeF0srt2ADsyVe2sgX4xBQEbR6FNRraR/lGcbw63mag6P3XwAHh17kF+PwzmkdgYUQpXDBeS9yCo0xgRUkCChhPEMJrlQIhg7eKfRq7ajRB3EIoywCD4fAxikgC1gfx24tVMPY2NTxCQiwUPzoj7NUx0Q8y79u/wPdeDKT8si7THqhQ/o/Ke2fVhuAZnYNgJsCIhQiyX81ADQPFAsKNO/x8UB9XD04iiTbd8BTgnDSegOXsNfQ+LHVcqNQq64WqwCMNasNNiPHOaTO4EJTQMwD8ZpwmrVuSr6CqLequVKihsMlxTaMr4v15q8ndk5YwwK6kXYrVkory8SNxBvsJoiIHRP7WmMbYNaNvZzfDcF5Dp6zCCx2jlLftVIeUDknFy4w2eBgRTMUJiDd9LNWDjY5bUZogjIwcEYSW1Hi2JTQOndp6Wz1XJVRg8m5hdmutvz+HQNH+g8e7MoNZhptzdVsbbW/PdWXT7Y2yy0r1TS07PIsNCsLS7ls/srFC6dOnjp/9kJpuTnU13Zs38Fd+/bt3rlrembp/JWxsfHxNy7cuDZdKcWTXf0DF6cX9JRuLM4j7NyzT/LsGB7cNTo4MtBz8dypF7/zfGlp9pnPf/78ay/zSMXs+I1cW25mfoHxZc9AurWjY2ioOTmzzAabnr4dvJhI74uIML7U9VNsb1YkMRTbUJsH0b/Nj7QkzWDgpdlYWS2srizo8p8Gvf5qrVKjPxPnUWHOZpVSzTpvxRAgg95YKs0et2SKfUqxxNiVKwMDA90jI/jgeePVQqmuNx2zg4NDy8uFsRtTnV3t+/fvTWfY05m+eukaDQCpwJni2YVYZTm2kKwtzE+O3Zp85c13h3alDhx/aMeBWmZ5lceBU+ycbeWImGpxrbxaqown8/UjAx3tH3vggUMHXzo/sdTILtVqc5XKTKmyXKmV6NHFEqwiEGeVLtXDBNM+GulrKlsGje+KBiWOoSCRF6lGEOYlUg7FIbR6QCxUxbak3w5vORPyd2yRDawVQmsf7OOYQ+AAvlHYIx0eJ2eiZGAkmRnBoQWYwNwXRwPsG6EPvIV+rTLjTWJGnZz3QPLQQQx9dLZJn3UjgNDje/xabGw5yJjSd0OlOj8EqUAp+5rrITmTnJRkI4TT+GoB3AiAmR8bAYDHOL9OL7Pizagw0UxrOqeeajZoADJEjPM8xBjFrgOWzRqbNrgNplyL0QFaqcQKq+zIqBV5RZitR80WriXRzJIWGHhRj6l/nk9i/16ixuBC2l/Dc5c6JrATettYQ+zcHOD9buvhfTk4efDqBSO6UU6GDzARmjX6KAfL+qjvbeGoL8cdjIupB7b1/H4daD+5RoYOvi6T4R5Py1mYWReA0xsShGLG/qYdffniAnf0X+q5lTq8f2TPnsEdXelWNEh5IVng5ZdSvFxorq60LC8Vbt6anZx4+c3XmeZnO8yJ+44f3HNw1/BOHjTkHO/i1Nytm9PXbszqIOti5XolVuRK/9JUOZYaGGIKpIvtnsODPSPDfW35VjaS3rh++eNPP1ktrqwszL313e/QKvSN7kCm0vJ8R0cHHRkWA9q66j1796Wzc++cv9jfN+Jqpb3vwuQPXV22M7sECmrH5tRC3UWRVl9DDAWV1+F5iJLJTiZ7ksks+055b3h1qbg6l2xWsym6z1zGkLO1VBY89CR8UoMB1cfRkQHq4cr0JFUz39bZM9DRo4WDKmsiY7duUXHi2ez8UuHK9WuXrlxD03Zy4KGl3pZodrWlRrvzuwc69wz393Ul+3ta+oe6hvcejo3sZAFtdXGJBmmpXJxcXWxty+fa8i3pVu7uZXB1rL//2O6dn3viI9fmyy++c/prr71+7vKVebbyZTvYKNWW72aayhYtqYbs7WWjN3NdbPXWaU3afvU7iD/a39oAJQtNhVU9zeKo0goHjS+WHpBDoECt5IQF2OPvpDzDbUONc95DzrIZjUcLcJw9ajOBE1J45W4Qo/X0rtoJJ7I1mzAb+DsaS4NAWheiQgnFA8bI83oDcnM6BCXUUW7pbT2TLWzGlAGeFnet54Mgmr2R/tUcvLYrauNnSvP9mpKnZbDVYFP+QQPgJKPgYqeU6AwA+xwTbNdMNxjBxjNV7Y9ghYwqwAA4zsFHhtylJrP/tXKlUSqz9lRlFkg3SdseCaZiYUUrg40xRZ3BhG3qIgI+TZVOZraIVYjyxCHi3v/eXgZcwwZoXdDg19k3WaIxuxPiaMmzQNeXxE383wdCPX1pfGY4pPrpGNKcU99d74+6TymmcbaNg9p2zIR4Yn5uR6Zl/0D3A4Od9/fnd+ZKXeWFltoKj5LHatx9po1gpfn5iauXF26Nl1aLx48fb2vrGOwfSfePxNJtMa53vnxt4ubEO++eu3D1xskLK1fLsTkEYHZa3zTzKONTk1NTEztH+g7uHz1x4v4Du4d7OrP10vLs1E2m3ffuGV1ZWqALzRpsaXGOx9yzfX2xrr6WK1cWpmdy3QNt+Ux3ex6tyFNcqVZmYbJM4+jGoFqMGac0/WoZ3waE+v12ycf8D3XcRhJsYkinM4nWXKolx7WflcRCcXZldZk3XxLsbUgy21nUjrpUKpMhXAKuUx+4GaKtoz2Wzra1cjmqpkGrq0vl1TJt4UphZW5u+uat8YnphcmpidXVFXpKbLdYoSJRwVKxtnQzkW3vH9mz68Ce4d5MqjEzPXHzxsQrw/sXRo/f37pjtHVpcWFuOtlsXV5eKq4sd/f1d7Tm4/WVxnylvrycSC/uyrTH9nQlyntHOrMTxdpcNT5XbMyulHkQWXsCdZefcp9BkiULma/EoWxQFFxJUBtAPZXO3KgxXbJtVz6/d7wEWF/wxXMDKlS10TyEzPkEMFiOHthEGUVsAZvH9XIYlfARtON/+1Bw9UosCrtQ1TfH4ICJCrIBg1XzOGhwMzZZG0iCmiVbK6heyiz9fuWqJiN1ES4eeJKCnj+amE6/7f8BR4gUWYJzQTv5HMyLeZbzNnfTEmfjARvs1KFKZNVVZBGRBWDN55crPILHzFMiXqqtrjLSrCFDvczDq1p8ijfsUipe6GhpyTVSTBtpnMwKGjOpnHwnLBobDdXZW0GniTEzLRYZZnnm4ui/Tjy+kEEcpBL16m4MIcJAYZk6d8yBtUxhbMVZY6YgF3BiGovVL1OaynUsygDbKK3hsRl8YRzMl8YtKlQQStjmOebrvmEZFSU+NSRdx8Khozw3wOsKTcQNNlG/Ykv0aY11XpV9Adq+xmYt1JP2O7JAj5LiJmG28XBehj2HVaY7Yl2J+oP97c88fOj4/h3pylxiabwryXNUXD2zFFsqxSp1lmGbTBJNT3K4afT++/pGdmjKr8Tuz0SsUJs69ebbr7+9MD3PRH+xVB8bXyExu3Kx9q7u5WTrmRuTqMhquZilBKda5ufnv/Xtb1w5f+rBYwcfeeDI/l0jXa2sC/MWTJW1gGwXK8yNbJ5JnvjyjbHcwkJrV282VSpM3Mx39R86cvBPvvzcZ37656tLi42WQqatm5maldUSh7BszrJKzpE26OVMNgeAFm5jZ2powiKF1qNiyeBCRjLJTieKR+STLZw7q64uTOR4FLLMTXCF3XtGrrx7qqujs1is5lpb67QE9XSiluWRyFQ63bZrT2xxKVYssHmO6kCF0KmMRkuxwg2q9d07h3nVlz7Twf37RoZ3vvPuxTdfe3NxerZQ5UBNLDZTqRavTUxMvnPu4u7Bto+d2JlsoXXJfeebz7edOvPMZz6b7+noGhpcmajRzmk/qM43VejjMyEUbywlqXeV2aPtXfd94tFKS262lri8WDo9Nf/K5Zs3ViuXZhYn5guc8U9xnI3rJZCH6SxWCaVYTKlQFPQgbI3n1cIiowKpKV2rD+z5DpPtjn6Z1XF0rlivFW7bb+ZrI3j+kKBSs5utrRqREVRbrUpBbMG6umZ1Lsg001oq6s4gs+bjWLG3moUrRtsiqQ6m7nC1eEkV6JwRuawekTSl9LRVZVhZ+NI2dKGBnRcbQ6iAoFtRqFzHDR4FAkaKTF1wzm/Z7DSBBfFW7OGAGIIwLgncVzuXQwOXEFz3C94Zh43CYAIrCUQvn9U61vXp4mmvJdvwtfzLNmBqvCo9MVSrEBjn1/N0gEMyYtBEocpFmvmeGlvruGFWd/AyLGC1UO/Gl3X7baPc0lKq0vVvOu1PG6TFYZ23YMKTKremGYMU9MH8OfB9SgFaOW0SY2VQ5SQY3FCE2YrDbTxtyWY6Vs+21Hu7Ow7t3n3/SPdTg/n4wo369ZO5TL01VY0VF2M831jkWuZGbH4pVqi0pHMj/YPLDeb0W5bn51urtavnL7Pnh5sa+rnkc//Bpd7lhfnlsclLg6MDbbHkTC2xmMjzeElvLTm9vMK2HTotvOt4ZN+uxx86NjrQleR47ezUldLiYF/7kQN7B/bsinGtwsqSzsTmsrXFxfa+vrmxG9Nnzw+N7s5k86XF2Wx3z4FdQy/88Ref/PxPMbXdKK7k2tp5oquwNJfJqopRXamDGbbDsysmmeKxSJBBJY9khJRKqP1pLKUfmMyCkIsvioutXe3LYxfnpiaOPPbY8tm3B/r6de6hpbI4PTcyMpJOZVZmJ9t6umPt7XNvv9nR2c36G3FjH4WWlBlTc/ImmWrPtzI1xVQ+J8fiyVtTU0uHDx/aObLzrTffvnnlSsk2CGWziXJLo8wTM539X/rDr/3oZz42MtD/Q585dGtm5vlvfPPEow8OP3h/29GjsfGbC1MTHDWYfvv03OJCR0fXyK7dO/YeTCczLasLsbnpdK5rINdza25u9sy7598+d2GxyJm7bO9ovr2djduNSktrimfPuGOiWC6WUHbBMiE/vOVmBwlRL0oS0zNKsVBt+TQTwSakpeK2+A1M4BDFSKFZSOGvDQlMfQdsfdghIC/mKURIK3p4O0A01qsT7VZR2M7jlni4ueK0petmpOgtUC0C4+y/AB72+Kh/pHandTzSeVHjQzvNIF46XtvvGbuiyqX6mfyhBoRGzSodIsJ1Pu0raeiqaOCrc79N+uM0lbrcCu1PWeA8AKqfO9fpOTJriOpvlukKsi5GP6LRQl+QhV9NflqsYGnzyJpuYFRMw4q05CQdQJyc5A6wwJUDPjp/DnxwKaDOSYIc1PiFnA7HOJwUrQ525Dlqm6uU9wx0Ht+zf89gT0cm0VVdWrn0zv6ebGyAS4+XY9PjsZtjczduLtBdXVzp6R5kFvvyjVud/UNPPfvJjn17GRm88K+/ONjde+KhhzkVNXlr9uS75868/c7V6yX2Q3YMdDRbOxKp3Pzs4rvjM8vNDFOI5Wrp6PH7Hjx2ZNdQT187Nyo0h3hZd3DvwT2jPAzMXrTYwqyuf2BzA9q2sJjq6SlNTbblMqVc9szJ10dG9+zYtffGK9/t7x2enpq49saLXKKZ7x+moWrvyteKtEoa8mi2yg69MxRlUj+V1gO/UePLn7qErjhqVwxbZpki5wG0apbqxRaH0jLXOtfHrjLAzefS8wu8ylLd8/BDsenpS2+f5Oq3Sjy+eP0Gw5TzN8a6unt7+wcz7W0Z1iIo/fTSaIeSJNL8IuckOF5RrzILdPXa5Mpy+db45CSngnlCeHaZQQrt1cTs0uzk+L/3E58/e+HUv/ridz79w49//ie/MDQ0MLc4f+m73927d3d8oLfr/ge7JscX5uYnxm5eWD777ltvtaZTw0M7Dh97YGD3gVilwB7sh3f179zzzOGjB547fek7Z67OrC5yg1IyzqEy2sZmNp1lKqvixtPWS2XTEyaVYVlainFtUBxNL1NZToVRhTdo8DvHR/06WApBzC1sCxFuJH2gNQwjGlMj7rterjUNswEftW7wblZfBKKE28J4kdHSSWBkw1Dg+CoOAV4/JJG3+uQyQN2TwOc6epFviQfp8Q4gXHQ7Gp1pGo2r2P9Az53+PkfCmeyxCR+n/M1r4N3DDlBwOjbJiIbE1g1FTGzWk8zwMn5l5p8VYKZQmDekWeCoF2u9jADoxDBhWWGnkI7HMDnU4HZzvMLJIsPglDkGJxz10IyLF4EaRfDZYI06/Tl8b1OArgBzb+Qz5YKcYo8vcyzouFqxmK4ut8crOW4Zmypl08ujw327uuO5nbti09djN6/rufbTp06/+dri3CLzJ/Vk5k+/8/pSOfboRx97+jPPxgcH506+debk2/1dvawZXbxw9RIPHr57+dYEKhHVn+AOg0P3n+AG43M3p6fnZpdK1baerlq52je8azdzIsODnW3sbInnUw22xXACZezyhX27RnI9bbHVpeZqsaUtR+lcWVjihv0ulkPj8Y7V4lBPN11g5tz37Dt47cZl5tkzcS4irRambuR37Jq+eq5/zwG3HY63FUul5fbObnrkVU22U0lR9fRpZHwddtrfJTgVmW1wdkOdxrqx2kp9ZrqTsUiyfuGtdwe7O2cZXiTjHffdf+27zy8vL+/ZdwClOTU+wV4mVl4PHjysLZv096kDzHtWODPDEQOuYEnPLy4vL65yRR5TDEsLi6dOvnXp+jTXN7CBiBt9qGGI0ZHnUeP0zfnCr/3mH//3/+DvfvRjC/+Pf/hrp86883f/079NL2+1vHpr7EZ3sZDv7eMMdWdn7/796vgP9XQOt7clsplYTx8rdOWFMU7tkR6pdNsTu3qHOjsODY68dO7a5ZniSktstVlbLhZWl3VmmKqZzmRYJmT+l7rL/DBqTG2WzXUyi+PmnEkZV1U3qPi1+hv2/zyBS0xv9UAU79jiBB8kocco9SANEeSMcwptzmvwtaBN5a5XKeuIIhbR3xllxNN7gOLpI06ymcGP8MQhdIrCHhlMATk//hsN0CMdO/f1BFhtXsc6dFrVYUaKVV9m/HUPhqaAdJVD+KcUJVtJLwSQoPARB0tA5Tf+NVeuH3YOs4pAj19FgRk4bndgDUAjQ9bXuCaOqz65pBY0Z30gY98R7wNzHYpYa7pJnUymRuGnTMWABO0CdfLLcq8zw6fMnwNbpIA6IjoIRmvPSm+djV6VcrJWZQ2xtbmaKC92JEoHOwY/dXT4vl0DCa7znL8em5yuTl6bePfC1MVL9cXlvmRH73DPSiP2pT85c99H9/7Yj/zIvqPHagsLF7/73dmxMS7Lv3zr0vjEzGqx0tHT/8Bjj+4vVpeXWSFqjO7aObJ738un3r1w5cL4IufLY9lM4tbcbLFW2jHav1Lo7cx2pOKtdO1z3CTeqO3ZuSPXkdPZq1q5BY2WTqIsJ26OvfXW27t37T18+HDnnt1tXZ0X33l3eWZiuatzpLezVFhZnh1v72gtV2P55mB/X/vs9Qv5roFsZ08qkyqVVmnteLqXUkifhgnbDenjGgOQqgXMGsVZNOX6BKn+WG21MnGturqYT8Uvnz29e3BgZmqyXi33j+64/sILTBT19w/Ozs7fHL/F2OLQoSOdwyPwaTC3MjNXLLH1h6lT3YHB/1yGa+KGRnZkCqVm/+BKrrU7m+t4+9S55198nbl3ag9BszCekJ9mjgvu+tr+h1/+p//ov/ov/pf/5Zf+L7/03/zX//C/+ff/o1/cdXDv4uLC6mop39mIHTyye8/+ttdfZxJp/PK1S5XK8SOHeh9s5bqkDId9O1piDLRWS52pFAOGzkrf6o2xm2evTxcb8f6hwe6+cimly2PUyWMww+Q5V3klaQwYBLjOraqu6YsgfaQrpDS8CnO6T9it8BQ45+Do8ekAY2MqXdrT9JERAjutIE0VKgcHGF4fRxgFHCy30Dia23xFSFCSWdG7DeXtncTGRXw9ncMHTiF/kD7dHLB2DiDqHTqM87wZ71yDBGWERs6grHWtEFlm43rN/mtlDT1OMdIOoa24iUMgkMLyxvHXNmGdbGGTOBqd8YX6AS3c7U6+EBSdp0ROeKl++XA57fxSZND7NhRA0ygQw6h1iYbiYLyoYfpz86GkANcbsCYmPSNNU4tXi23plgH29CxXn3zs+DMn9h/hLoLyQmx+jFmUllph5eq5icsXJy9da23E9+4/woju5bfe+darY7/w13/ivsc/ku7rG7t0fmb8Zlc6OTTUN37tJpN/jz76xJFjJ9KDwzcuXfmT5759c3aWEvLkoWdfeu31r/zpi9dmFU92LMzO0O2NdXZ3cv7ryMED7KsprSwscylmx8DQYD/73Bdvji3MT9NSdXV1tJfa4rn8oYdOMBPzygsvz09PfZLHWDra9+wcYVs9D68fP/HwfUf2v/bGKZ4PeODRjyJ22579uZXYrZtjo2yEaG9r7+igQLI9SDNCijyGmrNWIA0TfJjAhDRWL8XKS7HVWc64pSsrhbnxmdmpXLxlZWayzjJyW9v0xCST6Tt27bx48dLVa9cefvjRHcePxQrl4sIyhxWItQ5csjiQ4ZBzmol1ukLzszOxZIaVWs6vcXHe7t27l1fJD678SVy5fG1yapKaQH2Y4wBZpbizIztfYNGi/uWvfP0nfvFn/qP/4Mf/x1/+vd//3S/+3M//XN/ICF336cnZ+vT80NCO3uMPf6p/x5V3Tn/n936XM3TDb7/xyMefHNyzg4XveNtKrqs/tnAzna8cGx7q/QvPHjx8+MuvnXrlwtXxyYmu4X20huwSoeniFq8i11awThreKW11U2kiwLQYwAYV5mm2xluP0HHwBC6VsXpuQRDmILyjcOFKP/Bf7YQz+MIAh0DoEPq6za88mrcojZChjo7ibwO7oOGl/DLvIWbNk/DWdjonH30P4BqMANY8RSDnP4LYAjTWJgEJpK48itgMClh6140PqO02UogklBNCaR3mqONuBZ/ibxVDHGgGGBeqDbD6wkkxri7hxZg0e0HZX+pWm+3IsVQ+8WVUgKI3OIh/RG5J4ASMIJ38UcSfwx9ICmj1iK4e1zqRDzzs26hmUs3hrrb9A12PH3p0R7ralyhXpyZTK5Mti5PFyRvFuemr589Tqu47eLR7cPD022e+892Xdu458l////5G7MiJ2NWxW29foiPcm++olpcqvA+za+jJv/x5jn3EJqa+/od/9K9//4+ujcUeeHjomU9/upaIvXnm1NhsrLM9NtzbNbFY4vjIoUOHnnzmGaaz27PJ0vxUvqNtuLu1PZctF1Zml2dbM3HeTSyVCtdvXHvz5ERrvn10ZMf+Rx7dNbzjpZdeevXFFz/2qWeSfb3dsZZHHn3otVdf3bn/4KOf+eSlN99ampssN1uuf/sb933i2dTK+NT0ZG+9nuvq5DZXNohwBa5VzHUpHO3+S9+o78+dFquxlbnq3DiPtmealevnTnMj88COkVdffGXXrl0LxZVarKV3ZMdbb7+zd+/++z/3+Rhz+9dvcUhtYWmJwwq5PCJ3sN+fkNhLrXmger2/r48pqKUVtsvxpGOaTRvt7e3d3aTu4NjNScTg5E42k2Z7aJENQUulR3ftzTcKX/3ac4ODnU8+/cRP/Ni5N9549/e/9Lt/7W/8jSybo6rNq5evnr1waWeplm9rZwX43/n7f/93f+1/f+PkxWLx6w8//ODQjqH88HAslYl1dMdq86uFRr598IkT+4ZGhp68PnV1rvRHr5xZLVdWl1fS+Vwym6FgaLePbdJzCST9EGgxIbB4jeEBT7mhkfB4r/IcsAEvtqEWkkay4BwSPMJIa7BAuT7bNltFvJ7GBfSBfjeHaFJI9W0w4Deng28AXAlkbK7Irjdy8kyj4TnYOVkDhja33jipIKzyikkXfNOTV/tgfHFgRs+JwtcAiSsAIi3buj1XIkca6DV3yUFyjrmzCoA4NrmkaR+WG3S8wJ5m5cpgKReFoS1SDCth6MRSIDIwk7OM6Nzck0XZ483xdh+Cd/HAf5Qh+DtnAgf8utmubQOj3FEYCUSyWmhWEh29ZLCnbbSyvYZiSkzUTpiIqAHJ7X5ct8d9b0e33o1pfPqqyjW7w8EkNNkkOtdVa8CGRNqHotjEsszwVXnCp8FSQLJe7krHD7YnjvXnUDN9iVpHrZAuLTYXZyrTEyu3bi5Njj+wd39q527mk9949eTY9MzTP/Jjxx7+aKxv5PTv/gFDTxYSGGeix7p6+3p33hcb3h07P3vp5Zf+8E+/9vrpsZZM7BOfOvjoQ4+M7tj5x1/+ytwUe35iC8uxpcZCPNde17b+uTffeG12bqKXo62x2qHR/p6Ogf6etvY0dxx0xwrzTOqQmIcOyty4cePSufOn33j72JGjT//wj7A6tTo720oat7XVFxdO3HdwamZu8fTrg23ZCydf3rFnT2eiZfrNF3ceePDyxevThTmO08Zyed1HqLMsbO/LoOvwTeK4DHSlSluY1Y2ipWQvbLGxulBamFydn5iYunn1/OnPfuqZ06+9yhxVYWHp+vUbT33ik4WV1Y889jgb+BfPvFsucxxSu6Db2tvKRZ6w15ZELu90uwm5wj+Xy3KtRLati1mp3GLp+vjs5bHpsbFJpqfm5+cg5zgBI5UdQ4Ns8ZyfnSvPTFwcG/8LTz+ejZfOn7l44uheHhb+2tff3Xdf9vU339q5sDJ04tE9H/3k5JtvfvNbzw/sGHzs6SeXL134Cz/9c888M3fuzZOnXj490Xdz94Fdzfy5voMHcjv35nvThcJUW7Ly8I6BB0f7JostTz7x6MtnLsBtbPzWio6NtfAMWUsuz+5BrrbQyrmUCWMDXmHW/fDcDKYEM12mgrXeSOlYlXdoX5g34Nd7kobxvgRID8koa3BCpaFXQLnrOTepeKYYIHbZ50TClzEIPk6MUBh1UK3uUiXE2oIhKJD8USLuyLhaD09CUikyQEGEaeJliMYuCrtgWFwN9qUS84hhqx6Jov0a+MFo44Yo3Wyd9eilmlSaRabdN7ppU2s1IJDDJQHLTlrKgsj42LAAEdmWo4Gw2MlwLNBHOpBBswT4ZcoGpc+xAg4M1tnIgVQ1Nomzuiu1n2yWGB0QIhRMM+kxVC6ksNl/ij3bDfXCJLdzpRJZlrS4KR154ajYbDQkGxLCS4BippwkYRVrYYmThOTPZbQjcInthAd2gFgTHffFI6C+GplYZgsjnDDsh2RjEyefUZaWZBaAGkj1Et2f+IqnjPxRLVASpKteAuCdKMFuHzF9FdZgUIsuBHlXcjpuYmIl24QQR6QwQonzfg3ruZzq58R2LYVCZ5xGKmpjc7LG3F0yUY3F9VgtFySw+YdnJ0plZh/S5dVcrdadjA3mU4dHuh85PHTfnqFGcTZWmM3UC2lebKjW6qu1ge4dA/uOUFXmTp86df5qMt/1zDOf7zhwZPz8pa/96r8c3bHj0IH93/n2N3t6uj73H/x19gZTKhqnx57/gxd+57f/YKkZa+2O7T+4b8fIILPPy2O3Zi/cbHJ4oBY7fGR3oqP7u6+fTCXZ1t/a29PJFnuWinraMjkiUFymBFFktMOgvzffmr514eKVK1c625kH6uo52t2orS4sLCyPXaMEF1bLrZ3dilq5mO5q29GVGx87P7xv36HulubSDV6RnJ2eozju273/61/6veF8LMX2fB7KaOabSWbX2eEQVHedQNGx5yDjCoUVHjtT3i3Nzk2OJctLzerKay9+6yd/7PNvvvoaR3m5v/Tm2MQjDz5x48qNqZmJmZu3urp7bJIn3ZFMs9q7PDndN9yfy2VSrSkWORZWl8uNSq6Ra8Y7eCNnZWVleYXngmPx1s6j9x0Y2b1nam6lVK8uFZdvTtyYnp1mRb67o6Ovv3fn4QMTp09997W3n3ns2JNPPj49OXPixIkDR7/1h18d37m/2JbvKl8cy+xMDh499mRb9l9/9Q9ePv3qf/RzP9uyXDl3YWJk5wNPfOInG7M3v/anX8x2pydnJ4bnp7pGDuZ6d+T7E7HZxdVKaU9XX1db+yNPjS490HPu6vV3L924MLFwfaF6c5VL+hLVTK6sOd8aZZyXl+MxFtIriWwvpYt6STHW7LMuDEFDWF3ZUJpdEd+mkFvFVPl3nhxAlWCiTP1I+LOlELsFpCqjCWiqpTq4WpbQHANZhDpAO2iKQn8SQ0YihUbVTvMRVt2AUWyazUCXUgM1rQG5/GgenQkNuq5Si8YKfyFH+ooiEhP3RS5Ne9i1mEQCGAI6FqwwWVqoukMcGGITWn18nZONAOxyPmQLydUKWXBBkGFBJWGEt7iEtJZU8FcKECu7yB43tQeKJ5offSrWGkkZLA5wBA4NmBC03zA1sUiCINrkMklOp0ACgLTeJSTgnVJ2TEgUkg+lpLdW+Bc2cNEL4OBryp2A1mK9TgRvISBLvTUJQ2HhEMhm6SMCiepT0bPYEpBaloO8mPEA6pM/ZwC0NZb4qCGSMSfzYgdIlAha/tZSefAnrWJpzbhLCfHBGkoWwrLLHEnoCLD+Hqdn35JY1Yk+joTrndgyy3yNIgvybdwfs7DYnWjuG+p5eP+ux/bv3N3Xmqmv1JYnEg02Ji7UVhbZ8Q5lvn8gdnN89uQ7L738fG9f3+EjDwwdOcFuxS/96m8yY/D005+4MXbtl/+//5jp+7/0N//D2PJyrKdn8pVXXn3+zW//0Xc4HTy6fyjXw4WdE/ffd3THQP9X/uBP2ZnA7Wk//qmn5mPx50+e5rHfbCY/ODCwPD+TirenWvs6srnuPDP/qWqhMC19WOQSnc7OzpEdO9vzHefZTvrWGTTqtWvnHnnsEU4ApHp6J946/Qdf+tLjWB9+IDY7vTQ+1pNNXHjxW52dXTOzs8M79/SN7p27dSkxN7mjPT72zsv7ktxQmmvpHuFqcnb2+HwmAXVJQphR3PFQXZ5L5WLl1fnK0nxvV+rX/8mv/tjnnq2XVjjfuLpS2L136NDBI4Vi7erVq7t2D3d1smWnOTU5sbCwmEpnu3sH8x3txaWVK1cuzS/PZ9tyo3t3jY4MM/VUKldbc535VhYFarH51bnCMueBpxdWJ+eWj953aGpmGobT00u0EAuLK9fGbt3I5/q5JzXV8s3vvLCrv+0zn3qErdoPPvTI9cnv/M7vPdfbP3ps//Hy1WuZ7s7u3bs/9vGn/o/f+o1/+F/9o5/8zI8Pjez9yu9/dWfv2Y9/9MEf+g//Vmzh+tl335y5enV1qdo+sJydmu3q721tz5YnZ5Px9kxrV1emdWh/34nRgUvTK989O/Hy5ckz0yWugWdfEEqDRhPdRg8DpUoikW4cj4hWNJX4MPXcL7XJFHKUaj1FaDPKoL7xo9IcQal+qakJqiRW/qLG2aiV4N1QwLsi1ZqBDhp4OxTVPwQlu8JfR77mcT3ktARftILUIP9tY0vQPKjFuCPjo7jtOQDPRoFtMoSLoY/OF8FptPiqfdDhFV3abg2CGlGnPWXXoTW1nxj5dfljqY3VIQEwRquP0aq9BYYTTg4TJTYfW3zMi46lIY8zjrP74rqFH0MZ87WwyBswgTAWPlROgKgYUXg7zu+JvydM3jOUe0nAWn+NPM0x+8YonSOh1FHWb9Q7jldT3AKcy3NBQWqlUF3lsubEcD730YcPHh3q2jfY35NoZIpL9ZXpUmWRJ02SmWa1sFSYn24pFBposhvj89fHucjz409/on14lO7R83/yp2NTi8cffoIpjn/xa//i0rlpbmf47/7RX9Mm/VIxdvXa+PUbJ994gzvd9h0+MLYwwQ1S9913X09f72tvvMGFDAwHH37iwRtLi6dujo/PzbPR5TB7V9rajh470NWeHe3t2jvQs3+wu7stE6usVJdnr147f/Kt13kSoLW19bFHHjt2hHtu9s3PTg8O9Xzj299449T5xz/ykb17D66srP7+7//+U+Njx596sqOt/cI7pwrLS+xSZmR9/vSZnavVckt6dmll7/4DZy++29HW1to3xGwTC1dptkrrIRo0vzr++lEdQq9xY3mMqzvZEnnz6sWRjvQ3v/L7H3nw+I6BnjdeeSmTyuy6b19fX/9qpTq/NPWRpx7t2bOTelgplLJdXbt4jiCTY0jJLfy/86UvjuwcPXT48O49O3NdvFWpzmYqk1ucW+IgGNP/eYY/nb0DzVT7fCHfuXL2/JXB/oEdO3bMzS2xWtzami4WyvOFYjpZXqg1TvQkTp5+5+EH9+84OFwslY8/sPdb377yO7/zOwf/k0PqMnPaf2l5365df/fv/O1//F/8V//Nf/sv/+rP/uiP/fhPvfj1537ln//mz/7FZwd2dh759GfZ0HVlYvHm1evpthU6ud3NLo5/c/a2vDI/NzuxUKjNFJsXp5YvvHvr3KWpxWQXr8pUMvm6ThFxqJRTdCxocwcw3Rp1/DdXYKeUqJxqW62S3qaau1pAjfM0Do5iojUFvPXETAWYBhMmNJ4ShAvaY+4V4Dh7bhYybUgogTWNsq+1K5420FfOjgcXZQdoBAC0RmtQyHXt15Gt2UMuZIWpV23jsi4pzE1bazVAAeGKL0ERzg7egIEMjCNeR29RohlwrJwvCG5vXDNCs4EvKPHFN8rcIR23DV/Iosa7eiQYYIc3pECPcfi7+nq/DuC7uXzfFcMPjTgRYy6bq10YqbDBRc84sKmbLkC2q724vLI6N5ltNNpjsR3t+QcPHXzk8I69XZURXgvRZd+riZZCIsGET2F5YXJldaErn+GmnfGJm9fPneNRlyP793btfZaTWpPXxl47fTbX3vf0x545e/Hy73zpDy9dinHJzT/4z3+mZXSnHvstl7jp7Uv/+rcLS7XDR+9jfXN+aWXf/Qe4D2d8fLy7q+fm1cnFwmouW/zWyXMLMTbHZ9g6zGmzQ/sPsFiU41l35FhZvb66uJCMdeTYAR8bGhj+whd+7OGHH3n11Vfffvv07NT8Ls79ZlJd3W0/+hd+4qXX3jh/4VIznh4YGnr22We/+SdfbimvHnvgvjyvdHUn2Yw/y2b7lWI6nmjv6a3xePpMvj1Wmb58ZoT5vlZNcMdolLSwpZfe2DFnhYkzjmXWBZj0z/a3nX3uj3d0Zq6fO8mo6KGPPPTOay9yQPr+Y8e49HBubqKrf2jv/pHWnbsqS4srJe6YKBMy577Y4TM7OctRh5/4mZ/t7e1N5loXp6beOfki11l3d3b1jwyN7t+f5JqgRHp2ntfMJirNVL574NixnSOju29NzCwsLjPftbQojpRATmrBoWV55fxcvX7yxqMPn91xYOSRx5/4H/7J//TMs8euXrpB4/eTP/aTMdKrzsTVfFtH/pd+6T/7J//9//wP/vEf/a2fmf/Fn/+Fy++8+uu/8St7D/U/8+mnux88sXf3fTtvzUzOLd26enVhLrP3yKEMbVZrpqOts687vqMls/9YxyMfb/2pSvrFizPXC42LU0tjs8wWrVR490NTJdx+pEnnaPEOqoyhXKVW9TEaD0TpHex8eSXgKIUMPQJj4z8IQRamgK0MeHNaJ9hWhN8TzoXilP6GBpCImADi78gcwNcnRRT2yGAROGAd/nguIWLDbxBPJnekYXVJg7r9tLs48AXLJIT0NSs36hRqfAaLKFsvAcj3NN6vo8SvMwQRNR4JGR0es+oLDV/HxNHw3RyokGH+RiPs/TovzsnDUUBBbMF4c1BrGM9Nfs14YI3oBxjSrnYbiTLtwzhA63SaEeXiGsYAlZ5kvJfnCQvLpbGxk9dPj3+38ezDo43Rjr0D/bQXPGbSUl3lHZLY0lxvR666sjg+dn1+fHzf6OjArr26mWxm/pVvvXBrcu7YI08cOHr/7/z+H/+vv/LCUiw21Br7iS+w8fBZponYod+cX/jdf/Xbhfnak0999Mr5yXOXrnz+J37ozdNvcj3aJz761Ne+9GXuU+DqqDdPnuvpyiwslMu16sMPPcRpo4X52U6mpbo4h9DkjrTxqXH6/q3pZmsueeDwHup+OpM/8eCjZ7Nnr1y6urJcOnz44PTC1K49u376F//Kd77xredfeumTT3+su6fn85///MmXns/Fqv2dnW+9+mpfd0+K4+rV6vili7mWBi+nXD/z+uHjJ85cPtvf3VXSyzasXOd4o4WrEWkFGDTZPADpV2brZzpRYgU2G68U55fYm3R4dOj5r/7RSF93b3ennjsuV6BOpXndi/fYr5XZytPR3pHrY8O0nsiulVId+Z2H9pdXiuwOunzxErM5Pe2d+/ftO7Bvf3awd3l5LsvyWVe+d3i0o5sHIBfOX7t2c+qthx57gno7NExjcPT8+fMzMwUKXSafrbbEDx/Zn1ycbC6tfOVPnzvxyH0jh/cMDg2/8to7H3viibMn33330Lv766X23UM9+Y6XX31l/459f/M//ju1wv/6a7/93ambU3/vP/u7f3t312uvP/flL39l34XLjz3xyeQ+JuV27FheWlgYZ0fR/iP3JStlBijlanM1lqxk2rmlOxdv+8j9u9rGec6gvFJINavpCoc93Vwjp4bRMVTnsLK4Cmedfs0N4SSMauIdVUVX3ZwnV88Ms+YXqxtvOEr/BXCw82VhSqjNeE/wPoCoYAFzC0G3BjkNh6SKswTW/01qBHk8Ew974HbnAKIxARZzU6MO77Qqs/6MWlkK1GwQMwA2EpBAWpnhzlldxA8lXtwXJs6Adzyd1fEEBvDiBqRhI4YVJ29guMHYijL3RGg2jfzHlTQC6cmc3yifzUGYJBJDTJwlJHJtr0NucHLEIeH7/IWn8wmwVgDfJ7MPyZseX1CzqT6s3eLJ7CZraNWubKpWXYovzsdrxXRtlT2AvfncSFtLV2W2q9JsLSaaxdXl6QlugOMi4o7uttji4s1z5wuLi4d278lw1HZi6p0XXjlz6mzf4K7P/9hPT80v/6P/+r97/pVFsvaBPbEH7j/0URTWCkqqZfLMu2fOnLl17eZf+fmfGJ9ammCH/qeffev0qXQuy82g9N+Zw3nj1dPsdj9+bM9kS+JW9WotnV1eLbCHLFav9LTvWplfnKtXh7vaD+7b31Ibmpu+MTV145//i9/MtWWPP3D/Qw+deOixx5lXuXbxCicJdu0dvjk9lb569WM//Lkde/eO37oxsoNnVMqPP/7o9Ytn21MtRVq7VOrxhx/61jdfKMwtLE3c7B3smbx09tiBvYs3ryz2D7BO0kzwpBiX9ujWdDYwKKtY+FfLyQWpzXhr4urbb+8a6L78+tmhjvzb33muJ5cc7urg8obpa9fa+vq6u7oXl2aqiVSVO287+zJtuWRXJ1nQWOZdy2I8lc3lWYHupmlgzqdcKOXiKQZXE+Mz5Rs3S4n6lO5GWm1JcpPpSNfgKBtDu/qGvvWNb3J/EZNUff09Y2O5zk415ctM98Rql27e+kvPPj2QqY2dfe3l197ctTTzw5//wsv/8J++/sbJT3/sUzyXNrpzuGX8VtvewcceePBf/csvPvHoJ/7qX//35+f+x+deuND4f/6//vbf+vknf+hH9557+9vf/vbSwtcfeqTQ2tGdP3qwa99Qy2svX3v3XTa2tu8czY/059k7Ozb96mvf/vaZK//m9XPLqe5m20h+aE9732gqk+XsAi+O8/SyrTopyVwRd7UGCwILGyqQoDZt0ww4Mk/sPNpXfMCbcdwUDlb9mNkAO1JDrtNpIfk9+3XhuuCctt/M2tE4vIN9dLZMH78NdDOrAOPCi36D5Uub/YepzuZayjM5SzqRfmt6mpe8LJ9c2E4UL5yTL8rZYSDwAF6cAQngvl6hbwkw6yQy3fXJ0qjuAcW4tkFNghkI3tMggwsxCjjBvHgwAY6UjffkugWBcVhXmrcg+sFEtbAlq6QVdQ3NdW6bZc5MvZZplEs3bu7qyhzc2XOAJcjBrqFuJqJb6RgnFycqs5PFW1dbU4negS41HLOz1bGbr730Ipro2NH7Yx2ds2+8/a0//ebi7ELfwEhP/+g//43f5iGXqdk6Mw3sKf/oRx8/vH/P3t27efN9euzy1PitM6dO/8Wf/hneCPrmN76xb//9p86eKTaLz37iWWZHZqbnUpWWq7fqnT3xvQcPvPHiS6Vaff/RfexPZoJosKvz6uWLbelEobszPjrctWtHZ3tbtdbD80IPPvoYx1q/9eJ3r9wc+/SnP/vTv/gLixPTp06/3Uw2uvt79jzyUCyb2/vg/XsfOVGZuME1pr1DffHG7nip9Pjjj7BPv3O8o7O9nasaFmem2rPcZ1sfO3+uMDM5fvkCd0ZXYunWrqEYk/2pVtUPFhAZJTNO1lC5snrjal97681L54e6O9/6xksLNyee/vQnbl6/yD08bGjjDFqG7W1dnWyH4/2X3qH+GOMJWg5eLMv3dfMwU1EPN/L+eyadG967p8Ki+TJvH8Ras7mefDbXlT3R1sqbGVdvjL/97oV3zn+Hy5+50WHnrtEiFzYnMsPDw2/E315YrlCqdWdHujlXKP7OH37t7/47X/jCT/70yy9/o62/a3p56ad+7tPPffW5ZCrDeeDpyanBVG9lejbd3/OXf+EX/x//+X/bnht6/KNPJxOvnjp/6Y+/+lxvZ/yZTzx+9NB987PF82+/W643Bi+eO/bI0c7dO7OJiWqptHD+fCJ/vX1kZNeBXX/t6P6fKsf/XqH55pWZ77x95c2LN2/ceLccy3Z093O50Xy9xAlpGebPXMXTgqrr/NrigFJR1dzhjHTrD/XOVXCco/BmatVw6Z41vbSZxmNE/AEYSRhoG0BnKDshGK4BEHLgtkkG8BsUGiS3awC2ZGRiuITQBCZT/6y02uZ8QmY7ivp/SKr5IOVL0Jw6QPbQwBzQf11YfH2WhITBr8Pz3dJ4ze5csTLicA2AU/18XWvh2EG2gX/U6qQC46SC2GOiZPcW9kF44N7y/yC4kcrspqcIJJtc3pLMcLdXg02OlXy99Lkf+dS+3uy+gbaeVp51XqlVFktL00vL8+mF+US51MnKbWubJiwuXXz95ZcunDn7+MOPHNh9OFZpeeFf/e5rL7xOIvR296KGvvZrf9zPxcztPa3VxR1o6dGRtnw7W35v3hhfmL61e3SwWCh9+lPPMg/54ksvjwzvOH3u3UKtfuKJE8zw8BLkQH//F3/9O93tsSPHj3/7hRdnl3hEhqMAS1xYdv369dW53In7D+3fObyjr4ep9jfefqu4ONPamuzozB04tG//8UM8HDk9PXl1fCzblmcL/Mf2/BAXpOW72irLi0x7x3o6uSU03ckFybvq49fYsz4+eWPvIK/W7Hrjtdc+9cznvvzHX+lqS1RWiwOdnZxoqxQrM7dudA3uriSmxCHfG8vzkhcLxrQA1EQGA/Ha5FRLuTQ9dq2/LXfj5Jmr5y8e37Pv1Osn9+0YGuM4NPttdo3SP78yNTVbKH7kR3+UUXl5daW8uJjMsK2pPZHJMq+Uak0P7hpZmlvWYsTMIoMA1Ga1zE0L1bZOFlqy7d1swunm0oh819yl67RKF4cqzZNvv3Pk2PGf/dmfZb/rP/3f/tf5uVJrPrVa4JWwWEcs9sXf+8PRv/4Xd+zYybVxy9XS4vLqj//0z7349eefferpf/7Pf/3v/Kd/s6eze+7qzZ69h/+T//Tv/f2/919+7WsvP/Oxj3Z0Zr/2jdd+8S996pvPfZftR5wczqRLjz3x+PnrF/6XX/7a8Yfu/9iPfCHDGwasIKyuLN+60Voq1XO0T6mhjr7P3r/j2Y8+ulRNn7o0+e1XTr9+6tzVS2cyu0a58oXCbLtxUDHrta009e2q9pa1gMJ2G4UgV6f+I56/75WUeXUWWZk/JMaA0lDISWKEsfcSCh+mSRR2sQm25eCwweDHaVVH51wVkvHi6400Kx1uNQOa5/Fmc6fbOeERbrB1X8/HJ6/DOAJCBMAjxM67k8TDvoMPYNcIBh/X64cMMRzKtQFOKh+ED5SAMI65C9qJ5zGOEqsjY+7bGUeGq+PprU5C98WJcPk6VwCH974chq83Js663HEC3O3Xhwhn5xeMQ94VKy/YZgBVqzvOqlUeaOD5xkeOH/sLn/7E8d2Dhwc7kku3ClffqU1cmj7z+vkXvr54+WyqsJLr7tO50On5s1/5+v/43/8PJ18++bM//rP3nfgIY4nXn3vptRdO7hw9MNC/88r1qW9/98aDDx+7/8Enbk3Oc6HP/Q88xLMlr7x28gaKbXb22P3H2YQzOjramu+4cuVaIp65NnajUKyM7t5JTejq6iJLXvzOi309sdEdmiK/PFXgXUJem7587frpM2eOHj3y7Gc/AxOu57l49cr5q5dXa5VsZztHKybnZ19487WzVy+l21qfePqpTzz7zA4uB2WvX7PacfRgor1ttV5eLizqrFYnl95kY/lkYqivc7i/tb31/JXzBw4fYJqCXZh79uyYnqtPTc4lE1lNk5ZihYWVanH12uXLN65eLS8vxiqlJn/WX2KrLD1YLsi8dvHC7PhkrFifHBvnmdOJq7da47mpiblb16e5wTMVz3z32y9MTkx/5OlP1heWb1y8uMIdzrk0x0KWl+b1tgsDhUyytb9ncPfIkYeOP/bJJx/8xJM77z/SOjqQ6G5Pt7X1DAyxYsxp4etjNy9fvYImffLJJymfHAl+5eXXfvmXf5mC8cTjH+3r61xdrcazac4rsAX5ykLzj/7439z/wMNTM/OtbZ3nLl3l/t1nPvO5K2M397HH6cw5DlugkRpLhWq19n/9v/3fU7nUr3/lxaVi5YHHjr/06hvsJiWDPvPJz15499yffPVP7jt4+Bd+/i/zgM8//8f/0+vfeCHZ1Z2LJ8+89uqNc6fSxYW+bD0xfTkzfSkzfqavdPNz9w3//b/8I//xT37m6aO7WBkpFQmCXcYNdgnxpdVkn6j0D71P1+uMlGxX2jd/IyTrQBi6muK9OGdndU6uCkQxjsbjvWbw1VwE5swvHl3tdr6cFS8A3jVqBen5uECdx7v6Oo+bv2sjABd8lKnHeCBw1SZ6HulV6+vGYZRc2iEyQN1+hiURLjqWEEY4Cjie7us1L1aHIa1A2pSSw6H9gwbJpTJfl1UbrCBJLTExHUuVdWnnvhBHRNsWdDI4Zy9PlDpKAH6DdQOlC3QzjcN4vAei3n/AYTog2WyeesgzL7m27mxLstioMWdSmakVMtUzKzd25hodPNizPDMy2PP4iftVTKYXmTFcPnX6937v927dnHj80Y8+xZU+Xd3Fm5NXLl75+te+xV6/d89cbO3obCRyX/ipxyv19G998auHjx0YGB769ne/w3GsA3tHd+3Z/ehjD1449fpgTw83zxw8fB+T6idPvYq+7h9mc2PPzt275ucWnv/m8yODI29cHPvkJx967dwVSi1LVqzZ9o1yb/3OfGvrFa7QuV5ZWZhZmpqqFZe7cpn9OwcP7N91cGR/e08bJws5S2VvUFey6dYYl/jnc5Ub19K7d3Y2Ku+cOZOdGT9waH8sn9brK5UCBw13Hdo7n0pev361v7+P1TH20hRXY8Uymxeb7OBsa22ZLRS48oxtUjQDjWpFz1zQLpRX442cbjbkCUomrW6Oj3Z3zU9MzU3O9nb0JUqFJZ6cLxXYU8sRteee+0aiu/Njn3x4YWqaR8JGhwZ5AKMlo8eA565ee+f6GPq9u39ocWKitb23rbM7zcbWbKaRzbQND+gexZVVXtNmf25PKrd4Fm184cbE9DvnLz/1iU/19g+tPP/iq2++9aXf/9Nde0bo1bE71Y3kSbr797A2wJm8d44cvf/V02+lcvm33z370ROPHj52/N03X5uZnV+YXYzzeE2aq0YrFy7N/oN/+I9+5Vd+9esvnPvEo93H9u+Ym1/ef/+es2fP/eIv/JUv/t7v/sZv/Msf/4s//OnPfvbcmSsL84snv/78g5//zOPJxDe+9Y2Waqmrv7/nvmNcxx3LcQPejemJ8da+XT/6+NFnP/apf3H27FdOvnP23IVkKpvubGWrVaFY5sUpN+GAnKr5qCDmxO7MUO/uUC3Ab7tKuh0+9PIease8vwfNncXmTql8rLc9B7BllEgpDYeiahRVq/aMsz+m/WnnKDjc1qNjYGSHHv9y7R0MnaLn6wCXOuCjRkEYJSpbvEODwsfJa3PfnQfp8O4LAZ1tPFnXX0L5BQDf99+QSBAjtUMCw8cJFnyjVhNnS+/GxFzCfIyycjydR4/fwAfrGpPNbj+gmHhhvtzZ1ZvItRXL5aUCO38Ks5XFsdL018+/+pn79wzu56LlvqFHTiiFr48tT860Z/N//Cv/7NyF86O7d/3UT37ywIkTuIydPP21P/rKd751s7+Xiy0T9x0/tlQqHhgYvHpz4o23zj36kUd27d33/IsvLK2y12Dp333mU098/InJc+909/RNTU9k8nluP7h8fWxk5whnxJeb7Ohp9Pf3v/j886jaYrnQnmeMzFHf5N6R3hstzUqudZWebbU6w2QLG+grc0vLs8lqbedA79H9e/btHBziUuOu1t17hnUbIf2ZOC9TNmuVYorDxuVC+uC+ysXz6Z27jj/95Itf/qMb18899diDKc3fNJZnJ9PlKpp4bn52564dU+NzK8u8VqQHq+fmuXEt0dradn2yzD5GDh0vTE/3LS7lmJfh6RUWhZPsiU/Fyg0ufViZmekcHHj97DneWjm0Y5htPIXicirBLHjHjVtT45OVpx89nN9zgHNnHT29XERRm5woXV9mtW18jJWSuepqoTWZHNy7n41GzMdWq0X22KTb04V6aWl5uTvbyh7QUpXpsZWR0dGf+4s//92XX/3Kn3zr5sTsM5/+HNteeWo7kcy+/vrblDj2Zi7O61gAb0/tHB0lZ199+bUv/OWfYt9XPJ27fmvyyP7VwV17BkZGWTm/evX60fvvKxVWOzu6n3vut+eXKj/5Uz9z4PCbv/qb/2ZkoLO6Ur14+fqB0f03b0z+4i/+1ZdOvvRP/uff+0u/8My+PUdbYum5uZmv/spvfOqZpz/17Gf/6Hd+k3NeJ25d7+jt73z0o62Z9t1c+tIWm526/Mbk2yO7Txw/epQXoC9cutxYWmEPKUegGd5ZNQ3r3h1XlmhldHBYB9dYGX4dRzAYUO67zs0s5h58AlfpMg+G0Gaf6zGwWJNjvdN2ti1FiiLFM9RpABoBRJ0dXzBRszmw4GoHiGziknUAbbxU4ytabHY8DY1v3KO8QhgyQNcShLggXbC6ED2AFVk3GNcYeCesqHjUPaVVHuuci+ZAEpdDyDhivp7eBeG+0YAERxJonZPlIRhvokyirBAVK2RRwFudk/9uBqAE+WfANFsG+0bmFpd5QiupGyfTjTrKtZgsF/69v/aXf+qJY93xcuz6pRgPJY5PcG8B1329+twLXP/+iY9/+tiJB7I93Si7P/03X/vXv/lSX0ds187Yvj172Xgzv7rK9Mhrb5+8Nb3w0BNPHj/x6PPf/c4rb98c6mv5iZ/6icPH7vvOc1/vzCbvP3b00sXzDz/06Nun3r145fqOXftmZheSbXnEuHbt2pVLlx48ct9bL711/Oi+8ZsTPFnKI3HchTk5OUfm1MvVnW3dh/bv3tkzyDGmga6u4W6mcng2fZlTVG2V1MTExOjOwbaBHl0yUVjhDbLCzOzK0mL+5rW2HcO8S1OqV07cd+jdd9765tf/5LHjh7s628vF5aWpWRZ2c6mkWp6FJTozvb08hZqjo8qMbT7VVuTQQmGlJZ+Zn5lcnpvu5TAbtxCxGSihc6+c6Ob+0/ZUcnFm+uzpU7yGx+iKXfCxSmz3nv6V0uqt+cKDjx85dOLB2MIC+3xivP+1sNDkfp/VVdqP3f39O3r6eKQsVanMv/tutrM7096daG1Pdba35jp6BnrnpxZOv3LqxtWxcqmeYYM/a/YtKVqRJz76kUvXbv7Wb/3WwcPHWUXo7x/I5jKVem1xdp4lCk1exmKFpeVHHnzkzJk3rl8fO3Do6Nxbp5Lp3MTMfDaZYlcnKvvWxNTxB1M3bt48fGyYS0a/+Kt/fP7K/+dHfujZ//d/+df+t1/+3//Kj39kdm7xxoXvfuTxJy5fvU4b3zXa8bt/9LWnHlt55OEneNHs3dOnfvu3vnjs6N4f/fTnzp879drXn9uxe8/hSq3z0P2x1oHG1M2FmcLbr777z/7Zbzd27OeoB004T9Jn862rRabjVvIsKVE9VXelddh/nojOiG+qS66KueqJo6ub+kYosQqjrS1USFhH3EJQTlZZDQgtoav7Beu9itr6uI4eAmGMtQGBT8FGuZ7THdnWc5bmDENZgz0ymAJyfvzXeYhafcja9hkuHeu6ZsQkAPpKeq1FsUH7s7MDv2oQLBqOz2Zd7zAe74Pw4fpU8/nkaTYAEKypeBsB6CUZRgPh9Jng0ET9hmFJYPAMb/g62JF5GN8hsX6jrs4aIE1oYOgdKw94a5QeOGp1NI75n4lvo8FTLquoEl2ZXFwpLMzcP9rzhUefeGZ/d3PxVqw0H1ucKNyayiXSg9091y+PcWnEw489OfLgiVi1/Adf+uJv/MbXCnOxIwfiB0Z3ffyjT3GDE5WZV9pfP31qtRH7wk/9eKXW+trJt7769Teo1vc//OCPfOHHvvn1L9cry7kdQy+++ELvwCA3NozPzu09fPTytVvcZNbDLsneriuXLtMMsDEpE2/p6+mdX+Hkb2xqemahyJPKsXxXK/d6jrR2jHAj/VDXu2ffvnz27J6h/oeOHh7s6WZUcOvG2OiuwXqxg5MKmuhnzrM9x7vvC0vzr7zxSr6tjadzdx/Yt+vRh44d2P/28sz/n73/gLMrOQ870XNzzvf27ZzQQDdyGGAGk2fI4TBTpETSEiVTybK8Ds+S1157n2U5PO++tw6/XUnOtmwF07YoJlEURXJyBjDIOXTOfXPO4f2/OrcvGg3MaIYixbHNwsXpOnXqVDpVX331xY3FeXs4GA4EZOfaSPldnpnrc9BbUATrifRDd6mW8lg0QDgFkc/E2lrbXTGH+qvZFB6+bFYLpZlxkKgZoUZZDY3BaOjmxYvry2t4KcsVsrg79XoQ5HQsbMQjfZ59+/czdKVawent01LJYiJhs9mwlgFSXo4nb928Nb+4XKk2jj70yNDOKWOoB66ABh2K2WixBIL+Bx959OXm62dOn08tLGM3IqTEUhEUmprcgw3tk6fOlat1wOvhw/edv3gZgdRipYwLVqa7eG1sNPdMTk3fmj34yEPh3v5qrZWv1Fc3km6rLRjuKZWzV69e37FzMpdK94TCh3ZEsDT377/wR5/8wORP//ynLr/28s9+5s995T9/+Utf/tpHfvRjEO+HJyY+/9OB3/0Pv1fIlHfv3r1370Gf23Ph7MlmoXTk/oOj0f50IXfl9Nkpoz045au1SuFwsKcn8oGnd59ZzSysrCP0xPk+i5yxyYYp00JeFBe+i6CvPn2R8jq3+konrlbw7SJloaqgJxHtPtsW796q7GS7A6p0n/K6HpdsaoORiERvbxjdKt5tRMpRgci23pHcTfwT9AC6ReiR7pX3FZCnbBiVnAhRaBEFUAynUZv+TCC7qHpjyU0IQXK7yQzQ4/ptl92ht/KOK2xlFdTbwhXQg5649ao3jHcFx1dovs4y7qgjd9stH1WCnkAJW55IlBT9abdwvguBRD1zN12P6K/wXH+6rYRuUd0S9HK6pZG+NdxRyNYH79m4ob26sRwIhhwYEyjioTe9f7jv4/dPfXjXsDl+zpFebWTWzPWSy20qrq5fvDIzM7v2oac+Aa352snT/+X3/+vJ00mPRzv++MDusYnhKP4ds4gpnnjzRK5SQnb+Q4893DZbv/Zf/zBfbDi9Wt9A34OPPvbia68k06mx4d7zFy/0RUIHDh868cYpFFjDfQOZahvzyIjAZ7NZrCXXCgXOJJgCrKJNVK2DIMM4xDdiz2i/F7wY3+75/MLs3LdfvOHx2keiEQw5gORWrIad48PjYw+02mXBfdPpSjHjYHbjE6aQNddqAbMFXPXIAw8MT+3C2L/dpN3/8ENrVy7EV5eGenuhRMRWVsb6xsNeb9XcmpnHIgVwCoM2yohVq90X0fApJp5OfZFSNoE9Uqfbza7QqhbqtUI6tuLCcqHTtjQ3A9DAn3A+mcb8pcvnXVpfxoXX4WNHC9Xi8mx8x/33ac16PpHCbk8PhDOHHde6udjGlTffhJnt8Wr9T33QmMtVrl/P1lt59DLdHs5GBisiVAPv+8AHD9//0Msvv3r+3IViucK3C4YgpqUgV01MTGQKpddfO1WrwxP2xdbWMN/KCsBcHYrEF8+f/+nP/8RL509ubMQHBoevT8/hYcbicM8sLOwY6OGznjzxxvDQaLZQGBrs37Fjx6mZeMSlnXzzhsvcCHr8zz3/0mf/3E/80t/8f6zPvfiJn/hois/t83z+8z/5D3/lC9euXEeZDi25p5744M0r5774H7/w2c99Jnpwl8s/X641s8mkJepzeX3h3t7Xv/riXAUbI3hXC5WhVmGlGS+YmZwoV3OSEvr/Owqste5i1F/QVx+gQUU6IJu4uhWQpsC45N1M1HN2rlvTt8X12637SbeEzqNu0dxvBlUxO0EHWG0m/wl/VWs7efS43k3iRHiwNcLtbSbwPQveWtzdGXiqtgHgO1PMhDUY2QskdIA13waHLGwAGAzRAf0mDOeUJtJLJHKVYraAZig23EqiajE8BQJbCel6Zv0q9ajQydwtQe8nqVuCnpMX9TR9LLY8vx0l59ZPpT+QRJqkOnc761vEyLxtrLsZu4/0lE6x/FHlk9iNdF95b0canpDNbK1gOriYTE1GIx/Yv+OAz1a8eTJSXHS4G1oh1lpbxAD9zel5/Db/6Gc/ZjUEf+t3//O3XzwLUh7o1cbH+0d3TFgdyICYiuXShQvn0CvPlvKf/HM/Gitkv/ylP7Q4wuV0eWx8B9aGY/H4/MKtR4/f94d/8MXRgeinHvnE4uraysYG1gRWY3Gxr4kdOGUJHJQwubYmBhKgSrVaGFBDZ6re0HwhJ7MICaJiOjPiDrYrhT1TU+GIb6y/d7gn1Ofzhn2OiN8JT9XkcmjZBPoMzWJpGXL+xlqzXLab4Da2P/fnf0rrwVbdiljwiQZh//aFgvl6Obe6aobhncpkramwL5BpFmFHpJIpu9uDKdoaAD5b6+0JpAolzPojb7qBvP/wmCMYMNvA+ytIsVXyabdZK+WzlXLe6zOA3lYqVatBqzara/HW1N6gw+tcXF9G1xfon4knOFPYcGMMjl/Ma4VS0O1+8PDBnT0xHH+dfu6FEqwLwHO0L7pzVyQUdgcCbbsvXzdAu4cLMrJjh9sfBJ1PpnI+XyAQ7J2eXahUmxiNOHbs2NlzF3B/yXTEnST7E3aL0BGLV/g4rWAwiCOX/sm9JpsNGit7QBK73TbTcH8P+N8Lzz97/OH3YWwVKtCxPeunrs7vCGmnTs989qljpWR6em7+Rz56+D/80bnw6Mn9D+2OJTaOThz+lb/9mf/0O7//X7/wB0ePTE5NjE/smMqnU1/4rd/9yZ/9Gfd9D1mX1m+tJetlk7Vk3Hfk6M7La9VECTYFcq0bG0mH2xcKR9KZbBfuvy3h547FxFrrwoGt8e4y3EQUO29tW5v6rbp2ACsQ6I4KNm+k8C3xLnghnbD5pLP2SSHz1vRuhncYkUK3FNt9i8S74RKSB+onuaBSwj0XlFc2UsHtaYlE9CIYWRBduO382HZB7YmoutRlMy6ZhfwDVUih/wL5bwdA8O2be8W6GbZFqIMUADg/VV/ncCC1qSZ2t35F61EyACKtxNOt+ektGbFappqJmQr1mipSt6rHDtHZJCQHr+tjoq76LX3mR5xCqFoS+a+uekTi9/oAKpfKea+n3Ve6kW7+rZFuN0mkOmmD+iTq6/CB5Ecgm3ynrW9+H+LU0tDamQKWy0zjwwPwQs+fffPChTPMHK/dmT97qTgzzzGwXCyWivnk6sY3vvq1v/LX/s7vf+0sLQuHNBxyjQwOj42Ox5PpcxevGqw2TBRPr2488cEPLazFn3nxVbPNWW209xw6gCRiLJ68duPmoUP3fef5l2wuf9/gWLVl/m9f/oO6ZhmZ2GV2OueXF3fu3WtxB0Z27p2dWxrsG7x6+UpvTxiE2uZx2TweKC0YlMmk0RNo9/REH3z4+MOPPHL/0QfGhsaZqRh5zhSS9RYYJ1A8XUOiNBYHqfGYXenl2MlnXznzwqnY4uK+vVNaOS8+ihlftBli6/KzmTyjg1DAnGh/eVwLC0uYVMtlquFQP+R9KC1ASZSzEsk60LpSrIJUp+KoGy8m15bE0TwMYq0FkMVHAucFQDB2+TmmbCC3ik+wGm7cy2aTdmDvntjqUq2YHwwGVy9fXrp2Q8sWfBYrUlWJmbmLb57LJPJBP8bajC+8ePnc2Vvri0mP2Tk5NDo5POILeHGhhDE1OB3DYwOQU+AuYOhiYnLv3r0HxkZ37BhjS42wizkthtffeDlXzGXoJnOrDZsZF99sQo0dk+NzS3Mul4ttgG/KmQB3k/kqSlrOZKGM8aCJXXvPXbxRKCHXVL948eIH3v/k3tEAtpqcDu30hSt1kzWVLz71kY995oO7//MXr169Mj21a9+3/viZSqn62U982OcxPvvqjedPv3nh1ty+g/cjAfTit5/TFmetY4N7H3vYaHP+1298+41LM/uOHMf40fzyKgY1QsGI2uAbKBKIHUJB/zfVhOXz0Pbuiny72b91xcmiEdFGPT8ARHE1KYqi1YIT2rZSPdPBvQASoX/LC7I2xWCRyMNwB6iRlE6QMnmkl9y9KjgkOfQSAKLEyXb7Pf11LCxuZtUhGBk6tWym3y5Tf1kVta3SuxsACUggLSdl8dnCloeFFhBtWi4mfsTIo5JgFwo6SD4bfgOdT06EBsRAqQHKCEY6gAKiEYY9axB6gf6gc2Ds/NDYAT/hBMA/JeiqgHjnstlVeqs3GZhODAmizgkAcTm2LOjCzMMmziXFxR0FUg0HPgQnTE2LmL7H0C+bjUSkkbIxUF29gnCYuJojMy6YoAVI/VpbhC2kEPUZeUe6LGMMTFdyxOqzMmz6cMpzmVL6JkK7Mdgtu4WYvZY9UOLSYamV76G+d2fGqIIouPN9sGhIUUKhYg6o4vTTCCkMdndn1j+9fCe96u0TQRoqXwLfC/zwjiGfQX7yIqZP6SNXOqi3WL1Oq1SNsmN0ItLjTsP0Gm7X00mWHFvDNmxIf8QwlGt1U9thN+OBpJpv1D39wXzYdz6VfvPkK7uMtb3RkWw2vpFrVmrWm2fx066VLdq+A/5btzIOh/YXfubPV8q173zrGcwyT+3Zf/ny5TO3lh5//+OZpvX5E280jfgjLE/tnoSDeuLczCMP7z14+OjMzHIqVRno79l/35O/+/t/UNFcuw4+cOXa5fnVlT1H9pa1prt/JJXOLMcykTF3LlvvO9QTS+ag4F+5umj0OHNlzRPtGRwccDms0yuLw5GemzOz1XIhEnE8/igy83uCEfECX81nIISnY+krb56du3JlKOQ/uvNIOZcMeTzlQsrhDrZK+WKi7PJ7jQ4Lfs9ryPM4rZF+tMkqw5MTF1PXr9xa6A2MFaq4ng+vxNd2Dg9b3B7kSGOxrN3pqZXqOFWPWp0cazPxjTDmThstQ6mBKrXD5cEUM3bYsrliJqO5LFp/xI10KBxqu8EQTyfr+XTyFp5kjDv7R+xGp5YqxWKzly/f9IX6ZguZc+euoSbcM7anVmu4nY58tnHmtVOOi+f7h3tGdw7bBga1wd34jAx5fdapqdVYEYUKux21AdPy7M1dQ71Rr+3MpUu9vZ5bq7FmuyweazDAgDlvo+aOhhYuTtcWSj/yYz+y9OorSBftGBm9dHV6JZkeDEdjK4vN6aUDe3Y7gnNf+ebL+w8fO3nu6jN/9Ef4C7bgrS1TGoqEF+O5estSefPkI+9732py7Wv/5cJQYOjB40+eff0ke+rkzolqT/zkauL8TOKpQ/FdY1OYaMrOX/ftHNJaxf7RkdC64V/83jetOw96eoZatmwqj9lwM/6DUT9x2Nk9Zd2xBlmuApdkmQlpDVZgZxp3JvrmTGclyBKTXzei9KokSQIwDYjCIa5TMl6mAD+se1hLABzgAjCvjc9NnKiJBoLAaNSnCSxwudGxVVYlNrRVNSxMFi7/BFBRDYBIgRDVDtVK9TrNlxwEAQ0CXwV0CVyTxa02KBqBmEtbwwwLxam8ArJkpStIyF+BSBQMCYZFL5WSokCkjBA1SB3kJ4/+U/VTmgA7gBSAVEAVqWwF+jMZV25xtCJlKgAoDgwAPkLGAb4TcNClJD+F7CNN54T4FkHPr1/1LFtT9DgfmHB3OvuVJHIV6b7bz2VzoDd8dyN2UDiumyECWyFR8FMRVJZoskB/ek6bVcX0RI0Vs6czOUjpDIcaEOJMLP1HXIZI/SRd/eR9NY30a/ddyazm2daUO+Odsd2WjS9697vk2ZaNTY+GdiulLH7KRPedlXzf7pgiNqfPaHZVK61SrVXBYE6q8PKVW986fWml3D70gU9o7t5Ypl6qWYDaIwPRh+7v37kzuLic2bs3+mOf+pHZ6bmXX3zF7w309Q/PLixhmSAyOASt5lvPvQxe39Lsjzzxvo1U6oVXz33gg8d37JqcnVtAC6nWNGKJ/itf//bCamrXvqOXb80V8IGCBRyPt9pG59gwt5pwuX1Liys21qbNHE+nsDbp7QlVcAdksTWahtnZOdB9LFVnCmm7xbx/98THP/b0B556NDjSq1mamtNsGxw0N41lyCUNq9MSWF/MPP/c6UsX5mxWTw47n0sLRtSFG/WlGzeqMTS2KmZgRbXKNs46ZY45MbdpMKeyRQHlRoPD6VxdX+/t63N4sHRmq1Zr0KBwzl4pFZrVCv4PhNWsGSoIjWbzywsLcehp5brymUbZSJG2MIPDXK0W67ViGVvTtBHGcTmWzcwsL1+8efH181oDBM6NbSSrp7ds8Kzn2y+duHn2yvxaLN9qcDAzNbESlEo1kzEts6bVCwa7wetzopzR1xvxYCxaPCoZ1teWkokYngP27ZkCkdPqdXMwCAgBD2TF5yoFs8O2gUz+2spAb5/NaEax2ecPlKp1PLXx1bKlerrQGJrYt7SBDkPS6/NdnY3dunkzGo66ve6ltfjE7gMnL1y4ubSIv+LHn3jqwN7g73/xG/MLGzsmd2PiFNMUK9msPeScOLjrW8/PxDbSJoM1nc5q66tYB3FGByu2gCM8vJrKJ7EyW2vUGq06OCoAvt5oN+qbJwBgWmdNqVlPN95F4GUJCneWiIA+9gBJFewQqC8rnqCu6imvKLChkxIkozwH2CqAoOKClJIkxaqidDCzCWwky9a43JP7NtxQdakzh77SKZkkvZtcb1dEKZsF6R3ZbLkUqKdwpeRunPQ7mMA8kxIEPNJ8Ka47lpSlt4mrkqoWjFvgjySLNWBmPOWKoStyUiwTlv0SZFxBcK4AW/WuwG4d4surKkgDVQDwqVUkpxJ2PxOSnWog9FtKb8KXa+K4ToJsDoIC6HemuqoIjzhsblTAXkAWu83isNvsKjisiEt03tLbsFm//NUbIJEtwJdb2SrpnAp6nm1XeYWR2ixBRkUFUrpwXI+Q3M22NaLHueqRreXraTqSsjX9PRNHUhG0xoz3Qjl3WV3FarZZLNsM5uMf/bHLS/OJS9d7re7B/ii4amxp48ylK0A2t8c0OrajWKqcOPkmHlcmdk3mc4Vnn32pb6gPIwHfevY5ZIpGR8aw1bOxsSGCJWNy0ofyAIR84aXXjh49jOTP6fMXd+2aQP9rcX5uZWPl2LGjVnRWDZYbN6dvXb9xbLx/LRYbGI7iBZFV5w8Ert96paU5mCPoBkRDgX17J3cO9hST60GP8wNPPHDo0C6tVdJyScQZs9dvnHnl1PULN00NczVbzqbSveHw8FRfOhl79fS1hx+cKCQKNuzJ2WyNZCFRrg6M9NWxV9wssZYQ6zdproDftw61I5vOVxqOht9mNa+tlx66PxKHR9Gop/EYUKx6oqF4NgstHneMsgF4AwXsY2ZS5aWZ9dW1fCbbYldj3dYxeVdhJ3M5DVhrTmUrzCo4GqRnM7FcvpApVtLF0r5jBxL5xpuXbmlWb7lmKJdKnlA0W63OLCdK9cawKeyLOJzuXlNosLwWs1TafDDNE/b6Qh53z5rHtLbaXLK23T2RSjwdX40ZNcf9+4+fuXIjsbxqxd9mrQLgKhdLmNVbm9Nu3Lhx5MGHl9L5YrnsD4ZWY0m4CF67NZdN2S3z4XBvT7R3ZXUd5AAG4+pa0WRKjI0Mx1dXF1eW7z/+4OuvvGE3G3ZPTtx37IHXXnvj1//Nf/mLP/fp4ck955YW4eUYTY6rV6cHh5yLG+nDRw95e8PTS8lc/WLk+KivbyR2aq5gsjYVqYG1zypmgQBXvofLgQIFCslVVuv3ZendhhXScGoRBF2HIVuAj/7onXdNylEj0fmj3twa1wvcCouI3xYD1WvSX5CNgoebvdd3EvU+Iy6EHUadK8YM2S3QQJGDADITAjtlGyCRe/ky5N4MXaCvA19u9QaRh0Bcr4569VuVLBc2Ia7AfTKYRda/aWpIoQr+Q2AV5xqyCSD110Blxaxh0grdEmhPFpMTRAslTtkDAP8W9CWtihilt4Fi9V5vvXYTiXSaRDYF1UnZFra+qMfJQKT7Yjdyd85ufr3Mt8rwHk8HCiAuAoIBZgqS1GxZre7wwOCueNv62ulL9/l6AgGvC1AWMLx56mI8k5+Lt44c25PJ5V8/cdJpd03t3ot05rlzF2AUP/n+D0zPzy8sZD794x8JRcLlauUrX3vGajXihnBmZs5uc66ursbK2BDynj57kSOePxxd3ojHs4VGyxzqHUwm48vr65evL2IiAFlG7JTt3rszXyrDJcwXiwkkId3tQrkQ8EYPHtjTblWvXTq7Yzj8E3/uR30u2o2blKaWSmWWFjNrieFgb8aTunz+xvSNZLzGLM/YsEE9ZP3QE/dlkgVDJRtbeBNO6aC3ZyO2rAWrhfV4OhNzOvF9oLk9muAZNnwZQkLBVYEcAtxOcPlStYFHQyuLo1nDv6klv5HMZzNVTgCNumbDRka+mM9i2KdcRPcri/8yJh1rrNzARSY8iub8crJaxntla20tg44bpx7IRKVa2+EPb8Qrp67evDSd7RnBhaprYXGDL1HKIWypeW6lwoHZ4VHvkbXYntSe/pGBSjrRzOUNELAGxw2R/mjIViyZIv3h5eV4w2Qp1ds3p5fQpdnZP2ZrYOVzCRjREMJwk0WEr0x0LB774IeMhXIdQeu25gmE8dSYKZTLuVIuf2uPweIPR2ZnZ1ngvb2ujfXi8kq+v7+Ocdb5pcXBB47ed3Tft569jNP5fXt2f/hjH/vq17/1z37jS08+tqtvfHJp7qa1YfX4wuUcQp3GWL461DuxXi1+4Y9f2mUYqQUOFGuayctCF0Iz6wIckfVF0BfdPVfK2zy6Z/5uIi9uwr87YHR3tXYj3Ve2RvR6u1cFP+RCCsXq7+pwX39LcqpMWwt5+7gUosZBL/Z2OaqW7ruSazOFsepm08cNeC30fhB/PV/3NSJypJD/OpeYfVbRVoDtAt/FIbtQmMQvJfsBRHjZADgBcFUbAN9Ih/l3XKlFv+82i4ge77RMmCdytJCWqtOPOBpu4xhUWgn5iV0fahxu4LlCBALN13+sOkPTJhpqzYag/4gHW80C+p3ovXMMsIm2vBmSXQdxkA5uBuKbbeh8JL0x3XTVxrfcLfR3t5WgjzWJ3Ui3TL1YKVPVKxEVtmXQp4l8h27YmuO9EWc8+dB8dKxB4Jiy3jCXG3hdt/3XF9+Y9EedA33J2JrVZMrnaldvzabKbQf6Okbz/OIS9gsOH7kvVyi//PIJoP+PfeZj0E2/8rWXH338AC4V8Ql28dIlh8Owa3IPpsoQV19ZWXn1jUv37RlLZXOXr80dOLwnkYPGXt/IFA8cOHBjdhmbT6+dOocnmqnxXZVqNto7EIr2v/zcc4jDv3H1JnM3WagwM0ZHBvxex9yNSwFL87HjT7msFY/T2szF1+ZmLbWG3+pIZoqnXz8XXyvkUxWbw44jl2ytldS0+HLNfWHugagWNBaZwys3VoYGenudkfT0OrA7n8q2PFUhljQd9aZVpi7mCTiz1iv4/9qxY3BlbRktRbfXDz3K1MryUet1dpwUTFt0KaAqAxNr1YoHjSano1GTU4HTqlntaPNqlUq5lNRw5+VxWpjl6KO1mi1427W6uVIzVnOGV86/uZLXrCF7rmZJlwqXkxXq5zdk15xhNxY9Jb1oLsF+bmguO5d6KbdeWavbDYjXeAIe43ps+cqteY+3b3Bid7VhM7dRRsucOfEai5GFzgeiNLvFGg7byuyu9brN5shX23DvnR6Po+hfTWfNZlsilZ5ZXGFiIp2KLSZkdawO5q92a3auJxTEVteJU6ff//gjh+9LnbmwxBaIYb6nPvLRWO6Lv/fczYcfHLZZvAuzq+NDo3iGq7ocN+Y2RtNNdJ5Xmzcuv342Mu4P9o2sllKUz5oC+rMnCZ1AARqWyPdqQeirTQeVEhdgdG+w8PY16k1SVwV2pSQaqeKbb+p5Nu/0FS8dIV2CQL57B3nYKVUy6tkkcTNI6pbbzWQpmbgOlIgIkt5JokD1TE8hh56JZUm+DvSXrGKzkJ8g/RaYx6DUYOBE4LwCYSUIfq4HdQjQC9Rr6V6JdHeCbgYicnBQoZuBOwrTS+5QcDarAKCD5lstJpy1wghyOTDa6PB63D43XlFdyGN4vC6P28nPyVnAJjQgvRwK1CvtjoseIbEbuTtDN0WP6Jm3XmWgtpSwtSg9fvdVL+ru9G5Kt8BuynspAsJvrWMnoVZF8Zod2W7zVOrGqwvrCYNjuWG+vp5rWAOJZPnG9Vmz05XIasOjY+CteFzvHxhO5Yqnz57LFrU9+zDFP/mlL3/V69MOHbkvlUm/efosUGNocIRJiRQ/1KXV1XWEbrA7dmNmpm3VDFZHulDBTHTbYucQcHNhbXp5AwzRYnMGwpFyten2+DO5QiydDvZENzCQoFbeYH8PcgPXr16IBt0/87lPP/X4A36HIT5/A9vL5mYd14TPP/vCc8+9uLGRRqjFG+kL9g2XjbY0I26xp9va8xfXL1xbX1zJhwLDN68uXL80azW5F64tlhLlZlGr5dqNYruYraTiGdSJmcqVmuDOkOf7+qOYIDVaLU6/N9jbg9a0BdEkvx1dBHIi14FVOKEFaS2/1wsNxetFIEisrGMHn0FtGC25iraeqsFNKVYtiIQmUlqx0oanmi+21+Kl+YRm81q90ZG5WOb6coyC7Ojymi25tnk9V1/NVOfWsq+8efn3vvzHSOkk1pOWNh46G630Wnt9Visnwl7rh97/+J7dkzjUvD49s74RZ6UgF3T88H2y+DkBoAhWrbJ2SPd6YfngJwbGRzsJlwOzEkYLjBmz3W20u2aXV0uNVq5SwziHXQzPBTkG1VsoHttZxpVG7cyFiw8++mgwYjv55uzJM+c5Oj390U/gbO2Ns4v4fre1rG+emg+GonxczebbyNU3igZL3/hazfDm9ZmKuL4We5TAfQIN04EDy1k18x4XfX3dfb1HVpW0dbndHddTuundyNuXtjUb8W7Q39JviRPpprxVgdvSt76ix7ulbS2qm9jNz1M98TYJSH/GHqCzCNT7t5kepIOWQ9dDNVyYBGJchSDOOsWQOe+IrA7YLn1gu5Rpw2PK5FupreSOnYwU/ZvpjZBsm+e4LkuTRD61cKKF3YDIoPiWYc9HZg5yPwGqD5gIh1L4eA1O1nD8wUHJB3DgfGBCmNvsBO0XKpDdgSdWh82J3rqlw5bQ9wC9kdSl+iuXrfHbt1uavy1D98VuhAw0VX9Xj3TL6d7qKdSql7b1qpcjhegxddUzbEl4r0RNgDiERDhZMRGaLYfFXmsbkd4xer3XF9bv27kTy/XTJ968eWsOCpHLr5lsjmK25PYGa402/lUSiebkVN+e/QdefuP1C9PZz3/uaTh8mHqG+xfwh0AziwVEdCJLS0tQhA4fObC8vraeyPVEe+qasQh8z2SHfMNsAygAQ7/xBHsARolkCgeyoJ8wlpETx7YB8hKAML/X0hONYLbCXC/se/jAvsmxYnzV3MhEBge1QODaidPXL13DI+/E3oNms7epudYTRZPdP5AuvnnxyoUbt7L1ek/AORPLW+paKA6VopVKL6Inm881jRm0hQ1N7Onbrbht2cjmq+UmNCiAJtRIv9dUa+Ld1tkz2B+I9Hjbhpk1fDr2DNucFWTtmCqcomCjtxvYnjO0aigx9A30UzjcV8Q8RFYB3rVWj2c0jxs3YqZ0UUMBzVbiaSOZqyXKlUDQbg1EF2Lp2SS2/xFPteVFNMwEDYjTMuxxh89hsFmgN33tj184vG/s8P6JnpAb+R8O0ZwseKM32H8I1TbNhT4cUnhvnn/Tb7MfO35kfm0xvr7KRE1lMhO93lwut2tqErwRba8iRxfNtAFbHv+RZmsaolDbVGsbymx6ZvP66oYX/5l2e7VeQdyFr4/adiEDf7ty7tLlhx577Iv/5ZlssYjecrnZGt+9p1C/nI3ndo7sqOSuLS4u96Doa/cWm7bVbD3RtpSdnkreUE3nTC6RiBE4pHA4lgEQY+uy+l4tDFmA1ANk0K+b5XZXYjey+eSOvzy9I4NAmK0LWjJvzSKZ1fPuW92UO8rdcqMybC9Tf94tRK+lm9gdKDLo8c4GsKVYiQqsV1xvdcMIC3yUd5TIiaDpNFcgv5wDOIHxVIhCKJ6QVZok+bcFvT6ueoQSuoGcxOUqG4gcAbp5SIS8pN9aOCrz2UWotBOA8sD6BlsBBqss5iZnXYQ+kfWA1MMjNgCh/YBsWa02iwgCcVgwyt5DFXqgXiJ6S1SD7z2g6tE9Lnqz735Aut7mux/dnaIXcndR3ZRu5O53f7Ap0AcwtocInt1la1fbpTT2IJ1WD1pdtmS15HH5DYHIyauX/QbLrr37z3zzDzB8XEDApWWAJgf/M5trAuCsdheEvVdfO9kbMuLLCnsN8wsrkXAUprLX6wv4w4j/g394vV70xaZvTSNx0DAZc+Xy/PJKX//gRlp2CLyE1NrmYrEYCrnX1mN7+sPQC5fXN9BxBcrgBIbvChIKlt0bDT54+PjRg1PmZtkOdLW6yrdgPCwhaz+2a1+9Zbp+Y+HC1TdWYrlUptYw2HJlJIG8o/v2upLplblrDou2XteePzN9aPd4Ym155uXZR4+Nri3O46wGdqndjcKxIZuqI9jvdCAvjxoydQA90142NMRP/UFEmFtWmy8SMXsDS5yUeGzGuQBSzsjTO8rJFNzvcLTHPreczbSqjSp+XrC81jYBcbVMsYnBzWKVzmjZilaqVjLl9mJB6+lzL6eyFxIZ6DVmu6tttkT7B/bs2rl7YtyqteJr8+vLi6n0BlJEmXgmU8KqUPng5PCOwTA4N8QtLVXW+mwHR4em2ZpW5vv6QybzrktnTr9wIhbui8TUBsBhBQlqTh4PhEMw3NJQ4looLXvX1+ONKkcU+1piDTJtX//A1RvXRoeGveHy3NLS0MDA2MTOS+cueN14oQ84nBjUoCPleCr98U899s1vvry0eub44w+kC/lItC/Qsq4tLAU8dgtSp0739NKKp1gzeCIrxemY1uj1B4zlFp2WlaWsBbMuOAfg7QnaGjDge7UWti03ud3E57pVbMvTTb87onIqqEJMoNzbQRiVQcog8nb5dIB5u9R7ZO4Wdc8mdaGT8HFB3HXRex0U8gLDyvJDfAnOqzB6xKonQvVQeORHRH4CRuG0AvdB/xFYEL2HDv6uhJZ4FYQdMj2lgapTOGh7F9ryzXQorjeUBhGhRKElay3kO0lpyAFAE1V6TtPVKisE6dcaBw2cjygE36A5GxguwUp6w96AJ2Czt5F64xVFGoIVJ0dtKJcAfs7DEKkMyO/ZKEfvv96Y7ljo484nIp0s/EiRQwjDrY+4utJO9WJn0+IpoVuI7Ij3CgwFLxL0zFsboCfqLxGX2imEyS3TTk29Tr3wWPTjlFS3LciJWBdoVQ3Qn4oQ8Pc6ULLeBVUwsszIiGPTPo+ehscFI76NBWSr1V42NIw+3614csrj6Z/afemFb6zHtT0HfVars4L1no3kjVvrwaB5ZCAIO/fZF1/KFFrvf+phmH+vnzyJrilMZbfDyax74YVX7j9+bGVtA0eHAI5YIokpHkz+zC6tAuJXYwkkfIrlRraQZ0Z5vf46BHgT20wpQ8PM1p2TU7laHYuhoSB0iUppY62cSxyfGmyVC462t1WogbLOXV5M5HK1tum510++eubqUlKLQ8+RDUPLl/MQFwypTGt5cSg6ZA9EkAxKGpt+u/VWBjsONRhfN9dyhZzmxsONg7OBOR/LQK4J9Xo0YfQKfzedKXt7ze5Q2O73tRwi6PLYhz4KbwMbdkZXwGZ3c6Rm7aAwbDfYl+duDga8jz/xRCKZPXvmVjpb6uvF1o6DLqSzxUSKDSwCxziLcTvcxzcMGMAI+j2xQjFeg6fAQjVBFH/o0Yf+5W/8K3wzeP1erZAR5p3NeO6Z7/z2b/2H73z7uWdPl1cWLjUKBXNpdG8Tv/XthqFodvZVq8WnHzhCGf/8X/+bib17Dj12+MTrp66cucIGD0kqk6vGEykM0F25fM3k9nEgs3kjBREHtyQzacCByxeAYwxbYHTHzmQ8zsGrlEwlUqmpXRMer2d6NjY2MmpyOTHUgUNKCMtpU+GJ9x1/5pkT586emTxyZG1pdSA8ZA2GNSTL6hTPrmJayRRXbs7k2yZnJJyOZ1Hng1omqwieyWZgsbDA1Wy8F+K5mXbnvL29YPUXuaplKGXfjqt1L+gwEEetPHm8uUL1+NbXu49oEsCNW72Nek5dMpRHbF9cReBSVtLtQDaaJVf1IiuaIHi4DgcEOVZ9VygyTCChxGyBJ+o9qYoS5c+dEb0aPXFr/PYJYAsrWIoQgC4/wfqBzBIXAU9dv5cmIguEOL3gzqL6phB3hb93Rnbz64g1Zp5LFtU3PS6lb6L5qnuqQrkoaKsyd5P0CAPKcPAW3N2a2jrYTtqNJoKeGjw30ADaiFdsdi6DhmILuxXYPtCfE4Bwidm4lBKAaoAU2W3Jtoq23eot35a49ZYMgGl1vces6ubUM9x9q6dve9rN9vaR7+6tty/zXT2VKSJfjP8QAWWCMl+ES0QwmuotcxrWK6qtFlPD7caeDx8Eoe2NWBIoANbL54KGjCA52GXfYE/bYJ5bWAZqQfGnkGQCKcm1aDQCxRnNWLvLtbwWd3l8NpcPX7UVLEuYDE6HFVtpRqyVGbEDATnFhEm2VjHHpAIecp7ghFGu1jBXms3Wc7jw6rM/eOyoy2KeHBkMeuz5hY3ZmbVb15dqZvM3X3r19M1Swagl69rkIYycDjGxi8Xy7K2F+IpsAwsbyx783ljMBbsp3WrmMKgMmbqu+UuQHsGIa4O9rlrJlEhCDtesVi/Lu1KRNW51ABz9dr8XT2MWtw+PuJZQownTyhusGgqyb0MzwdoQ/Ctja3zXVG4Nk8kb2MtECPrmjdmNjdiOsR3AOKMJdzIYvMgKvdXiYBXU2s2atZ6DOu/3ra3FrTZTtlF//xMffPIDT3/lG1+/fP5cwO0YGxrAXcx9B/cf/sAHDn/o6ZPPv/irf+uXblxY+sofzrVSuVqycPTB49iiKF+57tl9qFjJOw21Dz39xO9+7Ss79+7ec/Swoe2+fvJMPAf7nB3Rabbacb3JeQqGHxQgMCz4bO2NNKR8G6e0QHg1th4IBSE9FXI5TyDA2RtGMaa/M8kr589fuP/IoXC0NxIMTN+6VSuXkc44ev/U2YvXl5eW9u7Zv3LpRshhTyU3+qIhAw4s+/tNgWC81q7CBWHpA+6Ueq2oiX6vA0vpTkD07ir47laieuuOTWBrOcS33m5rkP5IrlsKeJv8217v3uKOTgJvAlsJQHsdNOo5ZHVLACGVPYBVzkpDTFs0vAT8yzbAO8B29gkhpSiaJkMpARa9YtNTOAGgrZfFddv22E1XNSkikkBVbIzyh9kuOgGQfYCv4NEEsHkorA0LxocwAI3kDxHRBjegTomqgC4DCrCBPwzuj/Y9gmPwBlRgwBThSraurfW+TVxyKrRXf+WtrpTAoy2f4x5FSoYOTi+Z785xz8St2ciw7T2Vco+itr71/YtzThG1EeV/A9gPDJY5hGcrkxlvh6l2e83QimLNxufFYUyj3rajfpUrJDP1SNQN5xgXXYhHGsy2cG8fhvmn5xdGhoY4KnJkhJKTTufvv/8IhA5Y+QaTNZ3NeXw+q9u/GouJdqqNL2tHFbllqABKmpRjNOLmJZ0BG25WcCrp9SAsWa7UUAmmIma31+mKRoJDvRFbu5mYn47NLsbXio2W7ct/8MyFtUZe0/rGIn/7l3/5fZ/86GD/6EYudvnSpf/4r//D6VdPGWvt2Foy16gVG42S0eWo19PQ9xuaranZMqWgxY5ukjGHQQJkOLVgyFrEhibWDDiiujTEIgPR3rbH03a4GnaXwRu02puVSsvuC7J3YNEMZriPk6kH58GaZ8i0sbS0sryyY2R41+5xRIPOvLlarxY8LtTIZNzgT+Ns2G6z1lrtCh6E7UaMuM2txUEVrR7XaDgyszh/9V//q+lr1zn5tqoYGZUDgM9rwm39w48+9lf/2t/6V7/1pX/8137hzKsXX3k9OR4dvHbi4u77jpjbzfnXXowcuK+RjS3O3BgfH33tzZMHDz00PLZz9cZiIxOHuov6sdPlpiLWI3y1LD4mDXXE7JxuTyKRYldgpylVq8jEgoaxsSkk1YKmA2b7xncMX72yeGt6FnEgm83VG+2/dOnS7Nzigf1TfX3h6dm1XaNTiBDka0WU9qHcIibg7+ut+/yLKxstuxMZY6eg/ZsA6Xs3oVk++pJUke9NuduX6F2ldoEATySzOmQIrNs8AfyJJXRe3EQ976rhnSYoZI0WUOHmHgAg1y0rqDIU1i/QX2UBh9NBP4sJyH+bli6bhypDIJEA/83ASiZwDtDDZrLIb+mBzAS9vaoEwab1IIWqYvUriUQU9i/QHMSegHCP0vayuvB55ISIakMWCOlPl9IAEPF/sVOPWLYQgXTmsBS62VrK1LumN+Ctrnq27tN3+FY3vx7pvtUtrRt5qwzbSuje8qL+rn7tpv8gInI0pF4+Iq4YsCJClFMuBi/RoUy3tDWjYdHQyrtcFlcgnSpWkQjBApOQ/t3YDoO4AUM40tcP+j87v6CwS/ZxhCAruVze6YTs74D07PcFMBPNJzdZbaAS0PSFXAgR0mJFeqZSRrxRpgS7PWwAXbQGwSTsxdMqjCJAiCcEfDIxVuYXe4OhK2fPnHj+hbWlxbbB+qU/+s5qugEwxR3Mv/i3//mnfv6vTs9vPPmJjzz0xJO/8L/85Vdefz2RTi2tJelYwN+Dd5VEtYXNoHhVNoyspi0X6olGq2G3IQq0ka22OXU6/BupPHpbHmp0I+0TdPlDZrfP4PQasfHm8jStrobJ7g73OrwhUHoEaaotHgYcvoDR6THZXY02u0I6GPLu3j02PMhBJAlFNuBzY/IA+n++3kiVaxvFcrreXMvDKLXRP4vLhqdEqCF4i5y+fh10jRWgw0uHx57MNb/1/Mn/45/+30ceeHhhJfFPf+M39+8ZXKloX/7DCzgMLqdwTlltFrJnXn6ugYOu2Dqu5B2u4IWLN9DghUnDKuOjYHPN6nCi/IWcHRHINKg0M/xo28GsgSvIToaVzumFeU4obo8vmU7X0NE1YpY0NzAwMDLoRc0ZFZBrV2/0Dw5FIn0bcSiB07gmZm+5cO5y7+horlbrGxZnZKlivmW3ppg8hRIeFsArOPqLl/rvUVALSNY+obuIuhE9/Z1cu+XokT+xBAF2m+CuW/7WQvTEd1haNzORP7HqbnVbI7elgBRUvA0ZAcnMnm6hQgUSfF9xfRG0ESMMsgSFhQXGB+6n710KEIhTLngzrAooM4r2Tbl0m9IA38B9IvpVjUaHftLtjFCVKEeMUfBIdNWkMdSh7NNRGXVyCJEDACxdJdrfQriH5oiBDbPFIFoCyN6JkCiIqC6vJER1kWjlH4EGbA1bR2RbnGz6ByPCI/26NY9K6XTh7k/bzbntRW71FD2iX7uZ32FEL4HMEnn7o8c7LPHdZhNdcexjwn9oQkKECsdntiitElgCQhAXvWyjo9kOO5yawx+7sVYzbgCr7U4L6CFwHH9OIlpod2ZzeUhDk5O7alBH2gY0nNjud+6chNZjs9qx5hGPJ33BYAkd2GoVeixUC6vTwSxihhkh/KOmpBg9WWgxNYA5nB4hDfNh6riz4nzKKIEvV8RrCyh2beWmOYtP+ZF4uZhqNJcqGqjor//mFxo25wff//HXT7wix12vrZ2vMrDIOWOSyG5yXbx8RWyO4uARg7XGFlQspmKuBieq4bU79G3QCo2ohRVRfCRoEafTCCvC4iCrAeQkFHL19Nq94Wo8Z2xXvEpkFikio82FcJQP7hSn5lLZ6g30YhKjlIn0hl12cya2fuXiTLNagJDp9jhK2XKp0SzXy7iQNDkNuZaGWRzkeRC+GhmbmFlcgsnOmA/2D6+tLv/0T/70hz/ywd/+z7/9zW99m6YWSo252aUPf+xHfu7HPvH//Nvf+v/+r3/5wqmbz715rn9suD8csBdaAbvl1sL6ZP/w1TcuwDcZGh+dvzpXK5TxMMPoYXa7x2MP2BzI88TXEqxPSGSVQgNDDrDp0I2u1soYmMOkKJoCYqFBjFwZcmjqsRqrjV0TO2e1m1Bnl+YXYPP09vUXy4XltVigZ2hkYHR2cXlgvIbwWMtsxmJ2vlovGY3rjVYGSrcVmVW4LTh5wkTIu52jb5efhdNd3W+zeN+uCPWsuxK5I7719u3f1XOqq8AQBlkuEuuEuzaLTnk87tQl81q9tXl9+xq3PZVJS1kCEwXx36y2My5StJB9FLeBXOqxcB70sLWhpJCZQWRNshpZJDrur1+5JejpXAlk0zNzJejN4NoNehU6sOaqp5NIXD8EcMWyjzoKmJAERegTcj/ovoj9KNI/kj9C9kdAUVmmYAHor1OCHvQ2d2t8q4jeEp7q+d/q2s3w9uW8TaXbKrpnOXqebs4/sdJ7FvK9S2TPBcZjtwcVPXMd99zIgrJFs9Ui92ewFU3mlMmyrLWykI89QQRXFpfXgeb+QBj6gcmMZZ5WpV7Ll0qIySOoi1ViZgl0GwQoITIg3pPPF8DsM2nYw2Wb1SEkHTYASIJ8ZLu9WBKZEEajUiryqZFIBcIj+YUUgEB/9gmzFbOXbFDgztlspZQtBDzeN984AYTGCxhT6Fsvv5TVtPe974H//Vf/0Ve/9s19Bw+dfO2U1rQBcVxGB0gQqrK//mv/8srV6//li186/uDjwUAPGE+t3cI0chlIazPVzFq+2UqUykWI/sCsXB6LRRVM+bjQiav5AzhL8CIk02K2chzwYbvfVWHRckb1+u1OnxN1ADLAKHDirNGkWZw4C8BeHSq7kR48uLhGhnt7wx4TwvSNKhOafQT9qXxTo7oiXXe5SppWamq+SE+tacAKaTlfevLJD/yNX/obPaHo+fMXn/nOc0jOOvA6gFUMM6r0rbAv9NWv/tEnPvu5T/zk5z/7k0+z/7127iyyFs1WrTcYMNVrty7ejDjC1rpHq9qCod4Wpj7UEsUDDPg74raMP6cuRg+ELlfI4z0NxT3WlMfrx4FMKBTKFUrxRCIQCJAnFouRH5U39vKenl427r6+vlu3pmVhwtn3Bc6eu4iBvr7ekXPXblr9/oW19VypZHW5sea4VsOcnhuzgAwn+zjlfK+mLnNGL2prpBt/V7V03yLSjb9VCQykHroZ9FfUq7cvPNVvutnujugv3p3+rlJuM4Epjk+oE3ZU0QKUFV9PClTbgDSJCA+UPChAWf/drpG+8ZEIgPhGE2SOfaCD7/OoA3cVNNdz6mNBsUT0UqQOtadxS+mSunl66L5OhInFBBJEzIJPCP7zjsgggYGijyBioBgkUnZDyYxCATVIRPVRj0hFKtxu/TuI8Qa5tl7fwUvbs+ivd8vRH98zcfubd91337rryZ9FAkRhIfZA8RMv0EihABAMJpyfgEqITJKxatJKsHLqhl6nJxLsZ+ywNBCx2mEhpjZWMU8DUDDCuTGaAfD9AwPxVJJ5I+e0tsHpdGFGGrVTd6s5Mz8PfQdeLps+h0f2DLtZtndIz5wfOPBB9nGTP1/AUL7DZWMG0n+oE+ijgoKAPOKAXWiWBmMWJyrp5R32QShR0/GbN1dySZgVHuff/Uf/6M1L152at6TVev2RSr2YiqfYgf7+3/7Vv/jzv4hTmi999RtgqdilOHfmVK2QQMitVNX89hZaacVGHaJUPVfHqSQjQn0enPUG4BlrfUNDPb19MIErLBxMJSJ2abRg3cFltmHICFEZt8mMUBOgkPQaxyiG1GyFHeB3epsFHOZYhwajpcnx+dnk7GKKhQhNTJjLyNvbjFB+cuWam+ALIe5/4dJVCP5DQ6P/9Qv/7a/8xb+USqTTicyVK1cdWPyJDiysLECtd5qNjRLaC6iGxf63f/R/fPSxo2MHDiZLiRPnTk9NTb34yksmk399bnW96R05fOC181dHdwxyPqvmIO212Kcx9dJux1dWV6Hsi+CFWoYsdvwW8IRNl4GHUYyRO1YJS5fNnDyiD9FqYcnDhTKmxRoKsa8Xs9m8uLM3W/LlWiFf8XgDV9NrCTRIimW/3dwbCcOZXy2W2i4fFrqbDRM8Bqi42KT4Xs1s1o4OdrqR76Lk7gLsRr6LQniF1wXubaLC76o0MgMn9eu7rf02Zs37hM77iqijx0kUO6Obj5TRbYG2+o8ZqX6C+2MPgMAEEe7v5g+Ubduvi/7r5Xe3ERWRBgjQV2RladAmwFUUKKFDCQN684dtZ5jDAu6V5WeriKqK/hdSQJzEhf0rAkDsFgAm4VdwlRIVy4WFqu85ek+ok8jWINlUTj1Rb4niUEveLTkl3nnaSdWfvt1VfTI9t4ztna9vKfueUfnchG4buhE9t/5NO19WT/p+XcU8h1B85HtB+Qc/wJqawv5JlF6JiLEJw/0Vp68cHci5/JCwAXFwf9FYgoaHPA+U65bJCiAL9vTNLa5WQUThHvD1bNieTFIOlCKMi8F+RO+UD0oQ2V/lNQhlAtnOTeZCqcw0Q60Wq/TAFJSPWg0h96D3C92YAUIRLOBDidV7+eJNWA9zq6nz02uvnl8uGASV/sIfvHDi0mVgVw3rDZoxnolni/mpiclf+X//vV0Tk//pN3/753/2p//BP/x7aysL+/ZM9gR98Jb0MlEAwwxesaHZfZ5Mu5Vra9C6XF4xB+T1uyL9vZ5I1BHptfmCFofHYnMbMC3h9LvcAew+G5xug9PFacjmDxodHqPVCdLC6MDxxrel09+Tylft/p7+odGJXTuHhqMue9tqrDitDTsGuC0axg0RE6o2DeW6KdjbPzuPAJUbZCfaE3bYrBj3t8L0xuyD1sTDTMDpDNhdlUz+weP3N0Vdx4i+2HSy/Ltfe+XScjLVsLx6cfrCreV0qXX63FX0B5LZ1NkzZ6Ymdk7fuFquYd3DBESPY16uZa7WjJjq5EBfxjIRTGg40n4XWFq5UC2h4gdvoFBkJ+AckILdX63yWZPZPHpuqAen8ti7aMTSOYc3wNXq8q6k0riVXxRLoOnhnvDGyipyRSWToxHqT1tc8ZJYTUIVHJIymyNS6EyfzvSXeSS/P024e90JURMmt1wBx9ABZWKzK1OLzHNJJ+hXFVXtoZxuS+4uk3zyrgocGqVkPQiUk3j3FSIqLm3oxqVuRRXnCvjtvHvnH/WWKqdb050Z3upOt23NOhXgTSYKYkURBFQqKc9uO5ThUXwE1JFtNrSAvWDmwEzZRQmg+oLvQ/lD6B/JfER5G0jiCVIIDMduKx+LxUhFQqxHpkwFGQAdzgq2IOCWmUShggMyahLIIPwDXuIevUaQSytrHtI+e4wBUFIxIRQENMd+FWuflssrTauN+c/gSs8oU/WCSjE0RIMEw5SG86VBU/nGsptBStAbpaqkMpgQFIR+sQr6EJNDDZHKqs8S9QllG3Y13QABAABJREFU+1NB5gHpsrvcvsr3E/85WOAWICkjK6NC3TLmqpu3L2CvUhf4qgqq5ZKPAeAPwwOpjrhK77RYzylFyNSFHiP9JRGZLIgKek49RRIVdixFvG2gMJ7r160Z70xHuYHhku/GrmyVPYDWaVVG2GIul/LWRjPscZfL5QyKnWOT8R3j7vkrmXwyni77AnZMNcU3EjsHh2+trI1P7r6+sFq3OJbiKb/T5fd4W4063h994eiN2Xl0W9Hq6hscohfrq6sBv9/q9CRjcaAMRqiw+Obv6Sm3jdlKHUP/hUa73+8lS5B4NkXjgf58+yKqAsWk3+5Guahkcd/Mp2fz+elUq4ziiN3a3z+GTCqGLaUzTBKzderQgeVY7P/65//X6vIKSWgnhYO+uetn0aFdXCgxOjaHaSPbDNo0xHfq7TpMAKcm/nc9VnJiYMc9Oj7R9vm0QLiIoxez1R0dLy6lXP0unzsM+auKy/jhUZASvPXK9llp2i2epiXD3hbqGVuenx2YPKaJGq3bmSjkC2fGh4OVmystc9nS77mymC+jiduA4WLvHd556cpNSO5ut61YzFXK2Nb5T5VK6i/9pc9zMma4lhaW4vG4qwwcb27EViqGBtvw0SP3pzfWNlaWvvTq9IeOTgwGI1985pzT62PPgQ2AJbpIwBFbm/a6jIV82eREcQ9et8nTcvps3lBwML62iMV8vB5ny5W202hx2usrRbvVXLfUEfhiooK0o7sAzyaeK8PTWJydjYRD8XjM1zbh+yWXFb/B2M2upuyJUmGoJ1iMx6MchzjTFFuusTHHoeOXKq262YO6s8tmAaDAdBEjqOqMpWamWnibU7M7vTcTOn8xUqvH7py3nVXAIzXNO1cxpi7wTNSzBRoYOW4ifIjNC5RdCABfoBPHFoFjsvsAPISSrdOmJNINeqX60pPzMNmpRKC33AA6lcCkvMxkI1V/kSqkI+o1UlQ9AjQUSAFIieS9cECVK0fhgbaxGbj5rkAsGkVp3R8F63HJ0xkiBRk2X1LWQPVW3gnu9fbr79yx5yh4Ld2XnzqrC+RTR4ROBdwxigrkikAgZwExD40yOEbahDREEOiDwi4DofoqMEoAsd5zmky/KBRALWXTrU4L2ZzItuXHaIH+U7xRREsE9FOhKk2B+M0X9QGVZlICvZHCJXQbTFzVqFK3XJjHd3S+84g0KukUpApRn00NqkqnaH2nVxukXsZmipQh79IPueojsKXOO6JbW3jHg067BEbfGfS+MbQ80q93Pv/e36GZK1CfP1zpkqBLWA9uKsU9zWhDMMjgaJhsxYDFd+jAyvWzyKy0zBoyW6vraz3RcDqTQ7o/gypTEs9/Fb/HjfQuJ4M2hA5IN+12EXPEVnBiUE1noVSEFmxx4ElFXyoijQwhhQzYfuBXN6AoW8dQQdPtc4V9KIuVayIDBPxASgmbUciCVVvGtQwe1MsLKUEqvU4P+mL/6bd+5xvf+tb/9jf+ptnlYY+87+iR106d+OrXvgK6E/B7bRYjFn6wwoY+wyuvvGK126GBFMpq7ltsgAw4DbAZIMpEIprXwRXnMZ6hHWNz2TLuYg7umMRCDnpl0Hc0OKZyYrXBrJXNHpEKM/QfgTxMfNbp5KHD87dmssWay92yIB1ktMVy2b2H9qwvLKJVuZ7M19P1voBlOVVH5xFWKvpZYuu5P+pwWBOpjXAk+Eu//NedKL0btMkdE5PjEzi4XFpdhnv64KEjWJou1asISfzK3/t7NpP5537yJ5qFzDOnpx+dGsAJWOrGyviePRDi3A7HxtoCnN/evmCuVgKpY/Ch5mTLzbFeHzZ+zKb1Bv4ybRxd7KlUCZZ+KBStZLP0A9IQbHemLmwa/QtmS5wc7Njxt6JB1mxg0QGgtpHJRJ0Otz+AA0jND/5WMlUtHrtzraV5wwMxgz1lwiQ2cxi4wDpifoHm0afvcxBEsLO01QoCMgAFBGCzYNUjnm4NtHBzMatkud8StuXe8oSMHaxxS6IOHPQEtZiICuLPVk4tIgUFOsw2BMbQfYsGKkBAyu3E7tO3jwhyy6eSP5tBv32r13iqBz1DN66/3b0l0k0BWFKH/DbhFdO8W77+in7llW6x3QysDaBzp2SgvbCrbwc4AQTIAvpVUQjkojegWzilEb9d5mZsa4bNtHf0Vy9t65XXtlbRjXcj76jcLZm2Fb6t/C0Zf5BRVoZevcIMbrcEEgG0OaAzdF7oOdBn+HA7du82+DxIH9p8bjiWGMzxO92opLrNZqBAOp1B5B/TTgB0iP95MFw8jlUh69ThD/uDAQ6OFYQ6OZghWwM2pXRRgKZwg6E5yFkEzAg+J06A4UXCpWRX0Ez5AuXIUqshRSIe7wy5UhkfwmtQNEisNYqZdHJ96Vf+9t/4xIc/+Od/+vONQp4DYn9vHyppbDNsLWxRabjHIf8HP/LRq7fmqwbL7v1Hxicm9YOF2MUsNiqVJnq/JnD/iD/cG4kM9Jk9Tk8oFOyJIKJkDsDphTaSF815EByxn0iDBdggC8supcEuYCfAwhoYq92NvA2dhKaOM8t8reINh1HLigz1Tx7YHUGJwWIM+11OGxrB8DYKfYORRGr92ANHR8ZGAQEbscTw2EQiV0nlK2+cvfzbX/raG2fPTk5NHbn//ny9ihdll9P1d//u3z186MD/5x/8vXo5Pz7Uc//kQGJjJbFRrJa1uVvXwbgxqUsnwn5/IZXEDpxgpsY2Xydfrzh8nhJu4OBpQ45tal40G3jcagWiEQ7ogOp6i3O5aCXzUeDQsNg5AvJdstkcC5OdMpnM8llx3IZ4KHtYMY3ppGK+XE3kc3yzmsnm7RvIsiG0YB4JRZGiODADPUAnib/3w3e95L9/Xbtnk0gUhzBdaKoTyrklUQ80aDMqf9+qfWrpyUOBArINdYj1uA/DcgTrkhIpnEmgBwQ25ItuqahbC/usXo2qT6L6bqFn0F/pNljIDXiAAZ0QvF9Oa1KRlMDakq2302ZVpIpTYOc8Ic3904VO4XcWoid229yN3Jlr+x1v6YEHnYhAh9vb5PYX3kv3ck4S9F+QNPnYAi0EPeeLQ4CHGMjww8sFRvT6gzvuv//yt56rWBw4Nwl6/dV80YYmb75QBThCVHFacDuFr3M4AbLqLdYscu7I2jjsMIqR/4G6qB9VqQdoAvRnV9B3GpH20drYKnHjxasF2l1Ay9hocmaLJSA1Ns8AtbiRAorBk0T7DCI4hdx/cGcwFLp4+do3v/6Hjz7y0P/+N3/pC7/7O41iYWlhIej3Ow8dQbMLq/3jYyM+jxsTPxev3QyEe/oGhj/+iR/5l7/2f2cTOL/KjHnt9nrFZbd73E2r3TI4NhIdGtBMdVxUTuyZcqcLuFUsVqomB5yDFv+FJiCwEqqnkAWY8wjQqmlrtAVC8fmb4d5+DKg5/R6IQ9nlmYFd45ZyIdgXhWGerzTXUyVD2TDSDjUzlcBQz8kb8H6bn/70j33jG98A11qLJ3aMjh07/gAscVwxwyqAK2C32zZW1+bm5vHd+5nP/rm/+pf/0j/+1V+9df3SR59+IuI0JRZmRgKjsGXj6fTN9ZbNW6VlLruxUcRxQMpuNCLUJDb/Gk2HCXN5xqvT00abATIbZyLcJqPcXDOnsXVqcruqNc5sBEUD4FBuNEJEBXXmS0F6ZCcAQrCfGNgvrYYs+sMYpGtq8PAB7bFCBR0Py+Cos3dgqd4uaQiVoakqiK0aHYEF3DDZ3jth27Ll9r3TtrtbojdPPo9qJ5GORzAdpJLaBcr6y9v6I7dq7vKUuB74KkQUoJbVryfK4mduK8ydRIAyKUo8nwXLqZdb6tI/rNCNKYDjlVwheG0GVorQf9QtqfoDqUu1oVO7arPAG4Jeu76SFOLQKUmedKOd+OYbkq5e3czxLv+qd28PqP42iXRfL1mPvFWpW5uh5+/mVCXL881B5cntwelm+wFGAPf6aMINkm+tmkITSVcLXkR9Wf92M1CiXYVS77HuuP+hpbnZufkVZ6XR67JXIQsYDSXMnuFP2GUGuwRfBkIjD2PH91MLKcOMCYTUaEZOVJygADwhmguDxIg2LBqnTAawCuphb9CnMRiuFx8uySVMR4CNV7GrzMAJJGrjaJGtBVWCkoBdnD9qt67e+qv/y/GHjh56/qVX/9k/+lV4p1/6wm//zF/4xTMn3kCBKxLtQeBgdFwsMSQz+fPnX4VcM7X3wIEjx9KZlNPhGN01NX3zulXT+nvwJlzDyjSWSoZ3jERHB1xee8tuM6DvNDJRS6TBjl3wsYtlk7tqdXhFkwZ6BgRMVopO1+Tj0h2332x1jQ4MN6rFWq2QK2UdYT+UILwGBPqj9WJ5zGiKZQrGpWQ41FNfSXzj3FlM7E1N7qiUMkePHvnil7+UwY5/9hKnoomJHaP9A8n4xrmrV1GPY20xJfHB8ru/+4V/8Cv/+3/69/9urDcY9TtvnH59/8TQ/l07vG7nt555vt5eubJRx67R/Ow1diZsxYncldh+EOvWxXpjPZ1MttoDg5ib69/AAmihFvEFCqlarlbmYFdKZgSIqCkrBC51JkMhB/NzLpcdlD/g9UArgyzncyHlVYC6HvaLqK7F7U6lCnCtJkbHUABOwy824fmJI5FIAXJuwugY2xLEw/dgYJF2V6as2C0A573T2m6riHSB0u3hJFWH/t0Wd1/opnQjWx/pca4Q+gWpYTarbQUIz8pkEvAWTymcW7aBbWFrpTSr2zLeEqaGbAHq2q17M0KZBEGm1LmQODnVVXKoSdjJ2qVS0JBtMFSK+K6+lv7W1iuVye3m4BKXxuuJ1KrinQbd9YfMhLuStye8kzzb3/n+38vcV7g/f9XHlj2cpqIAjiSuDAE0ILsD8F3B8hgaoUcfuDDz5abNmc4VfJgshqwvIFpDfB/9PcgQOL9FjdhssBarjWK15vPg5rCay+fRPgXDhfiDaze2AhRQoedwsuBMwDZD1cjeiItQDgEOrFQ2wYUNDi95GNlKqwbfyQQnF0qqaiezBnnN3aOe5ZsX7nvgkU9/9KmpneO/8jd+6Z/8+r/8z7/57//O3/+HK6sbszdu0rBVt7ssHk4CKC1/6KOf4FP29fb8uy/9t7DXe2zvZH7+Vo/PPRgO1HPxgd4QCG60DzKQ3zUUreIErFww9w1aKnW4qRaXp54tVWp1uweCDx6rLQZ03mRpKO0mjgEIg7bagR1TWqMKcyK7Qe7y0K5d8ZsXQa9RHGC363E6d+4URojJ7Mo0qh+OHpo8/jimmdcWZo4ce+j//Af/4Dd/63cuX72OF4zL5y/RUbvHgbdhJuDxR47+5I//5M//zC/+//7Pf/xr//yfDfX4jx7cnVpf/PjTTy7euBhwW/ft2cU+qr38Rq4+N5+qR5yOweGR7NryRhYLSUh3AY01XN4sJxPj/X1gdA72MYsjWW14PPjbcBYKZc4ZiGAhhi10apgBrF30QEUTE2DQdsITLlXYvHHW0UznQQMh6tdrrYjfkcuWsOubNxnsvpCld3C13CggLGu24uqZghhw5pg6BChJlD95oXz/J/2WGrqrkkg3vuX5eyKqN0y/dmERtyLErTdwa9NlxDfhEZGt4a16w1lP2LDQeQTZgjAjGr+CACpxPd4iRSyyqaDvAcwLAoXrZeot4boJrxXUlCMyTVSSQHpcx2R4qN673TZZ5yRJy9XBY8s06USZSQKY9Mdv1ZF3ni4F3SuQrvelG7lXrnuk6QVylchmIXo+SXmPof+dhnWmj9zBrANSAFhlXNgAGlUcauHQsIqhBEjelnoZV+kGS2jPAcP4peL8ClKFLquxgQ9PYLcZuZE6/hHrkMVF8MFsrLcQ5CQOSgGLOFco9np9aABAPsbGQzVXsthtMMOataqo+CEnZja4bW7EhyAgMcvMNnu+UMbwJGKmIilBk5QCOZAMWALiA3aKMfxdo/1PP3IsloiXWwizNMCIf+Vv/vKnPvu53/53/2Z6funV108CpFBcgqkAUxcBzXQ2/40/+no5taFViqODUZzCuI3No3snLFWct1t3jvb3jUSjAyGzg6MJ6moa9btXli12L9AfNXW807APgFkLmRR8SNHMFIzjEMvgmdpY+LTbW3iJgRnicvudiNLj98VidwcMtbI9IE7xduwaozfx9eTYUGRxdtVjqR978AiuOJ/5xtcDkb6//dd/2WJ1XL5xDQI8QrZ4mBzoCx06vD8c9iM49MRjj189d85pMb3/sYe8hrq13nrt+W9+5KnHIlgjshoG+6Jum2VipH81tXrfwd0f/vCHL77x2rlL56+vYQxURE+g8sWzyfHRYYvDWcEpvMtXaxYwx4TZCTTQyuDzVgSTsNKI1KYc1HETJNusbhESTTEPWuH0RsybZvMFu81sxL07u2S7jfXPkt09tu9QM9izXKoWbS68eqJoADhAw4AZopN2BcN4LwW1MKVB3ch7qXVv2Ra9tYApOQHo0Kqbd+vt2/SKR92nKqrofSAzIptkaHJh6ULRUdsAGdghOAGwMiHdEmEB6NBfCqFKtQ8p1Axov9kWld696Kl6zs0cOkBX9RPV7zYj23LyitS1WbqKd4v500YobWt1227fpnRyEroZtsbvSOxsyd2h6T58D0XA9gEQIGusVzrCgPCtAb9QdIgA0qtQdVuGcE//5PFHr0//t6bVkakVBavX8OtlRkqzXC4B+EzI1bS0qqiLN3kLkIHGLxQeIH5RqPdVcH8DsokwmaHrN+ExdM6XTpcdiZ1acg2j+A6HK1eBxVCB+K6OiJSEKC5HBSjzwj612pwuY91QLQ0Gvfumdl25Oeu02X/uJz9z9sqt3/w3/+KP/vCbT3/s436nPdzTCxQr5wpvvvH6+sbqrVs3Q0H/yatn/DbzTHLebWjev3+8mlrpiwZrBseuHYNjjx7FPHZTq5VLCDSKxP71mfnxXbu92C7BY3C0D84mls4gjyq5N4A+HFR0ZRDxE7N6RvGZib0Jq+YwudsBoyt89vmv9/d4bT2BemwDOolWrnmstkmjoVzIjng9e9rahVefP/PKK1huCIQH/tMXv9TTPxzpHT52/wM+P+7FhgCfxWL2tRdeeO31l86cPhfyRnaNjX7qQ+8rJlYSC3MfePjIgeGApV3dd2Q/0PrCN/8YJ8alXGokivPd1u7RvlHP49Gg03n+wmtXVmCgW2yontXT+dzE6HiuWHTj08bWgt0iHGGbtVTmo8CYNivetsgHcDyHvIO5dqfdCgHP4/NirAmsEz/dq7HssMttRn+gVqtbbJmGoeUNDR66r+AL5zLZiskiJw5wSY52CjgAMWSmvCeDzPbNht1zCW8+/EH+7TZMWquGlNYITYY/LfCKzdCFy2QiCJYOds8kVW7ZySwFbWqK8Qh6PtgXRt4FrKucHM/lo7F+NXROxBy01AQxVfS2hPIJyRiIQDIQA2yPp3xc6uIeQMfqYPOQREVRoGJVuzCXoBTTDN2qhLzIToOUiWqkMBw2PwI18ooqQS6byfxV54Pb8FY91aeX0C1VGyRNAoXQHfAO/Zar3KL+cDuh++QeEb3X+lV/TDv1QCKB0rjqj1TCHRfaSgYurCLeojt6h/hDd0npVqk/fau1oWpUn2zzhW6l3VYR2VqgnmFrtq1PN4vp/JVF3m2LHlN9Qi8EggBcSPKh0oX5egQC0NICtkEauO/9H1g8dyl77brH5UsXY5A1WhatlG0Y3NKSTDbjcwQ9fl8ysYFZsUK+xBTweLygnMzBcDhUKBSYA+jEJhIJ8A6Px01FgG8H8KmFc93SxkYR869ufAtzdEA9mHHkENmCt9l0YWra1M6VUNcyH5pEStJz9dxJX7gPd4Mbi2sIz7h94V/86Z989Y2z/+7Xf83t9ZXK9WAkzAmAYgFzHk4d6XVHrQhtIhJ07BqIWqvZp558dG32xuhYNJNYmTtRDowOOCIBu9PlCPWVKm5nxbK6kTKj2xvua8PGNoDPuxgVxd6UKc7KUAwBphrqaxi6xYwRtigwt9yau3wFN8LY3tFsBkukp51MlvN5c7WumVo+v/PitRl7235gdCCRzH/z2y+O7xw/OD44u7B6bWHpypsn4NDiRcfpcaSy8WazFgoH9o6N9fYMBlyu+PI8roQDLsuls6eGwp5d48PQYl5/9bW9e3fnKg20td1ew0svn//RD88enNqZjkcDPY/XGt85eSPBF67UtVgqmc5n9+/a2661bsws0EBMQQBIEJTKrK67/T4ESlm2qGsszU0Hve58Bvmj8tDAYLmMjC4WtW3ICjvtJowaGes4BWo28NXjcB983wesfUPza7GKyYZlVyhIgAcECYSgxMYtK1ymx5a5f8fE3jYzv7tbRbGArixLTNacLDeZ3xJDCnPThg2JLBBWKBGey3817btrR1/dWxeRWs+KIiplKX0dHZZuNpRXWPCK4SIF6uWL6Cm97nS8s9I6j1h5wEnAKe8BTIC9mwWSoZNHRahBWqiCHtGvPBRq/WYD7vhLeueNO5LvfUNmfSMhQmv4UPRQeLsczNXA6Ok80tkA3FJQt03dOINNSaQz9qomGX3iOtCXMgX4i00hggyiog+RhbLu3bK3SNUb8BYPf5j87kZAZihhi61e9XXlHNANXWBXrLUw4rOazf/Iz/78l/7JP1lZX+px+NZK2YDDI/SjRktMd+NnuF7PN3J1nKqAS9dFbATaMQWKhje7vijc2rADx3QC8ZSJ0W5DZcL1G8bg2AOYJKgUYIwEdeMqyrLyfhOH6mGXbXLHIII9F66s29Dbspi8dvPuiaHZpZWzF66hpgvN6fr1m5jWRLngwYN74+ls1VFPp2N+j99c14b7e6rFVD5ZPHRgvFnKHNk97jO3R0ITfWHHxddmD+59YvdD92s+d6tVS0F6qZa0Yis4sD/cO4ClBxv+MFtm/CyZ2kLSEPVDHcFRy5s4MxiwiD8veBPVSqNaQtUrjZwbvGi0imMzN0Mup8kfdjpwU1/VioWxttj+vLmcXo7nj+2dgOddbtZvXDr78GNPiZtGBPMjhxIpepDeuXuqZUAts9ob7VucW7ZX0Uluu00Nn83sc3gH+iID/b1f/+pXjj5wvH94PFdtnr1ybWE212vXZq6d++hHHqmVxq7OrR6cGJ2eoVxMamvxZCKWSqNP4LG5ekKhqsnSEww0SkXka90+LxK9NoerlM/g9WF4eHhpbgblfPzdYzUIBE5owPgH5mhnqYL7IxBodLlWE9ldTzw4dOC+m4l0jv3Z4ZRFLegPOx33Mo8YHHAv4Qa8twOw5d7gRcEpmYnvpXAHE7jbMNWBzkBv7QxxFiE/IlsDL4ovXj4SGxYBETe1JoHigvPRabUxsAEIBq0wXyA4iZJZfWn9ql7G1bUAd/VEqeRhMEwOyWKQCuyfF4WxoB9HUNOFzqS2Uzk+vMtAA/S26ZF3+fYPswsZXaE0fGD9HMeY6Du3zHMY9J09QIT3BN6xDXh9IQBFrFQdHhx8/Mc/8+xv/NpqtRTyeVNV2IEaHv+QGodED92I74o6d6ON5f+21QTktzMNmD/gj8B3cFscfHGLuEsVW5VtJG6QwLSuZ5dDNlOzicyR2InDmhBSQExNJgdijX67aSjortiMC+Z1rVZqFDKVHIh84Mjxhw8fmnvt1NnFtaTD7sYN5PzSOqW1CsmwPzgY6KfauFYzldN9NsOx+ybskEcOHkhvLA1E+x45vv/3f/e37j+6f2LniEBHRgBLdbYA3lpwaJgt1HyhKMR8MWWANhrCj5oFfQScxnSDDhJoof4DbtZLeeyARvzBoqmxsjx9/vRJl92SD4fCXo+11bA2auyGjr7olNefTJ9GCnN5deF9Dx568ZVTTz10cH7uyo6dkxjdy6/Ptmp1cyVfTVT7BwcsHkd8dTGAuf0KsjeN3sHI4d2jIa+9USmicf2+DzydLVbw2J4vcpayYs4ftYbs+kIztYIJiqjL8uFHH1xfTzxzZh6GPe7TFlaWR0ZGRnuHAuHQWjKFo4VMrZosl9xub63mrpcL2GGvVUoubw87NICbb5fPZwH+fD/R7ag12J/LWFAyW4vJrG/vgfue/nC8ra0UKu7BwflkAqkBTAyybdMSfXIh8aX0MhmkzTnWHcH3RmQbGNl2+95o4/ZWbJmGCkzzvNtuInpcj2yNd7Ppj7gFtrPeuFWAW84BJBKXXVxIHRJ00K8/YkKQQQ/EycmVP2iRANxZ4epO7QRqAxCFbAlyVecxeYWZgT1gbjknMk300lRVAn82ixdgpAJ/APlcJSfZbmf4Yey7HQE5lqugYP3tbyppyPWKrdAO9Fd7ACdFM16BcSIyk4yP7t/X8+RjsTdPJMtFeJ1YCjPhOQIaiNjJ4F/DYnNi0YeSdFUv5PdhJVkcbr4fLNn1WAwlLDCPSqsCRREJIOAMLh/cTkczn0dnAFFjXIfxOkI2FpPmMrV73PZ2IWlva5PDjkShbWnWcunUqZNvFDCUjOVQ1AigZbdqmfg6zrkMldwYrqk4kxoai/Oze3dPeezmgAPGQ2nvnp2VYrptax0/suf1V7/jclseePoxDe/zcazkNO3Rfk+0HyHRitGVrzrM2P/hSAGtEk0VZe1HyNn0ge3zNjDrDF0FrTGLzRMMlvPxmbnpZjWDZkN/ZKC3r8fjcmLepJLPoOVmwlhytYBl1IDXiWUet7ntdVsO7B4ZHN4xc+NyJe3u8VqXVtbrpXILCnzT3u/btXtyEgP9l69ec9ttplaplI5fOZ8M+Vz9Az2DQyOziyueYHhq78Hl55+/djXBvh72ItvqXVm5hSHPtYVE/+DOh/fvPXVmPoH9I2T2s4nF9dWgPxSOhOPZHHiYRcPeBUpj1WA4tLpYwLNx2dCCRjc0NBRfW2ahFgDubuxniCwQRv6YCrj9KvKB3J5HP/lpQ7j3+tVbhmAU/S/I/jZM50E/AJkUyQLhGAJGmEvideJeK1eBGpl0f8ZBQRu5dKDPZvVv1cg74NJm5h/g344eQLe5eoQrQe8SkW77unE9wpUAQGf0FYuGV4QmJZBZx+vlVWZ2R0xfljUpCllkgyAPgZlBAOjLtaXVmpgTUm6eZQ9Q24DaADhJkBlYr17qjDaTA8VzKpNjCXNWyr/d2m6zt0VUqzvZtsa3Zfvh7TsZgQ6OL99Yz94BZF30Xz64POF7y7dJxVIOq12D0OOynpu99dTnf+r6jpGzv/1b7OMmm9tuadaLRSFnWkzI7Feq0PqFgMMGALLPqQ8eEnFMIrsQCUXKRsw+mx11DEWjDWxuVmowgYkk49BQaoBz3JzwOnDXb9fGekPHD+3Mry9jM/rg2PCN5VTE7cAwncvlmpmZSWXyNncAZDW2tox3w9HxEaZ2KV+Ynp5t1rVDu4aeeuzYlfNnXFoFC9ZmzEBk1j/09JPT05fn56c/95M/AfUeygy+zcweHL8Eiug5WQOu8JCzaTeY4OtC/RSYJnI+nFq3QIvuHsDuRXLnaMsLeL5DYjKAmpofVhqWTa3scFBHvAYHCHopU0hWS5UcilRasxLwOvp7AyvLM41K4n2PH1lYXE1lNo4dnGKprccTcBNWpq/V08nDR+/7+PseK+bTsZW5RtUw0BPs6w37gpDf/N6o9+b84oUbs6fePIPRz/1Txr07x/ZMDIXDLkRwS8n1y0txnzv60O6BP762gtFvuPFLibUd1fFd0V19uXw6X8Bjl9/pjGHK2WzxB8PteoUhyKUT0RBMBxdjns5V6tkKhk9RBYKJiDhv3WjT/KEDn/xR5/DYmfmFutNjcThWYolg0N+uVpAlUgwAmT1IgvFjfBguPuh7MOiQR4cnW+M0VQAXjZav/p5r++0TQBcU6q2n3VtTuvHu0Ospt68KEnCrOtztJ/Ca/buTS39XhmMzENfxfVB+AjgSPDI2gDqCAeLlQ9RHcfwr2wPsZLWx6FXohwkEJ8AcBcMEmaJOVbuqTPaCzUq6wy45dGikP9KLIt6N3H7lh7F3MAJ88014T+5OtPueQgfkW0tEfQ2wODtioMHQ6voy39kSCa436jsfPF7MZG58+WuZYtmHeW9ovlBJQMe1FqxdOH/oskLqhw0Iso/vGERbItEomCYov9ftRgCRWQC+yQ6B6oHL7WmWsigcYb6m1qwVsUatZEzHhwYePLDryQf2zV4yLszP4yjM1qpqlXLvSBRSBhYf1k6evjF9we7y3H/kSKQnurER/+Y3X0xktE88vR9vEw6rNTZ/w29BVNQ4tnMyX0w99uCxciG9sDjz4Y9/yO6G0Zo22N0GV9AZiJgCPUWjvdC0Btr4KcJbjGAtiP2jzNQSzqbSY1PDQpyRAY/hVEtU5ic+FeCTVqtOr3fYv0+rFVux1cXFRdjComiDY16LxjEGB8Jec4/X6ZhJZA/u3/Pq629wCon24IRr4/77jng8pnS6lM+nyqV6xOOyhpzJRGp1YXZh+sbIyNDgQK/PZcWhzPryQmxjKdo/1D++YyUxW9OMmMM7cux+BKvqhXRfKOB3Ie1pmjgw5Sibvv2Hr6C2NRru8RtXsIRXrmqcAJZj61NQ8MJBFq/bai1abRlrY21j/dC+fRTOmsRSNd8C8VlM85bKS3Cv8ewGQQxuvviGM1r2ffyT44ePXluLpdAXdjmRsvXgE6JRY7fEn4NZIYt4fwaFxGAGY4TP+zvW8OZs2wpVNtP+jP4qgCPo8lYw0o2riGJSsgS2gL4/o8b9SdXIBqB3QM/ZbffbvNjNr0cA76oQ4HAnsCBVCt9MsHt2br1Yxkj/TlwJgvIrag9yYoB7AoJilZqcAFje3EL3F9ivc95Bw9T+D+gnsNrlamjbYCfJigJd4ySw2YK3/qvaLI/1Jr11xh8+eUcjoEN2ycqWq4+/2NJS0Extyp00/U9bw/xDvYSQu3ktldo9tePa9UtaKPjIRz9cXtlYP3+xmk1h5k2w/hrW34VRio8fHBCiSgoYBfV3ifF7d09Pz82bN7Ezg7l/5AqoDQPIzCK2ADSsUoVcoZB3CJmjiR04lwWryJYDe7CjM+GxmvZOjFpqlYuXbyGgWs5ll+YrLpvpyNFjTz755PTMAkIqxVLt9IkT584tTe4KPrA/YKxX6pXajsldyY31cjF75IEHQMQfeuBAtVV66eVnP/WpT+JrdCOVsOPK0eFq2l24e7S6cMYeKBpspRrWSepsZyBBWOJEDFXoSWov1KG9DJQKLBi1BzCpNZ/HZ9IqGtyJTK6SWK2Ui5FgxOnzYyGj1oBVUsRXARRROx33unt7e9Aw2zExfOXa1Y998lPf+s63QyHnoYM7z565XKnUQ4NhhGiuX74Fx+2+/XvBxNfWl4vpWHwxXSqmISl5Av50LltZXCnUtOjwSCZfOXP+QjIef/rR4/cfnDJa6+VywRnyD+ye2Hdt+fqtBHzjkQH/xnKG00o6Wbo2fT3s9e8e3YkX34jfh9GlfMuYyOb5Fvj8yrZqFqetUc7TRey2FguFpdU0FCkTLIA60N4xcuyBySNH5rKFjULJFupLVZt89ojHk15fRUkbXrm+AeBClH0SE5KUI3uAPmTvjWsXjHQj3XZtT3lvngCUDo20WaFpaunKOgZsy2lLDXj3KvfdsK17HSivQD95eKoKhDJEmXLHRd8ABfQrppDaANpAfdY2nD7sSYPrl/DhLQgQjL2aQIImqUILEjoP6BHEAdR5YAmKIwD8jkBLAPKrGqRqftxIjTpgUm3oNll6J4b1JE8nSMP+uwr0SPFd5eMwIvKpNnugvpcuJSEjoI8DTzeff1/7ycelfuqF1KNXxG2H7NNJkDbh1aoIqN+xd9Jf85y/fOXInj1rC/MY6Hnqc5/7dq25cvoMhHitXgQBcGDXp675ManmdlWa9UqjjstncfJsNHptNrRboZA4HDacB6iNBkjbQK+W16GW4C/A4rJX6jjLAl82Bt32Hf2RgNOyvjS3ayiKHtP5S1ex2IyxhXyxvriamP3yHzHtUFheXl5dW617vdr7H5usliuY3c+lEpM7xmeuXMLpyfuefCyTjQ0NRbPpjTfPndq3bwrHVZl0aiOVi7ojgVCvNdDXsAfbNq/REbCbIP7YIVvZMPZJ1wFhDdGRJAoTWElfy0DxdTbHR55Bk+WPqIOhHhfqxx6GuZA3u93VYt4GcxYmQC1XLsQblUyl0cYbjWtgoLSyMj65s290aHll/qGHjufz6Ymdu6dvztTrnoW5BYwn7JzajTrc1ZszULQOHtoTxFNNX29F4DIOPU34IUDWxul0nDt9BkLN/PStXq/zvoMH2s1Sb18fnJPqyko7XgmE7OGk1dC07xkdu7x6rmHW8AawvLpywX5hoCfscbh6zAGYutlKayjat7K2duDgVK2FRm8m6PCnV1aQCe5HkNeFvbdWgfVstUYP3Pehn/75k7Hker5s9vqRIHJ5Ay6zZWVutq8nZCiLALGsYh2ksKDVaUCG7PsWWFkCI3TIp9f7dnXJ9N72/B3CE1Yl29hdb98ubLMlstgVF02tesUGuZ1Jj+n4lsSVxOi73B9RjpFSwaAFr4aar85XSvUCFp5qouBhqHOL2iQmWBBYJlu3nxJhwjJzOZkRNpHwDjOAdHYGID4/med4EISiI35chbTT4KjZhOjPARjeL2gBavLYDiOwhJHxUIQgsAI8DdSUPjmolBh+QVBaE5k/UDEzb9IiE2RFaTq+LrAJx2SR7qhm6YMiUYI6I2z/Zvqjt7p2erq5RuXkorLSfhkHHStRDG1ydjLfq6ytj1TGzuVeed8yDXiPIKEOYkXHgp8sC2mSDKJgTPKxiDB7m+IGR263Vk3Reg+2Jd6uUlhtEnT9jM3u3n4uEIugNk6inZ1Wklg7OnIm10756uurBkmpFI04dzTsy8ZiiAgNhfsT8azJ4c80GzOadvznf+5UT2Tp29/RWu4g5sNrxQFnCAPL5lo9V0x7ekJ1cz3cj5NERyEVQ5Kmd2BwYHQQw2TL66tH9x0sriajoVCjXpibm4NRnMSKgvCPtVy+9ZFHdg0HHbfOv1FKrBRTw/0DgxN7J18/h6uTlgUydAKI7zWYGrihdzl9B/djgtMJPzOZTjqDgZH+6MKtGwGP577jDzgw+NzjGNrZe+H0WcxWjx5/VEsk3nzz8sDU7sDwJG5MCiY8PEYNvl4UuixNi0gtmU2IwSkyKNYfGDBZB4g+QtHqUIKkjeLNWjZtUc0nD96+PJrVI5kDPnMAYxZNozWTyadq2bTT2nS7fJrdlE+tZZNJOzI3/gCLb3n65s7dexZm5+Zm5v3eMHa0A95QJWqcnl3/ytfemNo7vuvAca/P/Y0/+CKIE3buQqEACxwrbMxhn99bqlSZVwjPwvceHeiNbayN9vfE45mQt9fm9mDe2pVcu/GtN9v2gR73SNTsLJRLSP7kMsXljaVL0xcOTO7F3aXbZt4/NPzKufO1eiVdK9l6vf6Wc9BgPHX5Inat9w8OJZZj+HLLVRu2/Yc+8Et/+4XZhQTnGocHi7HYAWnhVZNdz+uG48HM5fiki5FBQ2AosEMhQ9VGne4egemlT7nOxJOFKqGbVY9JNpXEI3IqXEoSSFfZJRcR4JPaeKgXnSUBXsSE1Sh/5ce7euiWvy3C024KcSkXKEVpIhR5jyDwCp13Hb0jjiUFuZMlQ33UDxWM3rCwWXHCENfbpxoiEFTgEV3jfKlWJLWLdyZpcacd6o+0WU9QvaUdt3kAUpUMonRTkG3RQNCHujPg6rk0nXflzz1DNxPZVAb2B/Iz1bpBTxd4JXBfBH5kG8CxC0rhtVqxXIZ4i9VAVD7lEMCDZo0zAog/0B9lMxwAoCOIYVgx/S82BoD3tJ3RYlyYNlKTdFMFGYDb4Xazuxm6D0nZ2q+7M3Rzvgcieq9E34IuMUNwUiFfuzNd+F4sHK7MGWJ/Zu1lom4Ndwy9zGEVaCp/FYLDiMv2VMeZg9iNQXrSNP7oI8yKlZdfz2RzYQ2HUFk/lCBEBwkO1KfQ70URSxjFUztGg/39C6ur6+srff292BMOur2wiWfmZ0WxqGkGP4VoCO4dsGu4HHzpmW/6LM1DUxNul/3N82eNNvfHP/HhYrl1+cpcNlNcWI5hScKHSy0KwXEAEopF5CELsWq55MRKRTsc8uFuIJmKPfL0g9955psht/ehj35YW1p64+SZnsjAnoP3Nxz4qHEbfFGQWezUiY49plHMqDHIkpBP0lmK+jiIUPtmshoX/Ryr8jCT2SOYumwRvIZVaM4MLXPNP4CTXt/KzJX15XWfx+pEk9kXqibi12dnJ8ZHh0bHllfWRo4cmb01e+XSJcxZ54rV0J7BetMWCA/dnFm+cesWvBF/JLqxvhabTYaypaHh4d6hcahniIYGA95iNpVNxfE+r9XLqcR6wGUL9QbPnb7UPxDqG+npP7zn/Ru5//A7z99YXZiaOJibW0Z7g3WWyxXX1pccJtMHHvtQMVPL5apjA/3x5ez1m1efePrRRiqZX13fOzXVjGWyiQziRlev3+x75ImP/pX/16uzCzWHu9yqQN/XgQ8yPwpqqCFShqC3TF5kgSRdHz41ZO/ookOed7IKdNClVgyqqPpklm8kkOEeVekZ7vHgbZL0cviy29aG/orAHEDZZnW0WYf4/GWd0HHg/j27r/Yx2imHijsh3tu0RR4B8To8AG6k+ncQdCj5rmAlJVN090UiBLYsBfrB8tERAeXHgDsye5ViXgiIaF0iRCwbgLABQBLEU4+4fkTvx2JG5wfrgNAEZW9mL+BZ54O9gw5syaJ3WZq32XcitE3PsjW+5aUfRr/7EdB3LN7XpylXxpqfbFQWczKXGw6FH//Yx67ZXeeeeTaeSQcNrmK7hlUpuKxQ/D3o1sIQBgWsN8eHRh1B36kr5xCLHD98X3ot5rPa08nEzPwCwBU+KkdJVguLwu93F8RJYfuRxx4fCPuz6cSeqb2YZ/j2N/8Yb+NWmw8mEnR8JtvK+hrsR4xihvz+y+fXjx7qadWLHFPHx4axyrmwuvDJT3/88sUznJr37dmrxRO/9/tf9YTCD378U/h5zxVLBovTaUSMCNugMsPVGVQ/Et1rxDqrTY7CWE3ckoPx2LISORkwOPjVQf8LjwY218DIzoTZkNpYQnI27LWHegeCHveFM6cCPh/c7PT09JEjh2ZuzoyPDk7Pr5w5c2ZjIwdNHksMoE+7do7HY6vDQyOw11g6YF6lQtEhzlMtK0sLuARA2mhsqG9yYhj13XqluLqI+5jyzI1ru4ej+48/dGD/ocMH1tZyc5lEHAuvBrjGOKbPa7H1eLtQm4xO+D09+UKmp9c3okVfv3QKIj5q240yQlrutUpzPpaaKRTCU5OP/sjHGzZ7olCymO3vCmBtGaXvb7S79ruQ4ftbnw5+O4CnU9XbV81T9pFtW8mf+Mrdvfhu9rG7S3mblK1tkmWhgjqyyIU9QDYA7LOrDUAQf7YBkRPGhhVn+CIWVcRYlLAFahAoibfQCMOWiqgBS7XIDFMkERmRdxb01pJXj3Sveopexlvl6Wb+YeS7GAGB+CC2ioalo2Z6IRxixAGA1boOQ9JqOfz+JxENalvtBQzIWHEgplkBrVDokfoEDzCZgj63R7iLRXOjPtIb9WMCwtDK59Lz83NYjcYCUQGX5cwLkarURAax3oRahGW373z72dkZdJjWIB/unprCUD6KBKV6eSOxEcMbJMY7IUXWGrli4a//8o+7/F4UeH1BXywdw+nKg49iAjo+fevG8fuOIeD45a99dX09tv/gfVpPTzGdhauJKBF7iSLFgZqAst0xwdiN1IRlxclZnSAgWNEaFPuX57wqVlFFiPqOVyUJQfgGRhhgDDh94bFJf6i/1sITMgIyNoPVvnNyL5scNte8eJHHx5nXubG+4nfb+vtCe6fGkMO0GOvzM7cWZm+w3CD7rK+vLy2tJBIx0KxCIRdfW0sm1rGojTXs+48cfOyJx/YdPzo82McSwwJFNNj38guv/8d/9uvZTOl973tq1/h4vVwqlLLD0f7+3iC9qrBM85Xv/OG36qWiDbKssb5n58j4QO/KrZtYit6xY2eh3jT6Qyu1esHt+dDP/IyhJ/LMqRPOgB+/b/TrnqtWnxg/kOsPEA7oVb+rXndb+/ZvbS25A4XVnw41v1sKET28VXH6y/rTzbzy963y6+n6Wzrc70j1qEMAcSj++h4gkj/8L4P7lwH3PBAHw6wQpEPBk1jKrDChlcoJmWUkEhWsDGGa3flTraFB8hPq0O3f1mZvi+td6HakG3n7fv3w6bsdgSbUbwihAiG7rwoWUq7WHD5f3WK5sbqa0Np7nng88thD1VY902qm8fxuwRyyWRjALYRB2+GA1+2wlLPJ0d7woV07S6mktY205NLa+gr0cjSKMToEt8piFiIY9COr1b6wuJTOiADi+MSu8YmdXgg1mNmsVjdi67jn6sHNlsOczmrZvBbuiR594IHf//JXT52eFqfEAe/xh4499aEno/2Bm7cuP/TAA2weJ19/A+tAH/vkJ4cmdlaXNuw03d+DsWgMPmDHR5f2wSIW3lG6nbwdkY5DWQZyijAbDCz1iJmNpov4m72dU0F+uqI2SzyfoU9gRQ9Ba1h6RqaGxvYYzK5SsYobHZfbC3Xlj7/1LdaPoycMDbVRK+Bb/snHHuiP+g7t32loV/Agtrwcw8Dq8OjYE088gfMADlVLSwtzt26uriwUs2m0p9Op2Nkzp1559ltLF8/jgndsaCjsCxsb5rHRqXKx9Rv/4t+eOX1+9+7dNkz7abVIKPhTn/9pp1PLZTH5aoitrF86e77VLLabhZDb+vDB/cZSwQGehjI3gj8ORy0cfv/P/ky9L3pyds4YCJUgaygW2tb+/sDjd8OBPzNQ0K2aSDf+VgOiZ9Cf/omZySYlqrCtwHdNAtLf37oNbCtx262ek6uC/iA5EkS0E+tOSga0SwhiGyBwIuCHRAeEXMUVEeQHGihrAeyPdUOLoRXC++QnAkFA/02pUOHKylYkmJaKyN9t7RFq4GbaZp5OZm5pZzd/5+mWlO6jH0a+2xEAzHWCkLiVUAwpEG0gvseTGQ9mgsPm5Xx+OBq57yMfeqNWyZ48heDQgPIv6Hd7YKNiS9LncfrcdlDWod4eq8u1ODOHLMFGbBXTnxAG2UuEz2Ay2rCpj3EJIVQYB4fHdw5FyunEiZNnXS4nbm9X12IOXyAQ8OGMMJ3JIGs2PooPxxDuJa9fuZpIVA/sjZpgPBowauY5f+EUtKMHjx0tZgpzt6bT6ezQyOjg6A7cNyJnaXJ6MWJqNDmMBjvUSjB5wWsB7Vt2Ob3bMvvkP42SLIr1KxBfRYS3KINBAKWRia+/JI/lTkjBVsUcxoS22eGO2AymenIen/SxhQVYsn19AydOnHjf449GQoGNtfVKMcN52uM04cL36aceOn/+6ulzS+kE7iZzCNRC9Idz4PM6kS9KJTdCyPE4LUGPHSY7ApqJ+Mat6xc3Yvla2zM0Mt7fP9Gsm5PpK995/pWmLdw/EL2VzbJj/fhP/dRzr7xw9o3zUPhHwtHXXnvt0YDZ2+cvpeKjPWEHwqflytriqi8YXt1IjN53v2vnrouJVEIzBLHTF0t7nG4xFi397V42b35w664LFqRNf1ZBKu2uDVXpn9gMMghslDkjf2Raqfg7bLIOme9hDO7tS9Ff21bH27yi59evkDsV6NcvQv/Rob/I/WwGnkHxZ/qL4zCj7oyIFNi7iE7gAh4qgJhOFCFQBe7VXyB/RzNANezOgbyzrTRVb61+vfOh3Knn3ZV39/MfpvypRoCR5fOIgQj9ZCbTXljWdos9VlwX0f5QJF1vrlerPf0DD3/s46+sr+RvFYCxBLcDTeEabH4UoBqVMkcBsITEykopl41jnyybxntASWEaVMGUYK54zC7oiqlK42Rs9YU/ruCunarBzQ8d6n/ooYc4MqznCv19PZFQKB5PgDdj1R/JUOT9x0b8UEcePX7k/vv2sA1ZDJ7hvkAhk7p49pLDjo9eTNiFCjgrNlvtLn+mWDUYXNYW/GOsGHFwrWIZy2YzM1MB59smU2dTUCuWoQS2Yw8faiiEeES8JLusZfYQiRPV8wMPIWtJDhEqRamgWW1abe6gjXPQ7M2enburqwuHnnzfzddfePnF5/dN7dy7ZxfQ/+Klm+VKfXElMToxOTYUpoortzYwkJdM5NZXcgszywN97uHBnqGBXq/Dks3EkvGcSfP5XX1uj8vlGIz0mJ55+dKl6y9OTk0MDw9avSFETmuNQjJTsbrwceAM9PV9+md+7sKVvxXPVSOOVlFr3rx1bZ93SqtyCLDviPRY2waUybD4g+nvwQOHLq3G1o0GR0//SprNHotv7wZi/anm3bt+WcGHDkYo8bcDKu+68Ld6Qa9IVS1ZVOT7UjEAWW+DnAAIepV3Vqw/+dNet24AW+NbjgIiCLS5MaBkDkAA/OP4QkkTikijIIsgP0h/YhfFYkU02ohEkIiEKqkfAf9qM9DbT8+63dvW+m1Lsdvxbdl+ePv9GwE5gfGFlbov3F3wZEAkWv75VKa/dwAx3tVEEpgnSiG54nBPdHDX5Ex8Hfo/E8HCNtBEZFlzOmxrK8ukYOt5cWGJ7728vpGtAEeRfoSfbHI4xNg4CDVUoxJm4UqFRlELObRkVnNatd2TGPcMZbN5pD+jQ8NwitfWNuLLq23Rv3XbANuNkrnVvP/IoWOH9hfS8cW5q2NjWIFrv37qZNjfl8FWnME+snsoNLarbbbhoLFudfvhU7uCmtMLYIZbhXwbBB4HZwKF0guR686AlK0SWEMDBvZXAfqmUUPdmIwySWl7W0PF3bxVBsXusPEMT7/sfBa7D6M6lY0FHMWERncW15dcbt/qzavRnr6wx7k0e/PK+bNY4jz21GPV9YTbPXN9+iZq1MZ2bf++XdlCHXuoUJ48DpvH7XQ7EbAyetwOj6O/J+QfGe7FWsX83AzUoXLN5PGGc/PJP/jW5f7BG4ODw6HB3tn5WKFaMbl9fSNDK9n0p37mp//jF37v+usnbiZjewdHFlcXhsZ70Q2uZbJej8Xvt0F0e+HiVavbZ3T76hUUEkTjx4zinM2bSySwuNc59Nw5Pj+oO2DIJmz8s26CgK9NKaAuKH4njdAzv/0r+lMAI5Gt4FE2AJL0oFemg2YygWKDdpGov0ZE0PMtgfRuoASe6FciejoRRQ/lWQf2kq6TgMD41QFAif2rOI90UI57AWTylGwPSlsclVny0BybcP8gPmIPGGOFQhIWOXcREBTVBGpWGKXUqG8GnRo7vaVwECvZ9Tb7TzPUnRSiR7gSJOdmpBvXU7Ze9VrIQJe7cTJ0R2BrZuJUxyP9qV4sV17clq17S07Fxey0Rn+VwVPvdoZaL41X9AK7726N6I+6OXmkx0nXI93bTjmd3nfK6L74NlVsre7u+NZa5KkSCYZwJ2Z+5Qtgq0eUF9oGS61cAQqazFi8gYzeRq00XigcfezRmdMnBkeGvYY2aqlYSg4P9TfgDeQyzBI4mdhxW0CZKFlqO0xV6OOY/RHTxCW3xZxNZmz1sg0Eo4JxMTzMaH299h0jg4P9EatZSyZjmCrzef0mixUZBNzRGxA/SyUrUK3r9Q99+OM7xweunj9XyMYeefBIKr78zPNvDA2NwJGCrdA/PBzo6Y/Hkg27Nzi6U3MFbSO7EFVvVkRrhbMH3r6YaEB55rkNKw7yjVg+EL1FrYY484FpC+LPIYbOckxp1Su2sAmfB0rYzYo9al4SpcXO0lGDh2IzBtX0gF2NUJ9Wt9QWNxwuf7teMFlt1UoWlYWJifFzbyYW56dRCxjbsWtyYgz16fmFlY1YBmZvo4WzMUwq4ZGyXSvlavjW9LpgSCOJsbGxgZTd4FDv0NgE/jivXV/I1My4aXRr6asL1ZnVmfHxHk/YF4ulizUMQ9SWMFwa6flLf//v/9LHPmXx+/JG7djx47l0vA+DcNhEQpPOZ7C7XP09/UkMuxhMeLSvICTrcSIahEyHw2ztTjeZYPyT+S7TAuDDVU5DkqKnS0RYfipsSZf7bRNVf0oiS4anUvbtcu6dn2Emv4A4tl9l3wyKxe1yVBt02EWebroqXGCanGMVKNAXNSkEeV/qVZ+QW4mBlgjEQKZTRBRUpUwKMhv58DxE7XUTqgAh1ft687tHxw7AYXD0yaGqkA5SMuVwJegl6xHitFmPS4FqKEgkdE4A+s27uuoF6dfui9xSTfeRpKs2ictWCbdJQJD7WRs0i1SVSwFihDo5PMtXg0EExZ/XxfaHCLqyXsyQgID4LC5FEQAAyGDeDt1m3B0hk8yvH4Yf8AgA6zDdKnSYzQ1AZjFLnj2cDZGnaP3IclCiMg0+vMU8MDYCqB3bPVHeWAGW9vf3l1EUbzRu3bhlsNiT2fythY0KFiSgJjvtv/AXfvGFb397Zj1mtpmw+F8uNlAfwrSC12Ue6sf0WbBQyb9y6gxqZsOD0R0TOxNrcZfT5rLY0C3IFetti7ZjrHdsaMBtMzz3rW8MRPzve/ShfDqe3IiNDQ0n4smJycOtVAmaBqeNth2XLxFbuE9zBjRYz6Ah+DIwIQgjS5TZScfsVtCLDtcLM590lglfLJdQaKiy45VhheINBaVm9oBiLptEup+Zyr5ANvYADrqgNCIpqrYNVi4ldECgcI9tWsVgDUS1ar6SKBitdp8Dn7zVci6xf+/uq5cvwwRpVErPPvPH2Wx5YGgsEvSsxldLVbx0ImxljIYjPT1hMKpCLqu1nQ6rBXOhFy5dRm5q9+4pvz84vMtTmEm0rPWa2VrCPFtFS+Sghln8AU++1X7qIx8KDA1eWlsNTu4++rM/e/o3fyebq/dEfeN9Qx5fpJQvmavNYiZnNLkH+vqQ5D2VySPFjfwo6x6KX7uEEW/AxRZopKDhHfc/4Ol6R/XAkO49IK4bf1cRgZBbXlDlbE3Y8kxFpdJ3XJeUphoptWxprV6oqmt7+d/lBrC1LD3erZJIN1Ab48RU1jcA+Gw61s9VN/ag7wHklwWD3ip6CTaQf3i97IJmwD4QQLBD2QBabAAY+4UEJPiVYgLwiiw6YZnJqtAHkvXDvrAF2suGJP1WO1Mn0/Zx+OH9n9EIyJeSVS+E7s2JLxhAN8h3FG6nPOTDm5z2/tHh8tIqnz1Xq03s3sNeMTM9O7+6jC3QeDK9uJG0BgL5QgE3io995jPjuya/+aXfh5RixWK+1VCvgESjCuCBFrSWyK6uJ5x2YwhN2QAmJuyIIQrzGVH5XMbldh5/YDf8AJ8HiggoSOnHP/sjGmaAyjmRS8bjucUSCUUbOKnBkX3bVDdZ7cGIu39IC0Y0s6vOpsARlfMLokcy4cASRU1bofBMbjmWyklEtHU0kG9OEuow1MK+qY3zLKgn4q5N4X5B3mf9ovrJu6L3LRObEROKkS47q4MQ2SQFW8U4nF/2HtwQW53VWha3A3TK6GJ3cuRzhZFB7DGPfvvZl29cu9I2O0f6w/Crwb4hi7ldVr8XupO5gOE6ZHDj8XQq2zLY1pOF2Wdehwng7xlcjJXWMshiaxYPxja0QqVqbVdtgcBf/PznI0O933z11fPrcW8guvOxJy5fulY5e/rc9CJfFuPcfQG/z2BaWJp3Zkp9B45Ojk288tobZp/farSyfVvdznaTXVvc/+mfvgvpiHQWrP7gvXFVzfveNEXv3TvvoxoQZkBnueiRbe2hNEI3z90N7T4lwlPJrcJ3swHwYrcIwVP0w9qWz9YpW/2RWdtBgDiKd5S/gPsEfTPQS6PpCpqbDbiWER8vJGPLgCBooewjiA6K5R/ZJ2ShKfE5eapCt+fyhhoo/c8m5O9Mqc6zu4fnhynf6xHQP+vdpepQTM52CjnQMwDRNuXmBd4RZO+XPC3ofTiSdZUruEnpDUX2791/5uyJ69Mz7PIuX3Du4nQVQjlKUuW6++FHnvjRz1597jsry6sBm6ldb6Iu6HUiSIChEzOeHeE0SYl1o6mMhFkumU2akQRNlQDJAZ81HESGHv/ENfFDbLPuGEXyqJzE+Xujvr66xhHk4N59+PZ65eSFFowC+FBuL0bpjKGIZnHiy6YKvs5SEIsoAHtsfuK2DK2AukJO4NrKeKDPxTpmNyCxVCxiHsfqcaHEznLEThCukNFy48AMuiNr2QhNAMhPm8Fv1LDoB366IGtK0Q+aLTvcEZgFbVzNe0w5V3x1wVTN4OURtdudO3deOHvh5ZdeOnjovqff/9T07MK5S9dT+bzPYw8PDkAUosOMzCqKweu5ubkFNq9ytZ7OFts4ZXYHY7n8mRu3jA5DGuOfTrQNHA4rGgtw6VpR8S9fOHv+zHPrOd/+w3P5wkjfwGOf/rHvzM7kN+InLt1K5/P7dgyOBAMaCjyFjLa20je2C6vQS1Ux3QQC167XBauTHsly1U/nLE992vx3sU5pqt5a2v+nCZ1iFNR6q3JkZNQzfWRuX/XUzdekPQrkSX61H+hX/bk8VUGP6Nd3vQF0XybSDZsN6PzV04H7RGgQEQLUHpHp3wzqVjn8Ug0FoMtb+JQwWQXWq8VPp+UEAD1I8CKxBtGxWcQfwY7koE0gQui2YestcSlVsH8Ku3O0ui/8MPJnOAKgrQAzwWQV0CcC9IesDuorP+ABqICCDJJFPNDWHB53PZXhQ+6d2l3I5rA2bMIKvsuFG/ckgp8GWy6W0noHH/zYj2YxBZrL4zgKFi7mN3Ei4He5G+VaFilP/L3YxKlAqlheT9YBrX63FnZqHqPWGw6Mjw319gdM5obJ2PSHnENDPYBieLOz87dia+tBl++hhx/3Ot2vvH5qNZ6O7gi5/GGHP2T0hTS7CyMsBbiaFjv+KnUEX+Yb5HtMOsi0rKMOUKvUAK8mHL7LzBYzSxwCxDs2GWVXguuFIVOxaIWtG7Oa9zJOCvrLx8EGAOL0SMAqDhcvsSJ4mY2yiTUjTI1CJEJIAnvUFltiNZ1dX9o3MYKgVG9v/8LC0muvvnHoyAO7H3ty954Dp86dQfOr3S75XP6x0QHMayNbgfIlCmUowsVWU4trbZO1iZRTw+gxOtKwLXBjXC0g1wQnHi38ts9rnxwbffzJRxuT+xdeu3A6WUg22qnq4mQo/OFf/pt//E9+rZrYuDi7lMwlpvp7DqBy4XOtomO8sjjS34+z4na56gg6OIF4IYNDRlOL8o51+p5cprSwG2Tgv+ugOqwDJQXx6K36km9RIJV2xoh8m9sAeVW6fu2MF6VJogp6vHsljbj+SI9zq6e86w2gW0q3IIA78W7dxEmhdP3K+gbWo3ouVxxAK7UvrrIbqGy8KLNfD0wyOeoKDUjKVLgOwF+KhPRpQrmHo7HCsnhHBEE7QX+bV/TALRG9h8S7kc3nP/z7fR8BfczvrkYH93xYCBxqm+/AfbBYtRlw4dsJwqs/LZdLvpBv9dZsqL8vHA6fePUFplqgJ3x9bgEHJqW6KVetaN7goU/+mMEfiRXLqA5Gw96w3ea34Q8MR7S5UkHYXyVUS0qg5EyetsOu2ZA9MWvFOopV2nosXWtCGO/fuXNgaKg/EsbZDLbmqi++9nxqPXF438Gdo1PpWPL1k2cSyZzd4YlEB0LRXgsy7Ph4MVgbFIlumM3NSaLTI5jIrQpmD2E8W1tilM/qsgvMxrJ0Hc+GWEDAewrZWxi/pSKr087kRr+9Wi3CFgbNQdrTwEEX7wmwxIziSKCBfxytBlegjaKZGlbZA4xmaFx2q8NQtZfr8Btsg8OjpcTy2ZdP7N0xysKKhMLRnoGbN+a+853v7JhdfOjRR+5/+slmbBWpWcaigleZvKFSLADYR0bGyjMLUIecnnIqr63fTFMtpDOsrgI61AqEZc0BAI/GrZDHs2/nVGpw6MGHPWeeeZlTOxvg9dW1fb7Q+z/3My995YuN9ZsriXwVb5S18t6Jhjc6PD877Zg64MKBDyZRDbKvty24hodjKecdOiRrthu5e968x1Josx6+i3bxIm/p13fyuoJgtwGsDJQKasT0ceuUJmW+xRhurY64fsv1u9wAVAmdi94ZfRvQ4zzgliA55KwqGwABsK+UvYT9yy3pPKcbQs5R8jwwv9QGIArxBCy+QUsF+CuPGbJkwJm6GwCrhDd5naDn1696il6yGg0ZI2635vlh/AcyAkLqEdN1QEqx5AG+T2C313F/nhIUMAAzlI/Kd8eFrNPpxLg88oIry8vJZNLqd6ytrF64cqVQbWLxzRLoefAzP4Vt4Su5YnA4GgyGjxw4VE1uAI8TmSWgP8q4LosF1/Jup8/m8bQQJirEc6VGHWkDq5Yua86QBpgcGh3asXN0cCjkcIF4VL/++1+7cDn5offvHRweuXL1mtOG9TVPPL0wsnsg2BN1+QIto4XJCz2nhWyaSaRZwFnoAkddJjkm+4Hn7VbVWC1acABssZmsDrQbc3msneDd2oBLSxhZWDqpVorwgJE8wrwChlEq1SJdhkdqxiGyxW13utBexrgpxTPd4RjLRqJkNwRFAi8y4TS3xY7C3lBvtpz+wMjw2FIkevLkmw89+aTFVFhdWacuOLqXLl1ZXl5+6umHQ2F/71BUqzWwgrceSy7ML80sruWKDU+wP9jTt5yYYzP0BB0NzbyykbebxZuBJg6ZRQGTw5nf4Rrr6yvn8y88+9wriWq6UE63apFon9nlXkomD++YPPTQk6dfL2ixmURRO3NtFb7C7oPNZr4Ohw/v9k6rhTGg72iDM1gWVqec9NRnfw+vUx2qyAT93gUBSrLr6cBJzf63KFwgmHpEhL+dxuhJb/EKhcpbd8E9PYWrHu65AejGWnQirFqV0CUFJRfEXLByMVQqKZiRlnYp6SZQfL0lkHEoGlkmZqfUoUw9A+ox6wDUV4T/FhY+xXSKEmqklawivUuQ9BEOgYpKUfAAqFaWFNRUwAZa/WIHBpRfjsFsGIodIJMHiSHWhqwHGRpRD1ZRLqRvDkFnADef/Pf9V//yfA7BlvkiRDrQUz6P0FgYSbqoI6Tvtb5Ka2nT7QlPDNVuucoHBMLRL9VFkMOQE0GfyuRof3lx5drSPNj3fHL11TMXk1X0pyCKWN//4z8x+ciTZ1bW2m5XoVR58uihnJZ/7g9uphPpfKbqYoK3tVKj4fEEMQ+US6SQr0cwh0MAuDUz12bTvD5HNBoZnxibmNxhcBtjc9duXL0MsvKhD+47sPtgaiPT1z+0NLv8yquX99831YDU43C0zNY6iCyi/AbRTabZyP0DKGWiGpo2YTvYMG4EaadYqc7MzaPkHImgcjAOAjMzvXD9+s3JyUl2NVi8SODUquVarYyRK/ixmUIaAU0HLi/57/Syn9nsSLTKKYCy2XEoVHAq2AtNVlTNZbdiO9eOmQy3J5Nctbcb7oHB+x966Ntf+eL4zM3esR39B/ZrhXIgEp1ZWD1z5s1z5y4MDvYGgn5aZ7M5BwZ7bJx3HO6zF2c24qlMgQOG22Qvx0TXwWx0WdmLQNgx1lrOlvhEdqfWOzy269hD9uFxc9tx6dxLXuxglxvxRGrYYa1o5jNzc0985COOPvcrv/MvtXK6bNJuJIoLJ85MPeSL5S73PvCQ3WaM5/OuUAAkkZUPnIDJJ8tYDCXTO30df8/m7DtfAvoKEhRFX16bTdDn5ead/NWfC3AS8KZS6MBm07d1QNbh1gBcFghJZwUHogR6zrsIvsoHloHgMwM6O+8IC1RqkXsBZqBEvKxE6SiZF1UHpRIKFeXyzntqBQlhsJMArOWJqkl4U2JKQWYr5zm4b/w2gzRIFSE0dyALgESayMG6Dp8KS7ymds3Ygu+EoALfDvwcJhamejha48QUG4MUBP4upSBZDGzGoCepTNaq+HkU2U/8AdBHDPxI+zk+swGA3CvWrjCzNMy6IBzNHgOCiMP3uhSDp2zWigB3GSNYACwE4QJQEhoCjAFK9zyQoHYNaZfcyOgwogR1YZRw+s2d7DeCSsmP55KX0dCvlLn5k4FSxZJBXukEiUvm70VgM9NL46rTs4h0v8K2GmRUZXawt4rnbAjDsl/ScBovoL+N/2+85FgFTEAeVnMLWSr1iBbL9ODfZuP1IaGPUoveoc1H2+rdekvbuNWv8p7aabZm0OP3HCAmjLTldpB2yvjLOmKiqZ1eGKkc9qSpkEV8tcKeXu/6tbm12LK1bZ1bXD1xFayyieU4rS/68M/+wvhDj5y4PpfRGuMDg8F2sZFfeubZr28srntNWo8PUzTmPAYv/f5CuWY3QnRg/JpMmTpcYL49pJe2NhhFmrHH5bAjSpRZicfWNjzu8L7H9nrtTswYINp/68b81Us3du8eNtlsxoDfGelBANTmQrMpjN1/Jh8+LeQroGGMJR+wfkMTMk0qlca70eoyEvCOqT07/b7gBhbn0lmTETNoPSvLCVRiIWqhMJDN4mwGZAU3jW2TvacKmo/Si2a3tc0024bml91hgmrEYGENsd6y2pxMY3gaBVwe11upVDbgtjoCESuuvhKLuNP1haMTU5PXrl1B2MlszWk2b6A3tNvndQe9s9dvenw9Lq8rX86kcSuc2hgdmbw5szjQN1Cc43yVWk2WN5rYHcU6h7hlXs0Ux3r99loxBEdd06Ih/+CRIxv+yD//0tfPNk05bwBvwBCp3CJHi2ippRJwXSqk/bv3H/65v37+xRfb1y41jO1Cy3b6pTccjzwSFc3NpsOEb7OqzWFHokq2M30i6hNj0xRSB2AxO7vzTUGmt5qh3Ql5O7+aZmAT8mkEAKh5u1mZXg6Zu/mJKGCqFhTdV+9snawqp2xWCguWggQHEDSXJcXHUeWr1gqWqoKUTgqwTq1SmR7kRqBRILigzwA0pjpX/ECgfsJwwGWRQWqj0SjfGPgJ0xyxF4vNbrRawHiaxI3mGqT1FkaWsJejFi8rhpEFHFIYKbK3guGoVSSQWrQOaTZk9wYkeYwO8rZADTRu7z2iHAIIaloL+k9cgRFJEe2WdssqeDdUHMpsUjHzHmPszEblxVd0mPhJxc0aFbIBcC7GnR1UIESBlOy/AqwCglGbMUoPuQL6qFc2FhkC2WFpNlb/RSuS5qtUdgvaLNBfBWmmwPDOOKiGSu8FiMujTfgmULVzRpH0dxyYE1Lzeybo849BokV0iabps5ZbNVkZHaKMIt3vzMJu2/kijFn39s8+0m3q9qoFzaBt6ujGlqY6xsSAwtcT8NXSa2ilrsTjlWLj3OXrKcge0YGmz/PEL/xCcGr3GwsLZavR5gym0+k+jzm2sXHk8MF6dLi4loitJ1P5ohBiqiXsAzFf7e0aPtSZS4wCDFcoQwd29bjspoG+nuGRwVhiFax0YsdUKZ+7dvW622q3tUyz03MLs4vBcBDRoNVYfGRkR9VkabIGXV7NbC/ny6w5Woq8P8NdKeQcbls1ncWdfbPa+OYffScYwfbarlNnLr/44ouYte3t7Q2FIuD+e/buTaVS585d4YpItLiQD4TcPpz3xkxWQyG3zkI7cmA/FofwqXv+/PlDhw6FgmGL2wNGzreFJ8wegH1sCEf9g2P5zPra0prH7rZ7ArmNVNhqO3Do4MvfXro5fWvPA8cXrlx1eoI2XxhXmlO792NA2x5wuMpO9N4gSDElRkeHs4W1RiuJS2a3z1apNZNijb1eBf/StEyp0Ndo9AesXqNpcv++/Y8/HrfZr5aqCwZ7Hl/tRnjGODtmlZhoU95Qm8tlghZLYGD84U9EYwfuv3nlkrY0rw0OBEZGWlYzgiDy9dv4BG5ijA+JbpmqehD4uBn/Hv1VsOtdl6WvH16T5a/eppytcEAWnoKJ3as83dJ4HTrdXm486mTQy1Ovy5yXyLYgCKBa2qTj+1B4QmYzWuKYwjdghg9zg0oNBTBax40R8FxExwQJB2YCkHmdoye4M9grcBIoTGkAWa4UqK6AVeJqA9hWt36rZ737Eel6oG7Z12i/dEEOCFTf3QA4ogL8Qdzlb4OTQRvj7Dj7EiPtBCj7+Mi2oKzPsQHUH+iP9LRod1EcQ88GAENMbQAC5EQmVIj/EuREolBm/dod3zsjW74DBQg4kZRuRJX0P8tF+r5llnWH4j3Yfz4QAaSBwPeVAJEiErx+49JSsbxUqly/Ng3io/lDzWr58c/9xZF9e+ewAV0u9fQOoQOcyKSbztDh/fdrZsu55Iux3EIDqnq1YbJoGJjFzTxqZTURsTEq3kMddMplw7Oc8dix+3qjkdjamsPtjPZGlufnL505Y6g3DR4AkgkpGohqg4ODqWzOhhddl9cdiHiCPRqyp2Atos9mACEClWGuo96lgea02oVi9ctf/SoY3VgodPaSQP+1tbWJiV0wNOAYuwK+U+fPYJYZyyb9w/3sB+wB0MoTmVS+Ut7RN4b50tlbN0+fvZjPFwN+r8fnX1pZBb8bsDvAAfmILECWNItFcB2IOXZXCoTQZHZ7/KW8t1TaAHTs2rO3Ucg3kmkysLySGxsn3zxrtTj3TO3qqwXXVhenHjnuMprnzl4NhgaKtbl4NhvLFtpi0NTM8dGEjKlFC/ithWStrGnBPp/f7RzctTOwY+x0PLEmPhbov8sJtxoyDuAAJrdRs/s8jUo1UyrxFaJe7+5j900d2leulZdjMVvQi0Mn1r/RLuPOV7g3/HsPTs0/XZPUGtwsQm0dQE59JQKYtuwrCvjxgCB0UHB9kwN5NTMnT7sFvz0WuwEVdrOlyV7QbFr4Ro0WO4C11UYtscoPaIkondDWZY6zDyD/wMZDAvsGOw/AQESKcR2oHDOxPWzSQ9Tao4167URUgkBdInrbeUREgDeboewqkHbEqIu450DMGVwANJ9/7EiC/3OeEUzf2ORk0Ab0i7dHBf3l6AH3WXTlFfrPUVYsvcsGwGSmCy1aCxGDfLIVcKLhCKCmuUAyAQ3y2mboNk8arBqq/+3cqTYTl0Zv6Yveo/95rnR/c3ik09tu3wvj0P1AtJMppDfJYLKtlepn59dfeO2Ulq8ic4mNHe/krs/84i8ae3vOLCwkGjVfJFoQvaaa2+MuVxp5Uzu/mjvz5sVyMhb1O1vmhsNlzyOpWWMhWJhLTZARDOdjSB8HBCZDMOArlvJrays9/VG4zRfOXTzx6iuVfLHH58fLeyqT5eiwa9cuzE6lctnRA4cbJqsvOqBF+oRa2WhYHC5O8PUS3mBs2VTC7/dxrFiLx1dWVrKF6iNPvP+1E2deP3HSYXd95ic+B90f66N+v58+7j14APMPHB2wRwQylEwm5ucXNhKxh558rNmqz9y85fEHEBVNZXIsooGBPnYIRHf4jNgrdbg8LBhZ4JoB83kcqrFINzQ8llmbNdlcnv7h2JU1Q60R7R3MrC/jVWNk774Tz79Ub5kOHNh36eKN7zz77FNPPgqwufCdFzCS2tc7dHV2owYuieSrQUMSqYbgUrPpZYVaDIlkrcepjXisxUp5cHz0wY9+uBEJvfLyK0Vk+c2QonDEQGZ1qDc18SqJtAenGXDWUr26kkkgZOWAn223eQZ7K61GrlErsahR0FA6Dpj1Ur24jRS/F6bi96QNW5ebFCjwR6Fi6HcIlAa8gV6AlQMsicjZh51AgJR6xBWZYCCaCc1pqwnrrVDMZGDNVjZzVCCdbaOj2bI1mna8LDRapXoTRle5bSi2odErwhSwGnAKegIEBTgLCGRHoEKQLOozWuRg8BYkIB7oHeh2gxTapK7SVoKo93LIYJMB88Glr74BAOJ1L78cT9SswDqXbAyYXpcdQQj/QooWiCzCecB1AL+y7sBxXx7QZnJJU9lrGCDJ2wlMd53+wz3FdIP+WL9Vj1TjVYO5VW2WbUwldF/6nyjCCNw5Dp2P+94cAv17cSXUDMZXL9144fw1rQzR34G45yOf/NEjT7zvVnwjjTeWWsXd2ws2tLi0FPQEoKcX1jaWcqWgPTyx+2A7u+4x19eSK6lWA9MRSEyCB+FHFNaWJiIKmoMiIcM7bLlCdiK4C2mbN944ef3q5VK+mk1WshvrxWQeRNgfCGCBJJnLWJzWYqvZG+o1YfgBQz3CpQLPYjWwxISn53HY0xvrANzf+Bf/KpHJP/HkU99+/uXXT50ZGBp87NHHR0dHs2jUcoa1mgD9fBF1CG4m8mn4vb6ewH39UVZPMpHikT/cU65VE2tri9dv2m2WTK4QjYQq1SpoD3YaHG6vQAkCq85gBuvCqZcRY24eP7b4sUuKnaIE0vlaC60IVI5R+MLb5eJqjKMJjONcrolo0NjQYCaXfeOVU6N7DjQMTiRMHaGgt9yKZ6qNfAObFfhnB8ezumHKaTBIvG7vwJ7dSaPpq9/59ss3b9b6dyLHaWtaYVhA4QVxqwNRMNbX1CpqpQPaNZuFhZ8uFCrZpC8UKOApmN2MrYtPUK8zK5HDumMlvzdn5HfbKr7jPV4V0AYNEsxZQJPI2wBDJQDx2CHklp1ApoeYPDaa7ezx+EOC74MhNNIs6AtyCOAo7GhpbP7OutVZb8INwjFEAZqL8BHEJCJkeWKAVEGm1bGA+oQhwrbDD/uLaFvpG8C2hkpbVLg7XdopoF+0urhyAgCcQ/2Bsg+wVpi+LuYjnADcOSoH8LIB6Li/NIhTIzNAWL8ShP4jyL+EzQ2AHYptkV6AoqEGhrq7DAdBx+D1uH69x/jqmdSVppKBnN2I5O907p6v/g+YKH3fMhG5VSP5nuup3iqmDS3rxisNlJK8gcnDaVfPrr0HHn3scYPdeXF9NYYdAzFJE+LYWyoVff6gy+5EVdhbr7sHJnojfcZadfrNZ+NLV8E4AU+llAYBG0hVE4wD/+RNEGSnQ8OxOxLJu6YORKPRmbnZ9fUNTI3QhHRCG4houHwZGR4G405mM5Ase3qG1/PFh/cdNDj9ssIwdoZNiFKJZYk2VXZj1eN2QeD+p//0n/72f/n9Yw8/cm1m8ZXXT3zgAx+Y3DPJqF+8cpl+sRbA5d1uVyQS4SjAmQNkDG22cg3CixFLcBC9YrHU2uo6FCHooF5/MJtOvvDSSw8cO+b3ul1OTCiDcMHQEMoBCnHsasAGwDpkMQdWidJrzXTKMr6rNnM1j5/tRht/Ca2lpd2HDze1C6fOXLDjxDLi/eY3r4e81//XX/p5Di6vnr88E1u8Nru2mq+UWhBoZMpAmLcJCKmPjoRRpoD+4MRIxq7x1XbjRjbrGhzOCOJvAsszcrRiI0RKid5pTbB9hPywiMenhJLk9GJYw4+f5Y10Eg6Bhksf6NIieyJsT6Q5hAn8P2LQ57B+7fRPwJEOfYChRIHGIjcmmD/SDkLnll2dzRGIxQFJPHXC3HKY+bmdNjAVAZLiF9eCPZxqsw0pEKaAs9F2NJpOoD+SZ0JfMxRaBkzt1eG8CtsT4oxsNrKsBIGWGDOcuqUy+dD3CjIF1Dt3PwSYmxrGBh9bRHWoAE6wONFmRlI7aL7AekkRMX8CCIhsFZImFr/olFD9oT0J41dIP6wfCWLcU7VSzgGyAbCZyRgpUg+zXQ0lGTrwmxYSJHUTut2ObTZaHklHZGqSeTP5f7q/et+7A0X/9aH7gQyEwK17BgEftEt9JsXI5gTJPPC4gkfe/9FIIFgsFs/Mr9q8XizwVFoxq9cFMSGXztmsDjTEavlSKpF02l3zpRrMACDLSrWygaE3hVKFoMyDkcgUEYqqSXSpqlg2QEDeF/DnCkUsoHFKwEj0zPWba0vlnTu8w30DiCjCs8U9pN3tsXlchXoF29Th8UnNE4acaRUzbdJilFeQk0/G1lLxdiAUfeaZ5/zB4NEHHr01v3z/g4+Njk/Mz8xfvXodCQnM2LFz0RGKZfEsLy6SyOmezQCjbKD24EfLS5DvjeGefmb3zbWrsO56+4eR4l9ZWS3k8IxsV4JDkE85SEAcEDyb/OBfEIRtoNROr6HoJSEYHVq9kYSCYLHaS+WqvaUFfb4f/+xnT168Fo5oB/c6Xvz2a//u3/72kx/86NDoVKwxf/P5iys5rYygp0V44+a6hsQUdkyzK4lH33e/g2NHb797ctJ/5PAjk7uXXj29uJAy6+xGRgDhVrBMRkKkPJBJteKhTO11JYzHwQsE77Q6HaB+gHwRlWqIDo9Y84WA/D/oBsBX2briBBDpM1+4nEzyDjhSE16gExivvhPKWxBCDNBFOGEZndg0ZAPA+4JdYckQhoT1AuO9ZW8bQQeQEnI1Wm6LscDpsIm1fC3bbBUqbYQfOLBW2cMhqoOeG7HjIdXQCiAsKVRDIzobQLetqkEyp7opcrMZBAArsE6CUH7YtjDd3mwh3MlmQEQkPYH5iG5ySEDgkwMh4B9ykCLrsH1xSNSr0Gn4cgJQO4HsCgpMq4uI+vMD+gP5ySm3CjekXjVWW4dvs3Fb/krj6ev/9KB/y5DIuN3zm27N8wOM0zbmiT43iOu3UBYznFWrrVgelwCmti+QhIywETM67WiSguC4nB4YR6l4Etarx4rYpHW2UnY2mkf379tjLmiVjdzsfD2vRQJasgi5BjwEyg2kSeaj8MoAuJl8+eq1G8FIuFQqnT59OpfSdu8IToyOozvmtNuL5erl6zcPP3DMYLdfvzD9Fz7785rFASui0SjWsgWHEwNxFnCZVqk42N936fIFhDWA8vmGYWFpKVMoDztdX//q1y9dPI+LU6T6//gP/6hULCBQ5PK4hwYGFpeXctl0tLd3397do+N47vWjZtzUbIlE2ufDSJsN5RdsmrJE2DMq4i2b04YpGPK78DzpdopkH8bjzEa2KDYP6PGteskIC7d3qDJzHkNurmBvYnX5mRde+vSPfRrca/r1128989z9jz8dTxV7+4bbptfypWalblxfimcLNZSOq+k20p9eDzZITfBM7GZj0O00upx8lord9smf+7xj777feeX1S7nqucs37d5BaLewVdoWYdjAQRB7FPWa1xUCGGDpCIku0DvYFcAd8fAnwo5GiAacXljVNpT64e0hlCgU6h/gvPuzrVrgfAd2batYMF7B/iUAA2F0Cv2HIbYiNGBABMiG7CdsfyzjC+4MGsOJFhzZLDz1RsuBNjrWaWGyQwusN3M4UkVkv9YqGpploaawsDi0Kik7oawACmiHzCB2Yhl+nutBNUCgv2rqHYmsTxS54EAjvSqUetYP1s45EUCDFPEecH1MPOHgQrw6VsUxEjNHGcFim9cZtwKCEFUwYNETtrYKoAVi51k4AApiU6/epG5LuKXfimwL+ijbpJwR1DjqOYnTNtKBBVIBJ1dRI1C92Nxpeap3Rvgim6H7or4b6cmUcDts5rz7byePVELY2uZ7f+C7S9BTaDnvd2FfN5sqlTspfPNbSBdoKl3sZtM7JR2RMQChUoHyOEWpjook2L0Cr+jJUoFejbrvpuuRbbf3Kunead0Xtz+m9be/wO2HggmSrs9GPhb/RBIYzVNzE+RSdYIW4+EFMUikTRgzM/OCXPU2AnIiSNDUcjjDdduFtJ9JTPT17Hnf+1PBk7lbM+VU2V4DU69ycq2bjDXE58TKUGNlPWFtFo4dmHI4vc+/8LLNapqaDONuTMC6yYx3+EuXr/b0DRrs7uvzc3vvOx4eGkX0k4Y6PX5cCDDpHdiUMDRxVGQoN90O5/z8/NLSktHlR8MXt5Ff/cofzF88J7idNJ1eSR9Taxv8lm7c0lNyyfT6/LwXJN/vtbm8y2spFqrH4x7A43pPxO12Zq0pFv/y8ioiSGMjQwsLCxD0R2xDjoAfKw5mt8XtcjNctVbLZnFifEJrlu0DO7TVZq7cjA6NzVy/eur1N/bs3HH44KHVjdTrJ04cOfbI4PDYwaMP/P4XT47Mr1gCkUvXZ9VWU2EHKJdEkMTngOXhYNmGfOHpxfVPf+7H2yMjv/fmyT86d/7aatbmjtraVnDLsqGK1gYjgFIdkhs+ix12H4BeeBKw8PioLEX5WAAuA0LifG82TEj/qC/DMmBQEKCSb62WZ/dK5F5zhGRZAvJnM9K91aex/uidXFkn22a+XqisL2roSCHI8lOLmyGR+DspWc9Dw3SoQoSlyWSWLkEuB8oLXARP5gbAyDDxHPt7aAUw04VKA+kH09xuHADZjV4UOWxYLhEPKFjsECqQsoQGI4UWiWgzjpIMRiu0UocZ7W1TqWVvoTCAuBXiYk0LNrBYKbC9DKh+C68W7EdYEDSDmhAHeudd0nMKCKahsoUIFwyBTQQ+WVuc/tgSmBPoezVqcIIVCUhEsBF1EDlWk/hwYV5gRxEn3RxjBOZzqw+TXNWX1T/MtrFmDEnZ/PRv2WSy8ezdfCb1gd/VC29Z+Q8f/MkjwJ70LtaQKg9NLlYPUcUcE6kDgSLs7gqfYZsT1wJsA2rywOBdziX37BzxOQcaiUVXo+hNpfJLyUq57LXZmUCInsuxFTIEMvvVdiZbKrtthXIrMb2ERxq7w4WsRSgcBkEBqZmdnY9nMtZQuFBrYXXfFe5rmnGw66UR5QpWfepYpuJMgfP0dq1scbuZwk67bWxkeD1bYYaDts/fuEFzRaCNi37E168ilwmzQYhcWqNZyBbK+WJybQMzQcBfzrsbJvPG6grUHni//ciohvysIAR+2Jk88C7aLexX+31YfHZxEAdDgMhThcMqRxLUA0CvfVqod3zP/umzr+3YtXd1caYvEmlUa4ghJWvwL9rr6fTUoftM3zx57tqct7dmcXjy+UUgucuqOTHOUEX2v+50l3rHxipGw4///M8PHX/0d196+Xdfez1rwAPOoMsZrUAt0ow1AD+jL6pCbRuWTwWsyC1gTWhvIiKICj8XyNDsJnw1Aa+dTwbYe7ezQU2JH9RFgZfvSYuFZIbaFlwQ+cscwJWoKMMarEbc2Wl25J+B+IL1C8ncAs1fWKdATPLIj8DQiUow5yo4UQw42yhLhZWBzXxxqGUCziKbwDnL3JRDWgWZIJRnjS38ViB+w6uyLykX6+9iPPl4UI8w16x42Bymmf0NA/hUk6tSLlPHQNaZov9QCacGiJOyGYLD0QPmMZMY21myG6g+da6y86kgGyTQXgL3DLoe1C2TSkA2Kdse6Sl6AW9/Jade8ttn++HT99QIMN3ZPHQ4rxsKBPEQdpmAP7haMiEA6tAZoGFvlAs4dxzH8Ez/aGsjbgov97YcG3OLYCY4h0GkHXiMODVzEmHQUtWYyFQXF+bt2Prx+UOhYKQnBP3a6bdfvXkLQ6S4zlpP5ez+yP4HnjAN7qBOuLjYnBBelg2v7GC3HKUd0L+xu//s8y9mMpmHHnqyZ2TimRdf1TBUx0FbKpRWqqt+gX4qktoo+UC9Jwk8GL4dghOSRsZWLZ+M57PpYjaFLiWFl4p55CnZMxAkJWATBQ9eVgioAFiRsRAqbAXZemi9UFcQeHX47X0jRtv54Yld1UK2VKmTDyeRhhy+x7CH3Q5EB4uallhP2IpIIsFBBGFsYPnHQG1NbffegQNT+yDVRMd39R069uKtuWcuXzf3DQ8FB9olUykJ5LcJ1DEYG/QAY0Tq/MZhjQ4A+OVkJj1mrcnZHPYOX0Y+otovZDskvHtsQN76AYUuhCGyNf7umsNQyflC9kLOSQKgxeMDlv/we4QnFCMyn1BGHIj/28wgExiJcogTREhAKFkDMoVSIoizApYyuqJLDIpkBPTDt6+x/8IbMLZhUFlMLU6n9poRSSFHq52vNzCzXEb+BpMjYOqivAX8l8PBuwwK/VcoGOdoKQdKJNRVcW8nyA5IGB9atJzlBIgsgU2omBxg6AOqDAL1N+F+J875QBi/Au8ZWYmo0G2WGnCGjOf6T57oifqX0N+S+DvD5fW3qKRbxdZ4N/GHke/HCCiA/U4LViBDnZF5g8nExOIjA1IF5rABCEhlQfFPwR0mYtPj9qxurCcq+aYfgO6KTuwfyLUzFy96qw1HuWCqlpwgJzLBjCgjMftbBmc8VcYUGlZ3fIFg3+CAzQptu7WxvG61Wwai/fZAz5XFtZ33HXcFB7SWQFcE0+xMZAhGRhRxGsBMfDE282W7LwDxE81enMxD+sBcmigaVGqyc90J/VVvVONZvQYciNEJZCVIRkgSvJCICEFz1oefht/jpNWCIk1vNATdiUeIjUKmstpscPiw34lMBZaDkK/AYgSQlaO3FQVem0eze0O9w9XY4sTknvlrF10WUzxT2H380VfPXG6avAUtnWloS8m2IZliO2RYxUJGRQtFTBOTu5BQYhe1B4L7nvpA1u2/ujhn7Rvt7+lbx8Ab3ugtThE3VPLkMHhlOcpnELCu72eAeHBModupLwUViGf0bxPLk67KHkEJd4wMye/poIMOmkikG383LVYzQei14goUaM0UAlOH3YKUv9NscFnMOH52mjDtZMHxNTJTNmR/hC2vSCa6ppTMXpkiQFp9QIXGxlzBXSLJCOmAcLNLsGPUhTZpq5ocrTr+oMuNdtHQLrVNlXazBm0GNIcd6N20nlkCOiOGazl9yCBgA4ITgaI4C14uVCGOIbItAMhhY2AGRDEyONqyAfBjkrIddPYx2crYB6X5ZJdR5cfpSO+e6qak6hGVyO129J9tRw5E0p53FMipl9/Nve22m/7DyPdpBO75qe6ZqBqgA5pOW2QGgCSDb4JdCOiRINL44CByRROm6MUakjcYLxevNUtjuw8GvJFXFhbdowOtYsZaLyGdXCg38tlSIy8kmEJZy8/HoJlWmwbYV7Ca8RXsx0O6z71jame+ZkxVGols5VOHHnCO7dXgvuHPy4Zik50FWKyW8U8Axu5x4n/M0CyW9+7dP7Fjx43r12LpPEsO/TQaBSYkq/XOsNlfZemQ07jkkdneRJtHckIMVv6uTQZUaLKZFDSBnp4IYqNMYESJXM4g1pDElBorBzqYEBDEFgXvijNhsHJONzZ3T9/IajYZ8jizsfXegHcjlQIPi/b1Q8764tefvZrU3MgNuRwYtKAF/T7sjxr2H96/Y/fkN579dqxQ+IW/86vOPbuvJ/PrLUu+ZYsvJjGI3WsP4lJSDLfLBsCCpdky8MTksCNfgb7oXBueCLbL6pROSf8kkFNoCBIBeqik9/yFYVed6MCf7769FMMJCxlKmLRGTHmb3Q6r12rw2q0uc9trNTuxvyckICO4PzBTqOSC+IN3qBGW8WIsZThpjw72+AQAUaA/tBaDRTwpwgVzMSEgB5qINx0tk9PYqDDbTY2SsV7iWoMohCzEuzwBCH1PmItyBKEfNEqaAZcBCl9L+Pps9UxDDjUcAeSkQhMVcQu8hg2JyYfJcgekTHUU0O3/AL4J3QHlXNLplkrqQn99A9A7rGeWfOpej+hXHZrLdWvWbukqQs5utm7kziw/vHtPjACgRM0sfcIL4ADmq0nIBiCQgxR+/3/2/gNAzuS670W7p3OenAeDDCwysIvFRm7icrmMokSKUbKC9Wxf6fpKfrKfr+9z0JUsv+t3bUuirGBZkmVFkqKYd5fLzTkBWCxyGkzOoWc6h+m5v39V9zeNwWCJpUhJpF1ofFNffZXDOadOnXNKO1DzBO4hii+i2xvlrvMrS5lzi7kjHb173vPQU//9t3PTIxnZvmcBelLzSCxwo65nbGxuaTnbE2O1cEtMjqvBsgsTyXAwwx2TnuDIVGo8VfY09nZz57s7gPnpEhwQ4CQkMAd5CLyXqSN32y4H3CuxcBiBTq5gnFlMzU5OlHIZcXZoglar4F09GoBA0oxVy+wnmsMyYAHZVwgbdheUEchlsGSRC4UD7a2tXcgMdXayq4bn48rnyJrVRo+ksujvIvKfwJIoqxIhEVeBC3Ei6BGEIomJkYtNza3ROHq7YZZv/6aNi8vBkelZhEgraKUtuzMVVwvwubSy56btcb//61/98shS+gOf+eht73/oaHLxS68df2XgsquxiVtjGlYw4o/xOxSHATbAfXGiJbQiNCygXuZKNTYT2hCwBEXXCU3TUFGncqQSwuar8ASxvv+cGTdV2/G8gzaou+hHuD1uYH0sEuIK0tagtwlM4FuJAf2x/EovI6qsI1+oaEhuKH/JSIpzw5Si+0CyorjFxaeDbWdTB1HSrIEGILMLPhInruiNBbzL0WVXPFAuLLvSBSigUqa0nOGiBj/7VWyiv0PH2InrZEZTSEeglqkMEpBmL1sAliyIwKNaSoiTv9ivAOIza/kPDsDpj2UAmSfUjmpBg8QalR4wjgAytA4MoeaKx7O6A6ileGdTiFycTFSoKcV6/ufz72QPiLHPXNJMNxBUCAC/GXYeTDB+yAVh6gcTzAmIeMRGS+kKl//6o69cGgp0tz50952D518999Ls1FSagwI/BFgJ25bupmAbcDy4nEeMAomEYDicLxYamxPL+SzqwaGol3sCwp2xBz/2U517D8HmzBYLEoAD8nN2y5mb14shh1IBCc0MwhXRSGQplcLg2vD4VCQc5GzMbE2vIXItq0T1V4OYjfKZdaS1ItpJ5p5L4KkShqIzmExj0kbDPTxhAbGO2AdA2UmmlfTFAsS20baRCFgZoArzBbjBfTW8RBKwpwYGhxP+leFLC4vZzIMf/tjEXPpz33xk2ee7+c59L736Fjced/lDweVS3BeMePyDFy5dvpJ+/2fu+8zP/NREOf8nTz334tCsOxSNBhKiGCuFfGG5o6tzYWEeBSNKBguYETEr3owFyJmtACIhhvFjoCTr2zQT3GDGjTed26j9RP3+cYJBxuFx/O+s+pIOcnENWyzgZaPZHA+3xDiuaWgEAXjdiPPDxUPFDrhsOCVgWTClODwC+sx6kRQMMQCRExiRR7wQSh2oj14xscak4t5qXd7g9lfQJMCuFRvCFXTHMsFStrCcKZUzBYTYSshqAsnJl1kjbFx74tGpPewZFSZnR4lizPms4d5B2cPqYaYRi6EWJxNJU8RSDTvWjCsMIHNPKsDekP/a0pizDEl+ik2lfavZISAMDCUk3hgMJDNJVJZKrp4OML3Yb5pozB3hHWrmHBwr4nc4Hkr6femcdVMdolojLGTkzfHUvnz//a3CekF5Rl+TnTkB7QyVw6Rlehnap0HWHeA9a9o3LCwt9HT2YF9/tpSPxxPp5NyZ8bFdXYlf+Jf/8tE/annkc/99emh2JS/Y2BRK9HT3cJsL0oyBhmJPR3TnTb3RQHn3lq6J0cGt23ani8vpgndgJr1zzx6pEFTK3KsCnQyZi1lzSDGYtBBYS1yYmEshxjc2PMxY7Ny587f+y+939PS1NbcNjo1od77qjN+AQiawDgKNgyYxpJxwmQx66yBYjsbm81lWPzpxhzs7MaZ48eLFro62SDiEgTgvt4xhGQYurCeYQFpcFsJ0L432SFohXtdS1tXUGm5sb+vfhLHm6UKeI9/XT13YuPfws8+fOjvh2nlT9+2HDlfy5ZNvHG9uDr/r9oPlQjoc8fybX/5HD/74JweLhSeOHRvFmHZ7B6pwC8k09mh6e7unpqYm56ZhTAsaQPpRFieQgglyeqESxqkWFsyb2ahRYpUrhoU21WgKqHN/2/O2Wj9TK4lTi7lBzZl+4m0JHtdVlqGrvolCAVyZzVCVIWbiKrFtksaGg/MyytDw+lH0aAwHmyMh1DriPlhAvohnJeIX+Y95JTaCOkwFFXDOrk0AHQmA5xsFUmTtVy3e8sAJrABRgaLaClhZTzMZZJINZY7yMuexIU8pVHSHG1ay7BJLsG+0exb71I4KGVJPBglATq5UnnKR5WXLiYwnAJ+8QC20lOGkZkxjjptRAkEKVIYW0UlswEapCkTMVfJGoAgckD8I7SLS3wJ95Lah69lMqAMt9IeA4YYgGF68SrqIdlAdECImsrVxYqeBxKkQhaXiWVrsGCTJpPZrRVUdOV7XgXb4ZkoVDaKSwakAFTUIh7/6swEmY9PftdxJi9dErj5UPTIyfUWT3pGzRdMneGr5VCtjSqEgG0z+Ckelhmlo60pBxMGZYxRrX0MjQgK6kmYonE2ihItNrQ3NpTYrZa2a1rPmtfbR+asM1nOg+/XdevHJQs1YL4GTv9OTxGLhBFAXMgR+wTAYzYjRQhcWcZniHo5KaS66Ag1uqPLcct4bDQwVFvNiN/q46WTn1v17mrl5vbiQLRw+fHc8V3rl8W9dPncJWWhWyuDs5aKnAZZ6f0frxOSVo6++/r53Hwk3hEaHZxeS8xigni8s33z3exDFQCzHG06wtBaXFpeyiy3xRswyFLNLmDoDFAfLEQ4DVlzFpUyGhnR29Jy/eGXDxq0f+9FPQvAMD42+8MILdtOLFSBsS8zOzlBp/jFEottcK9Fo7MiRI7cdublSyIyPDiYXll585eXkUiocjS2l0vFE4rY77jp74eJ977q7f9M25DiLyytBD1L/IBGIbffC3MLcEowcTywRT8RjCA5CQLqizQg9JZe9ybL34skLUZ8rF4qngi1vDsyMTLia3a5BLlbwjd+0a+ud+3redcuunvbGiZF89+4DW/ZuG15aPJfPn59LuhGNRdOoXAyFPflyZmxmER5uJBpCbw6QJwEoxAKZa4ALw+pCa6nK7jFQr56+Z9wRFjKTT/O3Og1MKs0IOy210PVmHd76+VALXv3rTJvVoKt9oM9agM23mruTsJY/sQBWgBJIUAFDQXsDWfjAakLFz10ScKSTAXyQ5NgVBDQasGnuciE90jiVZaO3AnwU1BZKF1HLLAXEll3FHCcnMb+vPRZsi4c7IoHWqLc5JPK/Ccl/Vwnbz2L2E1kFQRCjNWU0BfDSFXDehWolIACloFzNbpKNgO1OHQSTRHrWLA/yEYUEnCYlm7fQ8kq4XMqV3OFAQ863ksZSSFFbjSroJ6IWnClGf+gKZ6WK5rbRgP1kbjZ9pmcFDNVw2aZdxkodmgVeOlAybhIGk5AT2myr7B7hAgmpCnXws1oAFGtKNFnT2UJApk2sdCLxJlSjYUDciW0uHao+MghWzTOO/rCOFujr/wCORlq6Y01b6U+F1/UBPfP92Ce0ghkAvQ/poTnH0Gp0NT9gvqN5xCaSCYbkvBSLWGFIG4R9pUK+yA25LrTh86OZxUgi5A/7O5qCvaF4U7xlx+btK+ni4OBwxV2ansstsqS8LrRab7njbn8x39TavnXnAej3k6dPYFazHAy/6+GHfc3NrghGe1jucLjhUsq8ubiVWALKLITjcX9jNFYqJhfmkdhByPn2O+/gksVLAwPReNN//s+/jW7wz//8z3/lK1/euHEzQqLT01NQQ+woDOiXQgDtAk9g9x89sh1b+7ds24GkaTAWe+W114ZHhhGhu/nmwwuLyc2bNycSTel0esuWTdwYtjg3xzoKBFDZirZ2dHiDS3PzS/lcNoLgSCi6UkR5oeTKLnoiib233kkbX3/x6bHphZs/tPlXfvU36MZt/V1hbEq6ygvjQz/zUx/f0td06q3X5xenufAGyddIS/vg8dOvnrxQbt+RBSqxg2e/E/TmZdY9n0zmwGeafWbzb+ehGR+tekAn4TSKYdKfmjPQpX5W6oMNxFOD/7XYf2t/RYHXCtd0Y+UIEgLNLKgB5grsKo6QRM1p0bFBMDOWp4VFPOkErUZtV5ms3pibk15PPOBpDPriIV/M74HqD0HONJRlq1awVbx0rV5LGojeFejDmTwNSUdR2pzQ/4YAM5DaLnBucGOlgH5AAILKNSjJ0RD7SF8JEcwVP4Q/iIYrrTktoP4OaMBj/Y6n1rrqX2pgP5G3E1M5QIZ7xaURAoDwB4RDrYMEoFi53sLyf8T9kQMb8CQHoQGTD3nZ/iInw+JS5tYRQZmY2UGIdkCKrGbTS5YFYNM6TwMl1s6zNQ0xyVXCteH/M+TvTg9YCMIumNFmEYnY1MAK1KxwsYtkJ1kmHBvBQoEIcQURa0PeubIckbSZl3uAA+VUPBLubWx86tGvpi6ebFkujp85M3J5qJBxIRm9a1tPoLUl0d6+ODXFLG1qik8vJk9evoQtA+jbHtSCN/TvuOtOrFoy2/IYhvb4Gpua42hgSQUsB7y+cvF8V1vrwf37sNUC5cUkZG7fdtttL75y7PSFixcuXLjzzjseeui9XAYAjY+EKHcAMPFRImM3DJRnjcNaosNhqb/++munT71VEEpCgjvgC4SWUksY1Xn44Ye5DeaLX/j8vv179u/Zi/0ixCjK2dzI0CC57d27nxJRfm7EVpyU1NACEs0rQXB32BXxRtJzz73wZENhedtNezZgxygRT2Pv1OU6PTgBw+tjP/Lhrp7GxcWJM2cmXnv1KOikobErm630N/f29pX37ckuBdsmsyUKWs4WRM1piXq07RYnAECoFSTIBFwylBiEGm92Cjke+/qD/WSS1v9orJqPgBY7Cj0xre2GZdjo90Dsc7OC+fljCP8EEQPlK9I7OinnvLfK8NFeyABTYQDMrsmBBehuw4kxdLIppUZIa//CTOWPdAuYZ8IBjEoVVnOJqcwulGTIAbKHo3rYTUIAOMHCa6DhmhA7nCZi9UFCU4DQG3USnjOOKcimCMYD0wIKB7NGq1uAms9CfxvfIkwyrc0cVYlPMBgpVEKjTC/Iu1UEYCcZ84z5p/VDNJywolqh+acNwnWcibP6jdc1Iavfvv99pmM0vnic5/dPszB4UhtJrp1CpkBsP+F/NEsKaE5x3xDbQ4+Hux0DsM7dlcYGbymfLaTSYX+wv7P7wLZNt920dVc8eGtrbPj4K09+4c9jLU37YvFCKtPa1L6YL56ZmkznSxNDQ6+9cpKZ1B1xvf99dxSKqdvuOtLU1zOdSp84fnTrnlsjLc2AeJTdWclEyxfzbNm3bt2KUuTS/NylSwPxaAL2Dtq/XEyWyZW4QmBmYZEbGhsbW55++mnqjNE3OD/0fFMTl5fpFjA7UQ0hpNv0mL2c8XZ29kxMjoEUYKqwnh544AGg/+OPP75ly5ZCNoekNwYnBi5dxCBMF3oBzU2Ih9IfUGD0E2vLgl7JCJVycJP83nJgY/+DDz984rXnn/3m8f233vrVR75x8623/PBDPVx+mV1Mw12DL7u4mJwcuTy7wKFzabJ4ybNtwL97pqVjy7sf6n/+9GB+bqGQzqd1d5guloJ5C8UqOUatNUO64QH86dRXi9EuPJpsp5njWXfWXXeVrhv7+yfQrjXabhuIOjRCjyFfQyLsawoHWiLBxog/DjMt6AP6B9ljSSlMkrxaqRaXyGa0QKLmO/c/8yvKsobdCej8t9bDQHuWAKPPOCA5AGGs6SAcIBF5bVSM00ma5HNcKBujH4AcBFsacYvqe7UalVE04c5XW5h91n+y8SnGaNdXEYkJVBaEC3zzp+ZsfJ42oPpaK86pCYhQJIVqDwNAkMtAMFYEAhKw3rQnMp1LX1Ub4NTw6gY5WVY9ZITPPus9a+P9YL2rr+pwwPdLwwEhbCMZLuoP5NWE55jICJtnkZBcKbEFDKMOy2RH0AELnRgkyczFvA0bY007N299181HdndKyWl2cioRCre2t336J//e1z/355PnB7D/fOzlN/KVlSWP78rFcbgwGzpivd1tP/aZT2zc3PWlL/3lV5565ud/8Z/cc8/eVMkVaelA5D9XKPpD0aGJoVg0FPJ5c6UC+3BZdY5GMNoyMjSaXFyanp6dmZk5dfYSRvw39PUuLaWTyQU7lZjMHR2dnKAC/WkRr5ZesZQQcfAwROOTk22tHTOzM8Vy7gMf/NCG/o1/9N//hNt8Dx16EHGgrq4uyCo0A2KhONBfOUMwAjZKucVMFqPSKA+EqQ96RCGMFAVcft/Im6889qW/uHnP9g/96CdGp6YGhgYfe/Tctg7fnQdu/Zmf+Xvgkj/6k9/P5ZfmZlcwTY35yUN3PLDv1vuOX5h4euTEiZkFd7wZqUEEUqOBCEVDh0HQAnsEqcSorUIrqQCLAqweX9vFSO0cj6r6g+4ARuxZxfMxEAa6lh4B9NNrkvv0uDicEfkf9MSD7njAG0Hmx4MgrmR8sKsHsGMCkBbUCnTj2NZscmVhR7tcDCrrQt2qmCQmF6wjvtEY8VEYOWl9QKJAqEAHKzdOaSyBzbtOUYlhbiTWE52tKguIwbROdTe1Jz0h9tU+nbF0PDZ8TbT6JPj5ehWst8XUPZ3MnfbYVNoMma2KGgLlZ1AZ+MvYhYNigglLi8SZ02mxcU7RvJltgBNwlUdf7QjVGmhDror0g/JietUs1u/DFokU0iiLqNRkBu4IjblKbAjBDRyo8RmippBdWcr5C+WAZ6UzHju0c9vhXQe29zY3NSDx6bp8Yez48Zey6cnWJoQufPc8/PCVzpNvPPkcGWYXyzOu8oaW2NYtmzC71tndOTg+OTAxvGHXTTtjhxr7+sbnFyZmF9t7dwUDUZg26Wz2+NFjO7Zt3r5lM9osK/m0i7t1y5VkcgnxfC7FaGiYZaKCAxr8CO4HuzrarwwPt7V1ctt6oZCHkaJl6XJh5IfbC4gJNVMqYYJz1cXjTTOzs7FYU0trE6fHly5d4paC/v5+8M+BfbswAjE3M4uJZ8RMs4sLMH98kWg+lVtYWlpMZ6QA15ho8IQhnoySQi5Ycff0bmjv7nvyuZdu3rfr/ve///m3zuzcOV6Zz+ayqUsXz8Eo+sCH3v+1R79aSaYLHleiveemw3d7W7pffuLl47OLqXCssLAECKGcIGYnxM2QQBbjIQaQIVRZo5LMMH5gFR+FB4zT2F3tsa9XP68CMld/+j5+o+2i3AWwRJ/DbIly7XPI18z1CKGGREBCn0FPRWpeov3h29CF6llwKlQ+OBeNRamHlzBkziRZdXwlaw6irKOPuKMa290Q/T5fRVb4dPCt0SE7lo3dQUNtkI/khEU6a0thWFPcAlcDgms62wl3PERwirT++k/1yQlXruaPA/3xEGCf5vNqimpTzB8TSm9UT0KIryMXlrlFAJBNqFxiYVCLxxwNSu1gNStTpoF3tcm3+q3OV1+Ben9dlB80L71LS3l+fzWMeQC5zDkvRJHEEmRRWE0whmgETSGHG7K5mNu1rbtza1fbnbfs4tmGTSDg+0wJsZy4a+Xw3t3Lnq1PPftYNh9sKGTaN/e/J/qBR1Kfb2kt725pi7W1HT1+4q25qe7erkwx19yRePiD7928eWuZXbU/sGlzu/SesP6PUqbL/SMf/sjUzDjM/eTsNOZ7+ns6ocSJuLiUwhQ6PJzx8XFQC6fB2PbBSnNTY9PMzLTtcyLA/+EU1/KCagOhRWE5o2ZW0yYZeuTO9POXLhfy2d6eLvYr9u74bCo1NHhphgssZSSuHcRQTiaxuygJPx/qz42xpmaMrtMnyNstzmWCzfGGWCIYiW3buee2u+95/unn3n3fgwuTC7OXRn/iM5+GBvz13/z15u62jTu2jy8dcwfCd3/whw8++N5XJzKTJXch3BRo71jG8DWG8USGyoQqYons6OFmSAvBIGYzrwS9ACta9axW45yZ5nhq7f3B+it8KGl9/tgjK/kt4cK5FJp2MEHc7rDXlwgH22LBppCryY8gkAeje0HPSsBdxgAc/Hgx8bS/hfGnYyGEKnWlC9cH5UAAWF2WY/7Q7TCDFEJEmN5MFARt/MtcDIQQvh8NMB+iwQKRwEdGBTxt1wswU+BfuwjZaSMXWWsuvUNNYDt0FIy7Fm7akNUnvjqIb96ueqyZCNVsNYHsGS+9yL4f2W5Ef+BvIh2qCUivonFAc+guc+xCb4uIsFk7HtGN6zmi1Qevea3/9IPnX3fU/o43UxvqupFEJAwsBsqHKpLaKVNkuYQA9bbWtodvOXLvvj5MNMDPAWF4Cq5WJOtCjS5fIytjaHZ4zy2Hz1849dTTz8bypbt27TvyrrtT80uvYdv+4gBXJ/b29IyMTsTbGt/7/g8hjN23cQvmQtGzwlL/1MR0It4ej0ewz1IoZgG+nW0tQ5cvffWvvvjo177amIhBqSVijSi5Yw36pZdeCgTjmVwejVg0bUyfY9GFEwqE+nOG/4MRhwDr2c49zWpagqle3ZIoKMCNj6zwqakZ1n1Hd/eO7TthHJ0/czqTWmhJxFAM/spXvoKG2G233Lx588YNGzd1YDm6d0MkkYBnWka0D7oIyFFeaW5rhpOamZzs7O5t2rEj3L3h6f/4Gy+88vKv/MtfChQqX/z8Xx4+eODTn/70H3z+T+YLuYd+5CNj85nD7324EG184fQbM6jKRRqXCllMPAKOYChwHwk4kANFoAfWHuuXEcPB1sCGXLW6DMn4d3yCfTeqp1GruSr+YwRxyAXB20HJMOzzJALwfwIxXwl53LBX0D8I5wf0gEQy3LNlAT5Zz9cVKtIEFLMHi1J5rGiL/SO1XS5fB4IjP6abH3XkqSLAHywHHh5EItwB2dcWh047Y9HN9q8ik5vwh2aa3VLoKRYQ8U1W1WbYV6alE85X/LaFzNo1jnBCeNrcbULQDesWwsZ+pZaOg9eJ45VUPJUthJ05CyMbnV9BAkmgQmiArA2BT+N0CEwC81RlVD1UmTn4wsy1qSHfbDhNhVgjQj0aUEI7SZXvjTqbiHyNxz5se1fBkg2lNDxCS+s5216+UNX677YHVFWT3OSgpjEkFCPgB34zrj7V2/iV1oBMJxUVVVhtmGwR18uB+iiHuu0CfiLbeuKxr/Zp8qzO+DUZOhHWxAeCrIlpX9eNT8EgAC8ENltkTmCRLsbOCe9IVLi5CjGwklnyVUr7Nm380G133drdHKGeyg4TuAjSeFzFAqJudODc9PRkcqHk8x89e74SjgZjLMcEsvzLlUEdmgHRypWhobHb777jEz/x6Uef+uaJ8ydvvv32SDzS2tYW9IXnpy/3dW1m5NLcDclq4/9yqaer6yd/8ifffAPhnVdQAoClM78wDDGICH97V1RrtySYyGEv/BNoNxag0/AiFatRLQSaKUFbaVRDNN6IiD06wGgAtPQ0sVKA/l3dHbCAXn31dWj2mw/su//+B+ZmpzgEPnz4SDQe47ZA7gvHHiiX8XLtDLuQS5cvburvcYewb81pRSCZzkxPTHJQ8YlP/lhbe/fv/OZvfeLhD33yRz/+n37tP2zcvjXS2nL8xJnM628cuPO+zz/xVOXoxZFKaLaYXwqWlsM0hJNHCFlM/2P3AmjCNYReRJTAQ1qKIGAmjA4XRY7hYFyLWXfDzhl3m8KZnGuWiRO+Jv63LceJbz3O67dNaEskvuMM6FE6A0kleIafrwoRvKXtRmCUlIgl67AEWF4GAUT9FvRjtb8calgJYaBNMvNF5Km414WT3lK5yAzn5B+yXswfDLsWiuks10JXOHlC4pn5A/w3sFtPgCTwlWpQlNiAJXeJO9fLnuUI+CSPGVG2AELbHDBgckErmkFBFQDkwdEZ3MFSDjNVqWy+gHnQqx054pywer8TuMZju4BA61l9UqzpnTXxbUwbjU5UEQJ31qk3FaIqQHbQxToNlok5wgXUiauGo+aME/dfjZMjwv90a3pAnXxjPaPONDGVxDg8jn9Ntjf++tfPgVqRibRptN3THAPrA3EK6WRbT8euPXu3t7dvjTf1BMPZJdZGsa054l4ph+HWsJ6wb8md5e4GIKM3GHrz+BvecOP43IXerdvOj4xtTTQh8L5hYx86AT1drfc++N5Qc/Nv/Pp/vjw6kHeVTp08d+8D9/Z0bVhKLibn5l3FIlJz0Vh8ZORS74Yetz80PTaWnJ2FKX/Pu+4rFQonT5xqbul44aWXb7/tttGxienMXDgS48ZK6m+UXoAXzGS1hYnODDZN4U3zlnDoH1AsDi4SQB/WPkYmMMnJ6ubgDkoNiaOhKxdPnz7dmIge2HPT5k0bEW+FmxQIhitYnS5O+UJBcEZ6KQXtuGsHlovKQOocVuQC/hMnTrJfiYTCv/s7v/We+x/44Ad/6Kt/9dV777jrx3/ip37+//i34d7wXM41fGFk/3sb73vfB3/vi49dzqz4m9tj8eB4Jun2UtkSbB9uKAv4PFCPXJVMudFAyKxVjQj/aYb2AdW5c+MT5Psvptr7tk4auIZg0jgiGuyS2Z+QRzYewkgqy1Ib5mZhbsBME6VuEaadFXBmEDYu5Eu5HPaf8lguTKaykD1MAPYAkBCcDgD+xcuBE6RNMBokZb+fMWIrQIEejv85H4ZKERpGy0Mn0JIlJQaMQe6EgCIpAvjRYMlk8FcpdDJiFl7t1rby2pYT4gQ6HpKZYDMdrM88bRH1mRJMifpo6HcTy3Su4QKZyqgrtW60isQnMwhAr8rHXHbMaQirh7QE6IM+fZsRUtr/AZzpE9NRb9tYoplO06jhsT35tilu9KOTleO50ZR18RhPNrxsetk5yNAVUwXFc8zRRGKlyZnLU1P5cDgVjeTaOm6/6abe7g5Eg9CfNxkA+rUNnZuemU+nz42NFMoNnb2b/uC//tG5oyc3xGN37tjJ9SsQaIePHOru24So/ktf+/pEMgl51tjRFI/Gu9q78pn8wPmLkWAIro2L2wTK5VRy4fjMJIRVLMKtkSidyahKMrm4ddu248dPgA/C4fj4xBR3A4yMjEEAIswhLhbTuCrNLEKnrn2aq0xeel7L1+OB1APuR6NIGoVQmSQ5kpcUtGnTpszS4uTECGeKxOXW+Hwizk293GWWmp1D8XlhaXFmbnr3gX37Dh4o5TNYlYfYCyUawQ4fePh9na0tAPE7bn/X//lLv33n4e0/9cnPPPnoN4+dOPE7v//Zf/4f/n9N/sA9d93b1NnrCoZ/+KM/8tqV8S+/8tpsOtm5uR9YVCih9FBaKayUoGwxMtQYQ6kf7hkLzq41IwXOIBuK2Gza6hr4A+W1M/l685mBFp1S6wFE1EAA4ALssiECFHKh1s41drKXDGubXZX+KYFoGtCnoD/G2uhxiTHn2AGAAOYRVUbY2QB9bTRE/nIgw7VbAHVxETUJ/WUOAXy6aNFbQi4YkVBOkaCNzZ3L5GyhP7gD0I+qIPLEIIB8JisEYBc/zzWOehHijJ7TcqfxeJwI9YH4rdO8NvQOQMXJx0lCCH5i2k+1RHY9SNiDcHAaUYxutHpVSZD7MQonxGchISmkV22/5Oozt9n+j/akE+hz83+1z9ftBMUyQ8DT6ToF1gbFRrDPdXOwgdeL4ISv9Xybeq0tiqUCD1TUP2APYyPcgsp1LituzPovTc9i5Grz/v0fvOuOvd1dLLCVShFxCzaKzBZEg0gLPTU2O50sVSYmZwr5CqT1Rz/6qecf+cblwcGpK0O7e7sO79h21113fP2xb529MDCysIQxzXy5fNuROy6cvfyJTyW4MgBKnIM4Vy6tLWk4vGXr5pdffXVqYiIWiRpmCArIatLY2MT8/MK+fQdmZubQ1YLMgr0LkQVRz3olAh47P3mKb2mWMlXmEyF8tQggEUOQh1u/ouAuZIcQHELDq6W5eXRkbO/evdwKOTYxQYSbEEXa2H/+/Pljx443tbRguGIpm7lp98625qaluWkUbwAGaERjWm5mdBjwgYTTuZdeGh+f/NCHH/j8F56cvPwffvHnf35+YeG3fu8P/5f/7f/963/8J1dGp3tuKh197fhP/PhP79h/MNHW9vz5s6dHh0LhiJ/ulG0YtAQqOUhQ7IeGIhD8cDzoYcNylrA2TeEhNf21Y/h27+8s9tvl9D3/pplcg4j49brqBIwIAAbZMKATESBYofSZsVz/xoU8UnMVxJf9DFEyQH5MWAlAY5StASofiAyvL5NBoSSXQeasuJzLQftz1W4BIE4aQX/L8cYnRjfGUgLIRKrrzfXBFe77kV0OCU7qBACtQLFOuaWdXOASFrivuZTJljPcB50nX+0AHMdEtM5MVgHceuc0WE2vQVvrr4+GvxrIHxAcPWP6wolTn4TieHWS6JOhj+hpTgf4yqqhMhIFMr0tclD5ay0RqimoW+bV1zhbec3E//FctQfqGm5C1Id1YWu9ttMIrffgXxvvO313snI87zAnyUKz4WWXx1EA1WKwua437vbGK5X3P/jeew/u3ZbAUo+rkk8VMLPFxaN+EAF73lKJQ4OGhqUSaq2lVKGcy5Zcy57BK6NbN940vvny5VRmkdvQlxabO1vfOHl0Ojl/2z13Lz71XDie6N+25etf/0Zvf98/+rl/2NbbjXXPaRS6FmZbeza4kK6JxW45dAgt3DO4UwMw37F1C5t+anzqwIGDgH5APbT26Ohoc3MzNwmH420S6RDPp+osoGdTb2EEwBUiDjUxw671ANwBB+nUIgiAg4X5hXn88VgMZNPX093Z2Y3ECFuaxcVjsLjijU2Tk9PnL14+cGDfvffdh50GKLtYNAxxt7QwGw76OYJobW45ffzNRCiiDU2+MDox8+EP3uvJFb709cc++rGPbUwu/dc//LNYS/vA5SsTozNIzpaKlV5/w9+789b92/sff/XlF46eRM61gqh5JOKJRdBdzuTLmKgLYlmahQbtpbkj1RyDJmqN/IH7SyNpIE+c0zjjX30lXJsAC6TEupDOrXcFho/Y2T5dpAh1IprbZKOMBBoRsNL84BZdTvDFomEfIJ4/h71lpHSgH5jP4F+AOPx7DnCLLAixwwGtKA9TEHAeT9HnQTUFc5xoaiMtCcsEuGnUTWD+SG6UE+Q8ODzryuUaCnlfqYSkkBCAhZtrnk44HqfNjscJtPDFhNdaZTpIIfyvOeLjbGTr5wue6tNgCNaDlgStooP0ybLS2ACIemJdaWFXUxGoAxA5sJxppJM/YTZbW9D/UE81vPr/qnl5bScQi44ivN6j11pUZXMD7nrR6sMdvzzXydVWZp0CDfmsIUW2XYulFGnwRv2Bn/7wh7Yk/N1coMqGYLkcCPLXCtSLcAEOYrOMFZMq5BCNm5mbHx4e41R1dnJhcWo+n8KijSsSa8pVit964dm2RHzPzfuOnThz2913rLi9r7xxNJ2tDI0Mnz5z5t7uDnitM3MzyGq0NlTm5meQ54G1i/wlcJzTOpjyI0PDQOE7b7sDK80cJwgXjI93tLVPTc9Gg2GmLa1mYjOH8VhMYOazlgOtYjdAnlUEoFs0VlLpNIQ/d8Ky56EtsG2vXLly5PAtl64MhAP+O24/slwsPPrI189jZ+KO2+44fPtSKjk/P/vWWye3b98GaLh04SJXA2MvCAsDUKTpiQkwZz6be/LZb14ZGLowNHY8dXJX/6Zb9h5I58vvfu8HHvnVN59/4bF7H37fxPDkfYfvmxsY2rRlIxZlbmlrO/SBH/pia/eJC4Onzp6dS054YnFfLB7R5SQsOthxImeZMlqZwDgztrTxOiOsqNe6dxb72vR/gyFqmaGm1jTRnONoj2pglMH0GMWx9x6KguXOODYBOrUE2tJXhlWmWUFU24/4IQiMnI9l8dOd8AzZyJWCXOvrxv4jx8rYgYTyRaxTB8AoEMDh1NmMezm4UvFxMx2SBShrY6JO4kDSywOSAjiZezo/gJEn8a2yq5BjbxioFAMGpl61A6AFTErH1fet02bHU/+13k8E69RE4+q/Wj/BrAQKqr6ySbFCT8aqiyogiF91tfoohAQkIjliQuAAbaaQDLe7AYM5TJ4GtL2jaVgr6/v6L91S7dAba4biX40DSEfgjaW+0VhOho7nRlOa4WYHrTlsBrsEqxRaBrm6BveT33iksHVrYvvmRDTkWRF3HtlPiqgUOXPFsFqyI9ZdzOUnZqcXM+W3Tp2eGJ10rSws58qdnR2tOwPDF85NTi8EuyKD49PHT05/oLHZHfQ2tjRfHhphVh28ed9rR9/68te+fuSOI1wLPD49hV255vY2oB7y+DBSWVSQ7TfddBMlYgRi3z5Pc1PL8OjowMAwKCEU5Ag3dvLkSURLJxfT8HvoZwh823CLDGzPE0IOOK1Sneut5FKL4ikhol3Ic6jb3tJSwP4rghCyGBqFxCf/Q4cOfOoznz537tyJt05t7Nu0dfPmm2+++fTZU5/73Oe6utvuve/u5uY4RJ/OQnyB6clJsFF7S+sjjzwCT0l3OpKX13/g1iOLS+n/z0/8/b4D+/fvO3D5wpVtW3bs2bzNhVnT6fl4d0vEvZxzuT9z260HN+1+vrntxMWLw8nkPGlWgDOeaGuzriOgojAczEZgdcXadv5gPRmj+sVlBk2P67WyOr7sjSS4XgJYy8oxVHiR+xQxBoWhfIIYaDpPGwAkcyTqUyxaEgHyAvEd4HtDAxx+dwDBfk+gjG2HcgM2nZHm4SQZfij7AF22ArZxrwQrZf9yUeaYkdZyc12F6muoaITny+iVUBDScVwkweVF7KO5bEwmgwxOMrCVBOZOH10uJo/skptGW14Qs0biYAy5bXz9DKYk4RxLECiOHCG6Z9Q4G1L/pFt4hZXDd2a/1B9QcECqx5Qp0kja/6KAoC2oGstanB+TObiNjsEZ4KBDYtOKarkqhSVEG66iNuu+KsYNOZ05GxE3mz+H9tLXIOPvrtOGB3e9GtqJR6FOBOu56mk3TObs32bFaBJBHfg2js53xvFtov31P1GQzUSCD9c48626vuweAc6P7XNsf/iQ94daqKz48jl3Lh9ZXk74/bfvP7C5qRGTihDKyP2LrCoXYJHmcmXUt1KZdIfLncGyzdRcKlc5ffJMKs116q35THrw0lJzInj48OGvjV6enM54ll0tcddfff21T3/yQ62dnW+8deahh9/7zDNPeT2u//pf//jhhx9697vv37hxI5L7UPdIBGF2AqVfxPDmZqdZwfh9HglhHD/2JjMaHWD6E2b9o48+iiYwLlpi5ct0L37aneU6vjI19GY037W3Z1MDsOZ+PrMWlrPppY4WdA7iqUyGdWEFgchzfnZu757dnCuceOs4HJibbznY09PT1tIyPHSpUkgtzk8Egr4Pvf8hZP8xuJ5cWCjlApwcuHNLPT29J4+9+drRo0j+nbw45wu5Nm3se/f73hdpafuDz31xajE7+Mob/+AX/snQ+CTqBDMzk31tbXMzI5FwxR8NRH0BbpM92BHZ84H75ir3nRgcfx0Ld2DOUnk8uchCALDRKIni0RdmWM2yvmaAv+8CtHZqwL0K1qptqM3k6jS2cFaQDJAjww9sjvBotyekLr4/A44sGnf1SiYACO9FOAhKHatvQCjZuhJnn0NdePtw+HGUBHDzA61lz8cDzF52+2HWyPI+UFnXu2AEBTkvzRnZdyMPN7aGyoh/cl7vLQbgE+KEYgQlzW0AoCFjIEJ3DWCKk6MDrzHRZpYZiIRM0GcD5XDA5jUsV8x6uuFCAfSwscX9kWw+0FkAZ5GzNoAyWkdFtfsz4q8GclMjIDXX8lXhijxUhRbSMDoFJ70G9iw+4QbBfLMb4CsxFGIIeSpL8cB56diJ6qeXrE8NU+Y4nQlSDVCojEQzIDRD46AIfFA/EovaCquYcwIlluWUap7ma5XmVUfVnDI3TgHkRPOFUMBJQrkqyCAXk4tNw3jjUVmks0FrnnZcncBqAURWhflZqX/17TpQW0DTxDHp6SWbDx4cfYujOwjkleJpC/QBr3QqfxhBWyu+2jg8r1dP0zd8X+tsWkLrMzGva2O+7bt4B5asUDQzWPylzbZJ1B5LMwqhZ4SbuFou25BNuXL5hC/Q39S6f/fu23bdtLu3s5IrtSHj7qpksvORMML+8KZzCNpgc/3p55/fs3cfWlzfePSJ1vbeM6feuDIw3NHeMzM5vmVT/2uvvHz+7EJXW/PGLVuGLl2OehpmliqJaPjkmSvHTly47Y4jDDQM+XDIDa37G//pN5oTsOUb89n8YnJJYqZdbRhRmJuaTSQSc3MLs9NzmGg+evQosPjM6XMwbDtaO06/dSoaQhqVtetylcpIC6klRtULgT6IQB315TLMIsxyQesXMWtXFrnH0DEPpubmvG4vWggM6/T0NMigs70tEgkODlzYt2f3oYN7T514682jR3ft2oVqWMid50rBpfmR5taWeAizEAuFhgaMTiMcFQlF52ZnAT/JbP53f+/3T13CihHsX9e77ryls6/jK08+/uzxNyvRBCX+xRe/8u6H3r1tF9Kx592+3I6tm84OnNl/80FXIYvtYjRwCm5X2ONp3dx98+buUzOL5yZmL80kB6Znh2Zm05wlInUIFNNkA1DYkdQg1jtn/tQHGv/66+V68a8XviZbZ3pbktF8rU4xGxOAUEtyVXgtsDrPeSUrJqMOIzUjNSmpAw7aHVgN2cthjJ/r4QQhKoYB4/bqghWWHSKgXqxy52HBudw5V8m7XITwb+CquAqSQcQRVCRblmuew1sAoDj15MsikYUDQKkfCMhiQBoY1AJZD/pAZYyyl7lwXQwlU7Awjqklh74AsrJOAYwzNlOIxBkOtL6oalxt2amtYgHRAYAPUvCkLBahjK/rxNqOje0pngBop9eU2HGmjqaftJbVEyYbaihnCtWDFuIUj/Ugm26rgbzyyYYAFAVsJf9P3WijdVRPAIy0vDtPCEUTh3ItlLRsNTQFTKoq9latBBq1M7C53ehTI6GsoHKEZq+Fzk5NVAQxGbtqoTdShK0l7VknZ5Oe6q72ANWoZSoPHeI8DTA1X5UVSehM01EmAR1r61lLvvbvt41gExBtbcq3fb9e/OogmMyopqludYAM5lJP8tFMoJV9e3fdsm3njo7OjbFop8sVNrPWF0KGMxnEnHqYiyBLTPtINDpw+eJXvvZVLoLZd/DghYuX52YXGzyxKwMjEDvwWEtlCVcX85mpqYl0aj7gcXHDLpdktSXaUao6f/5yNp9uamnctWunzm/PXw4HXU8+8ZrH/Su/9h9/vb01MTYygb1oTnShLRDRhtfPpEAK9Ny5KUz5V0KSCkV2E/mNXDYDLScJfqQvAO/5ElwjtvjAYhYuHQaYhHxiS62djUHQon+09N3xcAIlTxoONwDaEc5wqYDcXopaDQ9eKWSWNm1iQ9KPPAdbkM7WRheSggsgCUw6LzDEoWgkjYJPscDeI5mEWwPreOXXfvO3n3/pTDzkamsJ3XpL/007t45MjD/76qsZIPayO97RSYKXXnm5q7dt68bebCXHjTeRxnAln4Vi9XoCUIAh6DaEDj3B6eTiuVdf+upzr84su/K+SCUaDUbY5Cxn81lMNGECDy5HPXx529nxN/fxevPwOuG1VaalJCbANcuTCatVCeQhB5aWbQlAk4ET1qfTOfjn4jgNfC7nXsktIzvV4F92wVXzyAgb96awuQXkGZqyAc58EXwiJhEMfKAMYynzbmSo+zCA+B7dDYO/AQ6/j+ljrnLhxEjwBphv+SMsDdkERVLYC4HOk00AOfCE4aMNARhEckcKsU8hgHrQgN862yT81sOzvrOqHeB8q3mIr081KGGTq49q0N/CfSfcYATtgKyHaOQk1EU/8qiBGzw00kJ+IpDcOny1ktf5SxzLT1jn2187iMzJo/7pvP618/42GdhC6yOppcbZ7rD+t+8cJ7n61rTF8Tif1niIYEMcz5oIa16daI6HlSHSHohfmyFOEqYNmzS9MmaqUnURctGhP9boCoRHpmbmrwxvSMT7mxrj3gZs6pIT3E/yRNqS3fbg5YFvPPK1F1958QMf/DAs1LfeOsq84tPw8DCnrEwwUAAaTMhYICqXyqXzAX9Ha1t3V+/4xBjHrqXlApqzbxw9DhCHhxONRd544418Pv2tb73ypS9+4c477+zt6spkU5zHUkdLrGC1HzQwNDAIN2ZoSMe/2ALlpnjqj3IuCr1To6NY6dGJgdnYcAuHD9OlapvWAdtroL9OVJnqgGKMW7tcFMGTcQTN8MTqDttu5PoHLp1DpauQSZVL+Q0bekk/kkxml+Ib+zoGRqbb211Amkhkcdu2bRBusXjT2XPnb7311l//jc++/PLL8JEQCFrKuQ5u2HjfAw8GQ7Fjzz51+vwVfzAOLzociWYX5zO5ApgDhkIqlbl8+cqOrVuWMllsWRt9OozMA9ZlN6a3MXHvkVvhR3/zVW6LzM7BQ4vl/FHuKBbXGSbGt+E5OuP9N+hxpp/jsYU7r45n3Urx1UYwf8wUrY8HAGawzIBV6WOGlx+0MhygcrHC/g5VPu4Tk4COBBUKstcJR4jdHytKBwEAcImtiTBQdqxmCT/KrL9RGYMzA75A2EFwnQtXZMhTEpBaSdoomPnDohKNip8J5tHmg6zM9kG7AxhEsHYoS7x9s1+gLOJLL8ECDcEyx9lc6pv59n7aQFpQkfXYfHgVaKk5crBQ3mZletVw/5nLdQiAonFwd+was9EszFc/G0jHk0zkv361bJz6soQM6PBqc6+f8oa/1Bdxw4m+yxHX1KHaXXVtNCGmrwyg59UmwUNVHL/jIWjdKtr4fLrG807jQwKzg2WeiwZxyiIXm5FqKLlpCkLOeSVTdp24cOX8W+dWZmZ7/f5337xvw5EjjeFwpZKLhvyIO6LSCEuFo9Gvf/3rL7/8Yn9/H2ezAPrhkcHGpq5UNsOBMNdZweLEoQDPZJNWF3eGFQqTk5N9XRtCgSiy19QE3Rpg2PgklH5iz+69Y2NjpcKV+WT5l3/5/37oodc++clPMjN1XLWyQv7Ad2TyZLEHExEomp07B7sGYRu/Pyj2JrfrplPpYt7n9UQC3KbFVSshzoGB51SDxvHEJAtZ2Yuy8RjdTm6iybJRMLKAOarEQoCOzHKjdyHX09WO8GUuuzQ2OgwGIdpSco58OJdeSBUxA8mtYlyagDASS2/Dhg1/8fm/fOSRx8ansvfe3QF9uWVD4x133d3U1v76G8eOv3WG4ec6MX8whtU5XyC4e/deCHmkj1p6O+dnpriArCXRyLkkOsmG2HWXuF8Mc2Pe4I62lo6H7+/buOm1sxdfOXdhMpsFvsGjAEzRt0Jl6y1LGuiMdb1n/dC6aVYf+W3818ufnGwqJ4L1rHklzlUhvKjC9nnVDDfh1cjWb9ICiTVxoayZt2BzRD+BrbAoobgBZoa9rmsNDaOWSSTcD/wykQUYmRZ2aYJoAewi60EM2DuBkcQ+Dk6PDm515bsPNg/MIUFx5rT2CEwmxkjJ5LSmCDAevtglZo3yWL/lFbP4aKBu+JEzKasPZjk+G2g+6qGeMI5Kr65a89m+OjkQ1/q1omuhTg5MEbLh1SIDXq2zr4QL+uM48DDKMqaEandb/w0+bROogC3uBlN9B9FsQfZ5nUn+HeR63SROcXgc/5rYdqRsw1ehqukKklTDzRDjt5k4njVZrXm1aQl0PGsirHl1oq16gH5ak3pChNj4mkKaFFBOgv7MAkghPNgA9ASCM+msL5XtiSa2b9m0bftO7DbrE2IycFZy2cErV5559tmXX34FeHrr4dvDkcCWLdsGh0YpEbGZy4MjFkCXKovY1GSDjEgc1BUXd4kKK5UWuXG3qdmdYlWwk0iyhE+ePsfWnYuCEa3ZuKEPZavz58ceeeS5hbn5j3zkI3B7uNQXeztM0tlZ5PFJ6X788ccRtWMNt7e3IdJJzMVkMhQM7t7WzzldIBTGDg832BjDJVp1hsBDFFtyq0E+YlZB6E7cIcYHxg9ogFMCQjgMVyOz2abmBNyn9tamzq52tjXZdIYj8ERT89DYhAcxkFyxv7WXTBBJ5TR4cmy889LAX/7l54H+NAwL0ru2dX3qU58IhgKDw+NPPffC9HzSF/AvpTKb+zYvpNLw07hpADUx1Ojuuu1W3XYg/VP3xNRUc1tXEEDm8dIczNIU82mPP9jc4L1j56YoJogC3jevDI2kUksYtcZCE0xrTjw1gn+33Or0u3qJXhvuhNQ3gECF8zNtk7+2BMwXM3eVAOjPlAYLwKABB1TCkOI+b9Rdifjc6BjK/KfPjdQC4jc6QAUJkFR86RWwhXDIKigW/uCSSFT5vGbvpVfscks0hq0YI6KqGK6IgciGYc5atrto8rWjwNMucIMm8CrYNEZl4RECsKHWoyg1V/8JP8623PrXPG1JJqkypGZshGwc20esQzvF7ZNPNgRCBoffZs4SxYOUqw2xaakjHipv49Q/11TjbV6Vyozc28S58U+0kcj1T/tq63bj+XwHMW2h9QkJMYfcaqAqUO14RakGmNrWJyHc5lPvIQJIuz6a41e2Nef45Vk/enWkbIr6+HaGVvnEJk+mqvkrvp/tUMUXV1Pb3BJGihPRns6+HU3xjV2twHTY3+lSyb9SGLx8EambZ5999huPPLZ9+00Pv/d+JOJdK0WobUAkClzoTwKvkVxfSKZnpqZhnUeQbmGm5fPIJfhDwUK5ks2htCsmEnepN3j8PkRKi4WLl6+AAB568N2bNm2BvRMPv3r8+IWXXj0lreBCiRMC7oFBjoj7XubmLm/fspU7IAH6lAVWECXudYOHOCVuaWvN5fOGotJ8ZqML+WMkmBvIB/46Q4AYX1AHe0AFdg6eYikX9LmioYTH00huoofMqQgcAbBOUyKWQFOsKU4bY9FItlDetHX3stvDPcO0YnRk6M1jR9NLS5Mzi1ieCYU06hs3NN9x2+1bt22mrCm0xgYuoQu24onA06cnguFIKbnkk0FJFzdcZlIcbM/TuuzSEmIpnFpkilikKUXZVqBYgSwUM8ooXCRclVafK87VDFyqkE77w1EIUxAqO4AqJ6Q2W9bMgauDLd5fE6ZXZ86s+WYn7ZrAt4lv6luN7uSJx/HXp3UCzXcaWvtbK895tzGrc18bWRnxVFk6uERSB5Gf5XAD1//6llcCMa+70eeGb4nZWm4rkk6AuCWi8TkD5qFVJPhnGDua90gIAZqJUGnATpxOjGSFmxNawL7CpWLm5Sv1Yoy1+ZAkjHYUYqTqDQzDlCIRlUPLGGaPsiMdT5a+0a8ktlEEM7lQn6ucDbQNt621fvskA/0onl4yjsT85QnFUe0X88pZCAQXQB/HV5aBja/mGtlnOLN80rI0YMBWoj7Eia/xqA4JcavOfv22T2J/2zjvNIJt8jtN9deMbwu1vURWN14HeoDITj9Yv01uP91gxZwcHM/bJ3SiWY8mJLjfpLFUitaZZgwHUyZUy8H4EGZu8CSzuVZsKbu9mTwq8tmKuyUM8FtxjV2+fOyN1y5evIhphLvuuuszn/l7CLD9u3/3bz/1yY/CP2ETi1meywOjYYywt7UA5ZlgAmIIv+mibNFa1AemCSaagxjnbWjAoCf12rRlC7a4hoYGFxYWn3/+xZt2buPIlesYMfY5Ojz18gsvpXLVyj/37PNLyeT49OLB3YP33HNPrL8XbAQLiEza21u7ujoA50xjGEA6f4ZAhtoCoHNUCu9Jlp+R5cOWC0Dek4efU5HqkLcBMlHTHC/8ImpIZI4NqDkCSC1NbSxvrMCAA2jO0JWB2QWY9yupXGFhdpbDQ8RJ5ziEQCPC5epojURj4e2h8Mc//qOYK5qfnmYbAb9saHjc4yc3hMUrDcHYwmKKQ+uWjlaxnpbFAnr99dc//PDDsVh8dmaupa2d82S3x7eSydAGJFckmy4Wc0PM5+8K+9uCHm8hvZJJNYTCULUZZBCNNJoZyL9bjzXz0KncmnBenRAnzvU8xBS7XiMm8pShF0uHc92V5aB7GfK/MRTwBtwJnyfqc0c9lbC7gtQZ+gA2Q1Iwjgj1CxAWMKLBllhqwbzCn6lw0YtEPhlPrB8yoz3LhiKAOBKSRZLSzkTRTeL/yEkKVEdQZm9AlUjARgPoTwjgVyE8tdY4nxDe0F00NqlJX3usG1j7uPYvGbKmWdLUxOIDksuZHQ0tBOqzEnCE2c7lieOTWRtVBGDzJRDH17XFmF4Gt9hP9c9rYxJCWTzJRZ51Mls30Xce6DTtO8/ie5+STrPd4hR1bYjz6e09tv/fPk79VxtfM8RwEKHvHRyAx2ICG9+wJs0oQ0c1uCD5IVUnxscxmrs9tI11MTU5PnHh1KvPPeleLnZ3d955990bN271+IKvvnqU+Q6whlI2WVVmZqcaG5uMeYZKJAobBg6q5PG9kQhEq/adpeV4c8fSfBJSCc4G2ALZof7ergMH9k+Mj4yOT9BdzNs9N+3C09k2gsG40uSsz+fHSsuZC0MgjmjQ/eZpru269PFPfAz4HYtFdMyQL0HNsxXg8gCKg9OEvDckGQd52CZKLWGDZ5HzUvT+odF8QQh1HZ8C8QHZzShgrZRkCQ4ozo6hmGPPHwx4l7C/nFoETHd0tnGo8PTTTz//4rnG5oZsGTNweeY6P3Q7DYXoauJyR6/7vffdS+VffPYZct68eXNzIv7qUZSc895gZHZmifW6eeu2obFJjh24uGYpnaKrE1E/+wDqHIiE3zr2ZjSeGJ+YaG3vQAc4m8+z1eD+S9j9VA0Y19fUdPeh/YPT0+OpMwvZ9AqMJOCN+Fh/d9315u31wp2WEMEBlDayfarnq2wXc/aLXBfTtlIKNrhjAFs/8L8hHmhAmjbkWQ66KmHxRqpscBLC9oOs5wlNYIRKCZI4GEiA/FH+9bjQfEQbGJ0oBHtk5w0YDgI2hQrsi7ZnzSAqZBwQ1XqYVEwrBFPRWMen+rPnMAYU8OOYGzyFANhmWocfRyggmBAycmAx4TZfnkB5+2r2MSY5uxaOo83hgaqtfa5QWJEtIYSMRXS1HQB5UjZPB/qzFAmxVA+rl9lP/rYCZIWfRljEKU2xWoV1pm2qWq0kL8CNKsxfra3NweRGVgaykIVxfLJfecPjNFBtNE4hdcGE2TgmXd0HE2pyMBC2Fs1Gts/VDM27fa09qxFttvapcVOVFMV50LVEVcg1zmbFN744+SjyNTHfPsC0Yp0oTrgt3Y4O8cS7MM5GcKI5Wdj41VTMk4JuLdItGA3ACqTekPeCgnAzVQzBUJ1FDDJZaTMATxnBOOhQd3l+eur8qVK4kEqND+7fuxsB0E2bN8OGpyxg3NzsPNrzkUh0ITkLsxqGDExywFFvb8/Z8+cgeTo62oYHrqC6NT01YasXTSQE+1JpF9IaDQ2AV4Z7aGSUtFs39kv+Mp9FhwBAjEX+jVs2R+KJHTsaZqbnkCxKJlPcBcx5AOQ7cvePP/bNO++8HaPNmIvAFA9ED2e+AV+cmrQ0JWAxzSeXkA9NpzMLMvCoVYrlZ5rJ7GX+Q/GzM1layHsa8qEg/HlfGr56oQhGScSi0PYY9gHBNDfGiX/x/AWUOA/t786X6EAkxSey6WI85uV6ZKTTm+IxjAaRamZyjK1DX3cHAJ34FI6M0Mr47JvPv97gYVPlk12ZfL5twwZ2S23cjlZMFQtptBTmZ2fam5tZiSgr9G/a8OWvfu3d9z+4sWfD5MgYAGiZ4w1cFLP2Df1NbZ/4oQ8nG/zPnrk4zUAEQrqj2LjrzQf71XmuXUXOh5pnTT7OxKt9/zZ/nQm5Jh87IZ2v5OJEkKcGDYhmHYH0vBHPrAUBl1hvsClpgwHbKxztwv3HZqDPnamUmsOBRrZFy0VAPyFRzrO4qA5ILtJbDqAjGIgWCCDcz2aUHmcOSriAr2QuY7AuLRh2rjo64A3TglyP4XGjW0idoaigr/VXTznOonjaKtJXEvmUqQSBU/OsQg/ypzVgGXD5qiOGk3g19Gqf2XCsBtF4KsJTfWGczYHla0kBU5IqZ0eOKPQj4B5nEQCvFgHYOEQj5BpH++guKmwQY91n8ichz3cK6Uj1d9+pddc0zDb5737l160h4miQvTRLMnKAK0aV4dONb2j+yWuGkg+yYcg4exqK3GQRLpfiIaTRy1yy1RyN9O3cvn/ntmwuBbcHAr+3p+/M2QvDI0MHDx4E2Al3yqaUZh3TDIIKmrWzsx0/S4zpFo1GljCEy2mTC8MHC4jg2cnLxJRpHpeX6925IxL1q7aWRiDz9OwCovxxFA2i0YXZeU4XEKycmp5AMRjCpKOje8fObaPDQxzbwlRFBqm/t5e9QjqzRGZMeDj7JMSPFGAotEQDEbjkog+IOeg3mDqcahDI/sMf8Cfn50Ld7U2JOAkXFhZoS2tzI0x5s4/BGF1xdnY2k0rzFdkiLHViPbizJbHSWOIMA/vR5MbRbGM0BPZC9m+pmPe2tUbjbdxaPDY+WfYGTpw8zYyib5o7OlFZoMs5/sW0UcUlRSSQFsIXycWFLf390XAIxteO3Xu5B+C//N7vffSHf/TIoduwUclmfza5mHBVRmcHXFGU1Pp//uMfLX3tW199/rWmjiZkrtYd97/LgXT+9apnPmkF4uEPT5wTWS/ML0njQ0Iyf0X+Y2vB71qOo8gLJFth2+dDkwKTqhztYIOBTShHW1WHqq/k+iXdv5xDKUTXr2Gzs8LZFHbgtBfmvLdcEPOGHRdHx2wumBFldlrAc1WDrPR3ddvFBGBuWIcsDVnw0yuISmhAT0q3EBSPJqjjyAm/8v12TpsA+sHElcckZEPApkdPTPjaLrO7GdNc4tg1yZOlCNAHAfDk1T6JBfSnfVq0Vzu+EGARgPmiCE404QVGxfy3VZL3xhry7Rr6t/9dbTGtMh7TyqsrdYNDdnWiv6035q3hH9AOVUEwWtSD9NuZuJwPSCxaRp8h/jW3kZ0uByDeI75NzfHupnhbLLq5t31TZwta8TOzk/NzC8FoDNMIs7PTEFub+jcAU+3UggWPufxKFtjK5rKhq7szlVrkRzcCT2G8sg6ZbYuLS+AfBCKZkhgUwixnwNOA0SGI8ORSChCM8HVrW7PX3xMJYw2/oaOri81zLuNuJ7SxiWkOnTw4gAVmz6lTpy6cO4OC7v3333fLLbdgj+HixfPkwyZgemqWe1TASpBybBo4RsamDibZNY3LK9l8DtkhagVmakyESsUcC4Foe3fvRpoT8pyVcv7sucuXL2OBFEtzGPWF14LskC+oAwbsyHBIuFyA++BHyd8NWZ9LQ/u3tLa3tLfPLyzC1+Je+ER7x+PPvDibzHK5MQfOHFAjMsQy4WQ7GgkheT3HhiUU5J6Z2anJIMjE4x4eGrztjjvvuefuJ59+4X//V7/0gQ98+O477zq0d0+Aq+dd5Xa/9/f/7M+HFlNd+2597/33z+dXnn719XA8VuVH/21NsRsu1y4oG73e74RYEMIn83V9wMj2FFttAD4RqNLqAqSK/IijBmgM4bC/Dfnc/EAAuv2RKQ8gY/OLgyHDVCf5sruAVC5rQkabuQCsAPkDQkFXRJJCXviQK94SpoAkFGAdcJJ6Atad3gYOsHyogNj+xklcVKjCsCUMiCaOyl2DAJRRzTl+2wtrnuv3gYlk0YBNblOpchZam/JsqXyysLseAdhoVAGYbqq39kEEBsMiAKf2NhVPWwwtM3FERv4AONsFtiH41/XQYzZcnu9Ss52y/pp9uG4+rBBs31BbMS01FSXPIIEfqaTAEIeTiaoi9q7YmXK4JnLJ767Eg96+RGhLa9PmtsaNrU09rS3w18eGL184fxEZSn84gsA+PImbdm5HORaAiLYvO4NgKNzWFliZW5hbWMQ4PlabZ2angcUBnw8ukG7Ogh+P3DrcVGQjWDQYFYEgKRQDUQxKozFQbGpMQH1LYbdSGp9GGDWHHEzY6+XKPQ5mWVlwrfhEa4C2bGghpRGZQfHqxRdfAAH80Ic//IEPfGh0bIzKtLZMg0sojw0+/CXD43WhPaD5jrUItjjhcGtrK5uAaCRQyGfYYUCVd7S1UeGzZ88eP358cGBocnJ8ZmYe1mxTvBGqHNopl86EQjAHIA+hp/LLHDNGoqC9YDDc1NIcjIQnpmf84djew7ddGBj60lcfnZjP6Qze521sbgXjkjmaw+zF8tlMd08r0p9w1RphWKWXwKZIRC3MTeULi60tLUduu+0P/+QLX/j6Y5fGpk9eHnz3vXd3gamCgQ/90If/1f/9n178iz8PP/fq5kO397Z3LuSlUXHjbt15QnJnbq/J6nrxrxd+PZBl49enqvfbQq8NcSrDJ5whViS9xhxCWUsEOZOWyjcAtAnV7EKJLtDQgAAol9Qh0MVsMVwb0a8SxWF2Ab/Q4PUwjBj7cWNsCo4QanUCayvILLOLhTJhipKb0msDzcYBmtho87JOILjJGuqEcimFjQJwHwQh5QMdH1/VmVTbQk4LbMUCcvpaudec09RrPTTBOuYSv9XtRy2q6ZxqMRRGBHLFo0oZBIAfBEANbCV4JYlNbcuv5WTwpMmO/nAQgG2DfZKDUIqxBWSyuN6IO1l+P3nUdIF2AUtbb4UYv33Whuv7o9VQK2U35jpljIqJDPmDNAMACDIqVGHvXPFzlQUM8Uol2NCA2WXu0ouHg63RYG9j84aW6Ob25r6WJj9cIQ5hi8WmppZEUyNykdjRZSZO+EbPnDr38Pvew9QC5oZicW7ETaYyzDokMvNFOPXz0Pew0iHAocQLZSzH5cROLS2zMsPBEFq2AFJuTEIBE6b5QnJpIbnY0hjr6+tpaWlCKyq1tJBobQEzsV0Q6HehYIngToiVCTSF0c8Khc/Oee2Fcxd+d+K/fPOxx++4685YYyLe1NTd14caF2hgeHQE0A9LJ7m0yCBK9rPBB7CGEmcNNzVG0R2DkUWcF156BQW34SuDKKzBfIeZsLF/IwcL0IYYiAhU3NwVAwvZ8opBn/CQonHOKZr8MP2DEcR6Nu7cUyi7v/D1b7556jwgxBeLYlqCM0buFRgdm6Tn6RmuB9TVMdjSgHnkcYuTJBNF5Tj6FhhXzWWbGruOHLn9xIWRN05fevbYW5enZi+Ojv303/tEZyzR0tz7r//1v/7lX/udU8PTT33jkZZNW4GG8EG+j5yWU21xUe3qay3EflQEw2LQXxtkWoiX9tof8MlQMAbu63p3GXwA3sHng/PjN4bYsOrGRNVBnsmfbQA9zA+WJdGEA3zc6ejFtDNXuwP0WRnmHmZXQTI87Fhtz8IP1z8SQzuxkHQ0zIQ16yrgJSukyKQ6zG6DnxBUzVFhAyyrD16vYgE50ARPLcmN/jXdopKsB6pJ0B1AL0O9ciwSiiXn+krg55MtjmcVxZnSnWhkI8PPAoLw2yx3SHlbFEKeFgGYIoij7FTe97mzPVPfiGtD6r9+t/zXK+WdTol180GeAQFmWceFrmaDKwNiGMYqYeQQO8/cmxr3+mIhX9TjjfkDjZhTCHhaWiKN0XBHLN4RT/Q0NTWGgsuF3FIqFYnEdu5qRlBdJ5y+wPjI6+fOnkIuk2ViHfDSSFJWkMZBKBN1JeYMt6MghMl2AbCLPUJ4R0wqkfiVciQaRtodUMvl2ywonczBK/F6ZpOpueQpyGrkizb1b2oopKF5EMfA8hpbcjYcQGqcdH3FR+JUNU8gpYNdrgwNP/fCi9zY1dXVs3nzRo6IwVg4dAu449sfxJqFm1NoDL/TClg6yHqiOjowMDCEIKpxHBpzzx8XP5K5WbVcdcCVZSyuErsapDJpLFgHnQbOjSWoz+2VnEJ6fGiRheMtz738+tHT5xazxUXMEZA5/Y5cSjRAHc6fu8TCwewdNqIXFzit7O/f0FfMJcGvXDWZSaeQmmJjkU4mE40dkXjspv37Z5d9FwfHyoHIa2fOLvzWb7/n/rvvP3xnUyD+i7/4i//m3/968tIIZ5qSShdZeKNu3XlC4uvNt+vFv1749YDBmvj2tT4Q//XSUj2+4mgn1DAAVoI9FkQBsyFGscwMbGWvJSY+F9hxOSOBQH+OMmHXkR74LW4nbB8yAYQBsyDkGdGyz7sSCCIkB2gvu7Adi4KHhXDqWGY3eEFAr+aAmcx0n4/LgTGTXkawH6PRPnYMPqyM6BoB8gE1UZYQFDOduksfhUxViasQwNv0e6246/61PeI8zWRlWSHCxx0EclTUOieO9Tgjjcf6bbjNQYCe2rPhoZPhi7FpkhP0FwKQ2qHZGJCmilZ/EKC/7WXTJnnrPbZznBAb8/voiSmTEltXFgEnru4Swo6hBm8I+/Iub1PA3x4Kt/iDCY+XM9MoUjR+TyDKaaenJeBp8jd4Aa+LXPBeRAwO2XjdUo7Qhd83PTlx9tzpmZkpeKQY5AHyAvqhbT0+9JYkIARzZnQcIhojOZGZyTR7AnCAv8EzNQXlngeMwrqBc9Te3klapInYz0NRsVCYVBBXUG/ZXOnU6bPnzpzqSoR72pt6evoon1Mszm8BzZDzs9PTlMiigsYPBBqam1vBBNOzMxv7N6NRNTwydmng8jPPPU/RhjvfCkiHHUQxvDLtwVIcFsKV4U5YoD+ZgEJg5UQjceY5h7FtCNjQFl8AUVG/L8jtgZk0B8kZMIq7YRn8ASOfmpA/OCAUjgYijVdGJ6OtHXfcu+H46QtzFwYgRjFJUc4uwQHDegS7GC6RRbNsbGzkypXLe7gKYHP/+LCEUmKI3hYLyFD5PF7uQF5K0yHumw8fadt24JGnnueqnNbm9oujE5lHHnvu5Rd/9OOf3NDR98//6S/8X5/9byeGhuFPfT/NRkOA2grbNWXXlwUiN7LKRHCIW0PcEjoeWE3GujdkjWiactmYb2ZHxISXSC/7BWwtW8jGkxRw7hCGQcqLDgdFA+U4hK/4YPrITizQ2ov9bqA1XEK2yQC+ykoRe3H8MZWmVHYGnrILfTN/Gf6PdhOQWCASlBpRp7UMItAL2EUbDg5lQTzQ0cZPuFhAuKoUkdliCAw7uE/4yeJz8wSJVJ1eV9GQxLr1pgppbbM7oV9MjQ2Q5hPQn9lJsI2Gp95PoHXaT5GDEBSHIGwZaLnMUsOk1cm4elodAwWkXquUfCqJhUrpxOOFZ129TKagDyxyaMP0PXSmAuR/TelvW2atP69bN7qLnG2/XdWuVUYcBIjGy04J0SP2JFwRatm/bR2+849UyM4c27fiTDIApi38tdWF8mGerb4h1AzoryxjN5KtcdzrbfT7El5vf1tzSyDQGgwjLednzMslTNq6UMpayLJMAtFMEMMProZCJgtAh8HdnGhJLy0iqE7tz5w5h1wmZpnRY+IuxlypBChsSjRiMFzbasB9NCoGK6pifi+8I7oU+OsOQHQHMNjJbiCXySMn09XVGwnH5lyIk3ow82n6hUaggsl1LiE2AbFIYFNHC7ctnjx7IRGNAEk5PoXdhGROa3s7uKS4XISmpohMJgUE7+/bMDw+AaUPlI95IywBsAJGHjzJ5MjoItGoALAbwp8RZMWyMlO6QMbLjoFPSBnBVsLD8QDWIgln7bLbqFSWiA/W4fqX4jKcnjxY0It+A8KCIKxgJBRv4bav9q7eiyOTrx57fWRqWsQoN84XOCmusOc4f+Giq1JEVQzhqMmpEcyjjo+O7N+zhVpkMxlqy3Yk0ZZgowAFxu3H26PRo498K9a16TMf++Af/OEfLlcKYJ3pudnJmcl/9cu/euf9D9/3/g996Ec+cvH3fp/9kZZgdTJ+51PrbyylhUJXFwc0WzVoIZgi8hlyGRJeJ7VVwEUXAHr0AFwBkaH9oW0QVOPaomJDsdCAdBlAzIiri3jVUS7viDsb6AgUAxjDkePkqSg6GXIZCh9IDSewDLQ0UBuOUJGTYUFTZqIHNMAegHQC41SEerONMNCNIGoA119HQrCAmNnI5NQgAHNPmRhMxdNpL7J3Oojg3Ymr9mpHArgU5c1PTYDTjvVCA4HN4QVwWhFg29B8VhQ+vdhjClOsLc/krrLVi7reSUfSelUA2EsVNDoySGp44U76wx5uToIdzASlmZyx0z9kIkcOwrTMSViwOsFji1pcznOcyOEImXD4QU0Q6KYIqqacscJUg4zASQFTeoF/xlFb5ep0ksq41jloQxk6jkbYQqpPukGwQq1z4tR7CK//ZF95shmTtj+K3ewNgd6rKLYutWDp6pJSASI65GxDABzMGwnOEODU13SYjSyESmHqmWp75TOOAP7aJ6NBuO1scibcPhXRvF7lIUz8S0VD3EBJEXrDqpV2vRxdiSDhreQu5ip5VgamTELehgSq7aWst1CKez3dCHQ2xnti8bZQoLe5JeqTdDoUaB7F00IBe2TIaGoLXMgN5PKoMoVDkj1H1rOxvb2QycHMYH5ALJ988yRw89DBW772ja9fvDwQSzQiQoMw/oZNm9sbmyuF5cV0uqe9bXJ0LJ1c2Lypn4pi7g19XER00otMHkbAj0ja0ODI7t27gebsA+geAK40eF0rqEUZ88sLmVSgs6Wrs3c7zHe6NLU4N5fMNLckNm7elFpMgrMaMu48XeINMh2A9XNzMxzS0jcUwULBMjSEC7xapi2rHSMQUQQ5/f6irEUgCO5nQBsSPihIBDQ52GBrHw5LKI51B8YC08BdCsHCiYZBWjgIG04QQKmwfrzBEFOJncoSe4OCd3B0/NLlofHpWRTxw25vDk1TbscslTr6+iYnpqlAIBqsrBRgOQRDbHK8KMohlYRliHxmif0Vym7zc3MIIBUKKPf6y8VMk7sQLc6wEfk//sEnXnn9jen5+YtDQ8kcCmzh3/vzzz3y+ls//Kkfu++hB7/27DNmfUoYkQ6E6NMrWj5GP0DUydVOq3Y9tzrxzFdys7HWhDtJnQhOSC2+nc7VmXy95LVUhvViXkxMwD7rGhhpV08VXLBMRHIK5K8UMdNXqfiX4byXZbQHnW5gUjHTsMwtdQXmJ4IN0vOG6AGSenw6PGKp6lxXcpAQAQaSMSBSVmdWaGdMPswXTqskBCqzoW4/CgANqH0UIeR1kAYXVe2yqx2KmRK4cwZrcWIcMQ8QMMUyK+DI9LhZ+qq8aGXjVJaBHhKF5rMDYOoGiB6vdrpBBgA3HSfAmzKQVKu/1mu1v0IU8lMM9VGVwFsyeys4RSk8LYYgTj3wheDSCgAKgrLU4/zoCEyZg9KkNqEKCAsbvhVYwp4voGDJPku7GTCViaAGqzm4Wp2qf6k81RKEXefQek3cd/6q/gOEVqfajaSnK1ajVXty/ZVAd5qBsJljFURNs23USPAzbjU3M1pr21//eT2/HSDny1XVc0LX89RVGi/V0QCA52Fo5JGzgVjxVeCPB326C8+VS/kKuVZfQ3trY3c83huNdPELR5qCvggT3u0CRGaQhJ+bneG5ANxGGSqL4RQM70ALs6m96957mSdlQ55z1AnT//TJU1MTk22tHRyicuk5Ew3wrUPgYJDj05A/gEn2zpbWzFJqQ3fXpYHBrVsDmSKLCv7QCqzzSCzBCmTPTuNYjah0bd++naNX1iZgS/TNSgVejRkFGuh5/djxtqaWLVs39XS2NbV2InTJBbxwYaXahsY+57fcT4AYqWqyAvGOhQc49qbnmKRyhJMz0B+/ACQawoZkYe7Tb4aIYaqzmdfpHl9IywhTYeABSUmlZSBkS7GABWLJdiobiwZvuOxqQENtcXhyano+FIm3d/pn5maFTrgIBtOPbHp8PnqSpoIQtu/Zjekh6M+21mb4V+gztzQ19vX2o+k2O5+MRUKTk1NQbdxowjZlQ0cT3LfUxJXW7u4P3HfnyORs/4ZNmRXP2ZGxSiiBosQf/dl/37LnQCQWhWQD+dFGan7jE8l00ffq8fbVWP+rZGxYe2bdAdmgdERFVXkYVBS4A1zTZhZwJ5gHBC7xw24q+hpl9DBKOTHbZf5D7Gv6n6sAuE5CF0oYNVgmHsdFIv95LeraOEn/G6kWYCVFCIKDCiQswVWPEBZCIpIlomPNDoAsiVaFfQYYsP0F0kGFmTklItU4CeAITogEBrTSEiqsY2udAZCbeVZBieO3SVUtUxvC7SeFC/BYwGRjXQWGbBKeQjJUXNNAReiASMS6qTQbHc1sM7kRXcJsHj/BcfUqCZlARlKQEzdhDtvbypNOkgCRDEiAAGB7UY9q/iqj6gQ2v3vOZko535UsbW3JSu1SZ7wDV6vJ6mAR8g7SXxP16sooK7rb5qhP18S/KgCECxVEBSSUJvEPWJeml7T42UdzmxTbOl+JXaqGNVha6Q0Ge2PhrpaWjli00eeLoeHNcBaWF4BfyNTn87NccA4KWER+J8MrN7YDBc+ePQ9cxjwnQJCtBUYUUK2CiEAA9M033wTiY46tqUnKq9BVJEdJCrl7LjkBrqGZdeHCBeLjJwL8dA4A0FfClCYUbmouxSIEukJnY1n69OlT7373gzt27Dh16iRzkHCgtNkHwEEhDhR3IJ3NcCE7QplxLn0P+WPRYNRYSmPPzWhyfwG9wd2sTGhoOPjsoEFoeI01SvxS1ZKQNzwWukgHuWZfzyAiGWtkwlnvAAhhUhzrViiCLYr0p/mCOQap9mvHDXrgGISTkhCaRrCN3RwEBEKxtlxxZi7Z2NqJdFPywiVYW2wgLFUAK4l0MMrMVtiF5sHs9Axm7Db0dcHtyaSS9B6d093XC39pdHhwMbVE86VTzRk11kDpaFhYqXR7rOnQzr17dh6YTGEL+hVXQ3AslT7B4fXg5WBzK0Qlldba19KUo/7W87fydKrheGw16l/r/WsqySd9NWvB+mma47hqHcYNoEirRlwYYDm2P4plMC5bWRRKAGv6AqYA1XuwsgoaEfmPg/9v9oLkBlmrUhgYvhsWuiWGkUOAiaouFT8G9K/OFEohO1XULFgDDKgBq46pRqjIROhRbW7tECAUJG4/4JXdOtPILmy+Vc8AlFMdHMFf/8rXb+tq8atUsNNTos0NBiAH20I8RLZ+FXO1o/E4ekFme3V4To8CJGiclpA9BMbPUiSOOBCG+2SrR050js2Pwr5tnW8wAhk6+TuVvcG09dFU/bpOqP/0N++3lbFNw+94qvuNunramOvWkJkE2OKTdBU1JcUSZbQ1jcvFMCwdRj9fqiylA67l5mi0Mxbb1hxrD/sbMWUJ9QuJXchzlJmFYs5m4LFiEAIhfmTgGgI+73IAZmAWDlAmjRwlcBxi9/y5i3iCQH+UeOfmsNQMx6a7uxv1q/HxCUh4XiFCOeTEThxxnnrqqQ9++CNAN6pHQzgNBgHw5CubFMLHPGOAfgPoRWJDGQPvQDbkMD6uT1zzhZAekw2gBpkGmVcQ+eUKsXxdARrLTSxE43QhFA5DonEBGDxLGDrAPPBN1B9E3FQHYYaKh7diCUA8WupmLfCJeUv+jIMMBxkoYAdF4F8fxZThVj+TRNw8kYEccPhQDyoEse4WibHpL5Qq6YXkQjI1O790ZXBkbGJqKZ3xwB9CaaAiZQUAEOpnkP8QXO1dXRQkjeXkHP1G/uwMsulUayM3LqNEER0Y5Aqy4UJHmS6NtjQlU0tctdbZrNsxzx5/c/euA5i8w+rpfYePLB89OnP+/E07tp0dHa8EQwU2/YZZzFK0DeR5PdrperPrnYariHVdDQ44GVpP/dOmMyECjHjkrz2cXGsB+ituvhwwV5x+gVkJPMLvLC7DNUNxHPuDeXhueWAxh09EBbKxgWCMYB8Z8K8HhKz2D0A6A8SZCXIG8VOKJIaE7cldPQmKcCpjo2n66Ju+muqhKqwtpgxFAOehvckcuI9gqEgGnS5oh25gpKUwhAD0xQyVk3u9R/kaZ2PWf6LRpmZqvUqpy8dmqKf4OZak0RxQU0wdyFJfTRIhT/MDvvNXOAB8iQgUTUevzmjrAB1MLcRcIjLNBfprS2GczUYZfredzdPmf91ZfAOFVttbi2nasjqcteBv/5eENtK1nm+f+JoYTq0czzvKXFxNBBzAAkg5oMenJ1w5yTxgdgGGn6+87CtlA5Vik9/XHw71xaNdfl8zMBUDCQBEr6QUuM8li1kcsUO5PAkZB1gpYvPlYE9kM2ksXi7M/+zP/hx6rbOzc7v37iXZ7PQUrPOTp0+fv3iRw1lQAmewL7/6KhwnroM/eMvh118/iim397///U899cxnP/ub/+pf/SuiIV0DX4crvQB2bAiuXB7o6+6LJ2JgK2Af9H5nVzf9MDI61NgU339gr6yvJZNw/wWA2eQwOd2VWCTGC2RyFPqfI+BwIBzyhQNcCltB8wDpCwxyQur5QyEO89KZHEgF2h1NBzrWZAMtI3DA5U4wA9R1YltC30uMm3Yb8y3iVOpnsIJBDkjwoFEk+6AmFXKeAbYayzp88ZfoRF8wFo75csXk2CTyTlPTc4B/NNfIH/CPgRlPMNTc2gZCAppTEzSEd+7cOTUzpd2AaMNKIhE/e3qpu7MD2h9ZWG4EC4W4lBhDn+nh4dFYewvKApGQZKsSwaiv5EmPT64sFoONLdtbouUjt54cHBidm4GLx83M8Cuop+k0rUeBSa3q7/7atHP1Rp5UwEZzPE4qQuoDgS3XLkuFqQkGyBrylEYxxTGoqtvegdeAVcP2hgGPGLGdyqVsbjmnE0p2AEQGZYAAcog0gAs4JzBOkE7k/ArzmR7TSaB2fKZ2YvCjlA7C0GmxjU822ivITISAJ9Vy2kU28Ny5ZF5gUW2SsyALYMpdAtpBSNdSkNoCa9JWWUA2l3owit9mYZ82gp7idF/bRXXfmeBiN/Hk4IJMoHi0dji/Zk7L+AViIOjFoSfNGaGsW+tJ5fgKwNdVIKa/mDkiKlkecup7hai/7AgJfxgEUkUiRFKAGSRVc7VG3zWfSjRFmOfbdcK6RVJxEtr+tPmoKe+woja587SrS/m8w4xI4tRh1cMACdJVnclWfsdT+7IaQbNUs9FOOcgOHWGxEwgzyPlMQ7mUwBxbU6wvFuuE3e51BbJp/0oA8TiY16wcpB/Qh+K8F669LtnKw5KuIDeJN7WUQWafM7Yf+7Ef54AX4wRNLW1s/s6fPcPBL9QTphdg2cOuQWmW5QGfB9K1q7OHdQT9DmsISv+uu+76td/47Je//OUPfOiDgDyUhBHdgeeD/yi3P/pDlMvhAcuP+9N50hUXL1wAvt9xxx29vb0gBk7qqKw6wXBRcwUZb4Y3Mj0zzmDCt4xFgrFoeMumDcxArPlkIYDdDTBMANBhxLJ9cN21eMmBzHFMU/oTvGCHQCHGmR2Awh0PiAoFH/U1kv6wjLTXcnHSSBIfBw8+VMFcff2bAes58Gc5y94JJQFJlFRW2ju7KlMzlMl5CDQXYJ0DCcxIiPx3ifnDudv4+GihmAMFIg6Vy6S2bNrY3trMrgLGEsaKBq4Mbd66HSk8+Gx9O7aGIxE2ASsjQ5u7+28+cCAzNp9nfOaSs/lSb0/TfXff9dp//4MV3WwDJaAjPdXVwEqaiaPxCrnG6dN67p2Gr5eHCavL38kTj+O3Ce2rfQqsMp3NrFe8WgXlMwY2AfXWgrFmhqCq6FDAOqwgLn7khjWuc0Zqi01AMZOXZru4M2wCgdxuDPvAy0B80UwJEf6Ck5DtOgoCFMpAlNdo+bKkWEgQRBjuZmeMuVD4iBKIAX8YnkqtXtXlyQd4sCKegJNAekMxMwZGWUysE2VoLInK+jmg0zCIrssCurZDNXmvGkVR/Wui2Tg87ZyWUjK7G+pi7jRgJ8KeBmwJsKo+4ZmC9FRHUf4GztPzQnHShKCS5mCMZDIuaqAMLVP+6jVbWnVdVV8MtGKo4H6tqdt39kq2axJeG7Imwtu8rs4mU8+3iXm9T+TgAH38jlOfvkNHWtsWx2MzYAHgFGjeHY/9Wv9kjCTcwA5XoTom4z4rVoS3UkR6GevnyO/3hkL9sVhHOJRAuZe7UWFcs5nN5ZIYS0MkslTG0DG2iFO5PNAWxz1Z2K+HhmJtADtv3r/vgx/+YWbaEhJBFdeLL74I0Odur9dePwqSaGxu7urpwY7zUjo9NTPT1tG+YeOmqZlZWB/sAP7oj//kx3/8xx944IGvfe1rSO4fOHBgulv0L2sPUcgASl6z03BuAKCA3Vg8DnULUiECJDBXPMIgQvmLHQPSkwTSDzjwgSfgEyEME4sDKOg/9zIKnLniMtdsRYIhrudCZReZcJZ2FBOdgFN2wEYL0pA0UI2ijwDtIgh13Qs7JrpQoAAAA9DHEQFshNQ/hL9KBSj4A5ifAOKzgigAjhN2NwELgWAU057z88mLA5dHR7BYMT8LDyiNDKuWD9UOxRPIRFEB+ofxbu7sBMGgiXblykAmnWbUGjtbI8EgDPwd27aCJMCIiUTj5YErf/H5L9x/77237D1wceAi44KULSNF52djLa7m5UhrayTmTs8mL5w7v5LqoJYgjwsLSZc34vSV7TLaglslK/j8t+HoRVus4+H1Gn+VPuOTBoMU1UTVGlvASyocy1DOcGgM44Iw2TvgmBeyHTsjHEhxmQ4zhpGQXABEP8wZ4DBHPegEqD5I++gGIUaEsyOgJVSB6H1LDgMD0SxY9ihDjo3MMQF8cCNTQ30YXI0v+Qjaq2yRBvxkoFc8F0KZU4pJPPhOjAITTRFJqAMpYKpA7nfmzJJfm5RCFK6Sqq56uquTEMxc1D2FG6zZCvMUbgAliQC1tKRaAErTkS8ojc0WHokGCQ3w05xyWFrGX18X07n1AX/7/jVVWvN64/WzCXmucTeeQ31MMql/vdb/bSNA3jDBYf4wFdFhD5WXo8ViHHZBJtPpdW9ratzc0tgOpe3CwEMe2X8EKCUo4vEtZXOTswsAzSVu53V5lzJFFFaTqeLcbGpyYnZ+cqGY4SZt/8/93D/GHgNXWT39zHOPP/7E1u3bens3nD57BrgM+Ozu7kUngLJRrGW6YKdT6wgxoTI6rkF0af/4j/94//79wLsnnniCaYJtNUA/Z6HgAJ4goK2bNqMKy10uvGLFAdzDJb3Iwr/x+us2PmiACV2lxOku5BpLJU6pxyYn5mbBSStcOdDV3dvW2SUi3esLR2OBSASDzynudESgEm22mhObxzihCDR3AfTS2hUhA8FCKwTfoczRBRLfSAqe0OP8AN/ygxHIDXIdNBOKcIaBoufI2KQ3GO7p29jU3ErlxH0KRKiJl2bAhvJ42d/EGxtRj1ianb399tu57x47RWxu2A1QAXY1sXAkHEHcHLt4i3QOOI+6sSe7fGXg+IkT2IxLwQvLYnQoRBdhAg8WxMTlAVcqQ82j7e17duw49sbRv/izP8Wihag0I6In9rZxzB+Gg+ZcO7X+VkKunc/1IRboA/fxrHFEqzqGiR2ClAK0TxCwFSfa8F4sbJIhHyh9HX4htptja1YoZwolfuk8bCGebAzK/ApFV6EMga/LqNm35RGGKK3wYxeMRgnyPJBHQHyICfSgSpwFU7TKo3YoNhmozx5BHvmpD5sAZhA7MKYTT23FGCQYiTD/4ZwK4rI100+QWAoHqJbUHdaTyDoaTzI+8Yq/1nT9JUB4pOrwqAJkScXEfKo5vjOVGXcJKysjIR5Klcki0fUrTBe6Gb92AGLlUHGLr2ilOhYKhjrwgKVAEfwjDnBGSUikrQ1FS9ZYVeK/qaeS2K0B2BNnamTbqDyv72wO9nu1cSZPp0kmgnoAp4ydD9fJ00azTyeKUwoep6p8VabqW4XZV7I31WDUwdOW6l+nSCdDm4N51sZL/SO/zag+JuG2IDzWKZpxa/poTapq7Nof2P1cU815PLrvPsSQub6qnI83VBq93kTI0xkL98aioZVKZn46mcm0xCJd3MobiyYXU8PTM6NzC+i4e4JxmP/sABYznJm55ufTxXQu6o+mUsm2nrZf/IV/ggz+1x75ymOPPPaxj3+sq6PzzRMnI6HoF//qy5ilhFPR3NoC8IWHhGROIBTc0N+PFuwbR9/E9DEgdvOWbfD9v/a1b3z0oz/65JNPPvPMM8A+QDycfU5E+zdsGBscQU6fi3zhjKP4yhkEABYGEXQ5agcvPP/cux988KGH3vPII4+AJEQd66qZCnOODoA3C6uK67TSQ+l89gJX9caNzedLlwYwo9+YiHGVWHtHZyq5GIpwcEDmWDDKsujpanqV/g+GZUkCOMmdMIB1rQsprrki3Eu57IIbhtg4Og0cSqPT6QuEkC7hnDnWGNN9Mssr6C1PTE9xyPf60RPzM/Pse7ihPoN5aIhOw3FisfX09YEUQYTi/LgrXCx8+JYjJ06cePzRx9ABnpgYQw8BIV0uA1icX4A+A9txoo7t0jPnLgSC4cnpGa6EbG1vI8ndrc1bNmyE0z14+mKiqT3DYXu731V0t3Y1fezjHz322bHz6SQQiKaZSWjgvmGa8Qq6ZQ1q1qyZXrWJ9DZ/7cy0z7eJtmaiOvFF6xp3vXxshZ2cBavMiwCbYbewfuxXPgGOEdcsSbKNlSWGodg0gsmQ8OwFgYzoavFrwJ5nvuLKQ7LC8JGNZ1R92cFy8YukL6kMcTkbwG4Pt2jC28MIIudpGGESDjfUgKC9yHou5oS+QZsFVMFWQDiAKgkogHjE7BFvh8i2kkwnwVTD56fiAp4i+GGyS3qUWlKCV/ZYFMOBuErr9KDNyOlB++o86/qxWqRNyIS21I2urIHTZCScRceABkTT8IOUgQbiJwE24LoqpJoKxtsnHSP4J1RRxTE0jK/UFMKInMlQmesnR1ZqxLcFxk7t/xqe63WIzXLN1zWvTrHXC3cifI8837tyi+i/LiMgnvMUi5GVcluDp9sf6MOog7shATMUJsvQFS5yQdqh5F6Zz2ZPXLg0tZTxxBKhxuZcxT06NXdldHp0YnZuPjU1tbCU5HaqRHoxDUV0y/5DXZ2djz766O/89u8+8O73NDU2f+ORR1kSX/jiX2LLLBKLQ/4DInGxeCNMf/gtXO+uO34LJeQ7Y7GEqAWXC+MQGNR8z3veg5w7vB3Y3+weIHWhyzt6OukZQqCSAZTsA5jGQraVyqWLF3t6e5/41rc4S7j//vv7+vqAYpqsrDkr0ynCBjzqbWlu27p9B4YZhkdHz5+/MDE1A0Bv6ehEMidfKlM3JIK4v54fUB77ouFYVKLRTH2WAXMYMpzNANQ95nzQTG5Ak4AdE8YeoBzRfXaTilYSGG9MYJOHs2JubOe0hJgYnEhnQUMYlC4g7on1OlQgOIYET2ASYs+ePRs39MPBX5iZQYk51ti0b98+5KYkAWV0khFGgTtEwxGKRbMBjAVCWlhcpPTp6VmUBkCixN57YB9csreOHS/l8nC4b7nlMF0X6e0aHRosBzwXhibgI/zDn/s5tKkxPw2eo0tZmxRBj+k4lIN9g5C+R3O7PtvrzfPrhZOWT2u+Ak8F/Y3TJ0tKVgP0RwkM1a9NgDx2EyB2KD8mBTTCCtLAnNJ7fMUGL7g3v8LNXsIHRVcDr/wKlQZhCJ6IwpVcqAzkyu4sl1SX+K1kS8uZojwZtgKYfcVKNLsEzgB0TQbnMniwE6eDBygAbRHg/MCLBOAbZ+tvnmI4QluI3tecM/ZBjd/yHHUI7MDPVV+tteRW8xpa0ryYQFptUYjQAAk15MxqUf2o/ojlxM9yPkt0ksFTAHC2LwbJ6TDY+EXVi4Znr6J8dGbAX0PmgxW0t7B7BtaIkAFRSCcaX1jBqbD1OK/UcB1q2WnJO/E4PUDmytbpLDMP6l+dXJ0kjsf5hKc+UP7vVkXry/hr+K/d/NrM6ibCau7I/IDpgSMB9KHgJrvdLW5Pp9fbFvCGoGYRjEcKorycaG1twbJxpTg6Ozc8NNHVvQFInSpVxuYWx8anuKSQ6cGwQ8xonhRKs1zg3ttz5JZDpWz2K1/52g9/7EfhkP7aZ38T+AVr5c23Tv7Ij/xwOBptam0JhEJMLgDo9Ow8gkBw5i9fhiky5UH/a7mSTmWYmBjEP3/hEme/qBDDoEVQJxYOLczO3LR929T4BOJAfX0+dA+YXSdPnihib8JVaW5uEZNndJizXG6HR1XqllsOHTt2bHRifJllR1/AY+IGsVIJZhFqVpgXPXLbXUhkFpH84z4QWDV+mFpZbljnTKCjrb21vRMYCngVc8fjh363nQj+YA6AwwD9zGq4S1EjHgoHJl3I+cpBlhAs3UwuG8rmwXBgCYDp4mIKgxCBkIz/sIUAJbG3QEYfuAwCIGey4mB8c//Gl195cRpWTzDIucqdd9w3ePny4PAYxxvw66kMi60Zllw0XMjmoP0ZpcnpaTGjvX56bEP/JrACagKN2OCLxSdHRrKLKYBje3NHc09vdiHdu3/PODuPfAZuUfP2TR94+ANffuY50CeLwuzLOe2U6Dav1Ae4tTpvvjc+Z2U5HluO8+p4CLd+JwSPdTVKGirUnASbLPhkl6mBZGK2GCJBD4AqLRRJDv8dngYIQIc64G3/Cjw6jwTAMO+cRyTCCPJAjmvTIOqew1HIDWx4I+cuXQFgHeQyT8PJV3XYFiBUx2RB5FgcNSykGMpfWEdlaxaZmWRqQEdrFQlCmT+qMlAesIVHH4UJxCHiqRqbwCpvjm+mpYpnY/OkBtc+baCNLKaPVY0T6x+/CqcBBg1wEkjmiFGjE6J/Nlubv5kV1YIMNAeZANOdKIL7tZ82RDZb/uA1r0TFr1pQRcKt07upNq/W/7141rpF5eJ3nrZop0Sno+o9tmK1HMzYOQm+Nx5bllNJXuvrcONlOq2oTwLKR2iBbghy23WDK+ZyxcAEK64gtElmaW5hJr2YDMUj7d1dkJ/TiwsLGZgg5Tn4O/nSzMzc5NTsYjKDmBvwAtCMLZuiuwGrNBABd95+y+aNvZeHBxDXmZ9L/vmffQ6Bxfc8+N5nn33+4MGbW1vbEJBh4w1XGtF8A6PLULIs08GRYWTboeh1XJlKNzY2Y8OHtfPINx57z0Pv7lBCH1Y533rrrbvvvpuNAoQKOAAGNyCVK1xoHbbUAKytKEnNzPDp8qVL/H7qp3/64YcffvrppwdHRgtSDHb5MLyzgpmLXDq5xMH1mysu7Op0dbYzb+cXZuGwsxOBgmk19j+hXJD35oecEjKjHJkAslkmVuKP5lMiZ4Es6kg8Qv0XUkvpfC5SiQP6p2dnEZTiaLyr0sVRAAMBrJ+cmOL4gVQAfbY4p06dZbFCcZEVVoE29PZxUvLCi8/BuWpuaSbw0z/+6fc88O5/8k//mc8fKqbTKy1NEOb0Hg0EE6CoPT09FY/H6LRNm7acOXsRe6Scmfdu2OhtKF8eHty2bcvIoHdxhjtjgiePv7n34OFAS+Obl86PzCfbtmwtpjKXBscSMcxzt8wW5jmNIU+mGYuQ1U1f2SlXP3O+635nfl7jqa6yNeH1r/jtK0+mM4CPhQ2EVs3lETwV1jewxcTVg9NaqG8xYuTE/OEkn72PKB/47UB/r7/s8RW4NkK6I252c8IcQhWkhoFtBgzmDDBbuwb1GBq8NQZ7FfyC3YUHKAwGlBGBlIQMOIYPpmQYQKar1ceWMW4IY51Ng0pEognimyhCbhoO66gEHu0ADBRdHSQTUi2+Pmo1nXDXVchcedcArvUDow0OUAUDtM44yrNf8RDgzAwbSAY2D8Pw0YZF9aZHpQQmel9Pe2ZgOxwUZmG9xQ+1yn3X/9puopKm/uoW/PWlOOFrAu2rTY7fJnRe6yP/Dfid0m1DKHFNK76zOiD240Gss7Ica3DH3W6ubMTQm056VioAlNnp8cV0qrHUHJycTqEXAG3oDTe3e2HRwK5G2RezP2EMMiAJvOJayixlcqn80mIhvXDklr0Pv/cBT7C8lJobHR3+k8//ZZIDzLvvHB0f445yDnVhp3AcCVezvbMDGDc7Nwt1DAmSTGK9eIm5A5WNxACsjJ4NfdEQ/BB3anHpN379N3/mp38SqxKJeByCCrnPzvaOmbl5zEiACYBZgH6u96Kvpqen0TrmGAChICyi8ekPfv/3b7v99ne9613eV1+Dg5RdSpdyBYy8QexqOpcq6EyhJss+lZsDsChnuB8FFh7XFaQyuamZCzCpkMXctGlTOBBEN3gpJZtr6BEAnbVYOHhFCNXjyhZzWGe2EH9hkT7Jz87MwzMFvnAMAMFJNKAIaG9hdoGEHM9SVgQbel4vPDGqilwS2x2pOsfiyISylfmxH/v0v/u3v/y//a//GD703PyiNxxmuOEiNfd3cV8xZmjgLnGHASiBcJhd33z8KUFwl2dmdq6lLToxNb55wxH/ijs5OccR8cWBgWXviZ4dN4V6O18/dvStp57s2bxt654D+/fseuXEuZF0PsVhppGb4hibGtKf1NCiuu9smt14Kmd9OR6b1nl1PIRbP0/rCBEQEmkucO88BScNrFSISWUBGk/aBSUg6K0DVeA3mzgfut/8oP2BcSVknd0eLv8sYhlOJztGIYBMbLUMggGsA1EQ7uGJIKihpB0IQ20EeUTt8zQIQBsImYTTkavOCEgN9kF3UpDQcFAgBMQ7kWAZjrIkX6oNBu2jaVy8ARowiFm8IAMLVIWrPbaGlIpz/HjsqxNoPznheFQfECGoUEQ/+UsrhM7iaUux3WcRgI1f/zTNEHWPR7Bf7+RpW0MblAkYjUrZPLU9qDny+R45W3nnaUqxKMEZqmrJxHHq4PgdD5/w46iy9TuRv0ceyiJnW1x9ETa8PuTt/evGZ0r7SsWoyH8fLCCv7P3An/QuewJxuAaJrZJ1CUegbeYWMhCGHAQxbTHTll5cKucKADw2wPkMJgayCO7MTUx43cXNm3rvu/fO/i1ds3Nj6LT+6Z//WZmtpNvb0tKGqQFIIejf1pZ2Ln+PRMLMAc5vgVbw9BdRJ0jJrgM8fWzZ4wgEFMJChEZGcpTnn/3Zn0Hs9/Z0AfHh+LMzAEIRDVgMImHfAAIgT9ADpXzkIx9BLogkfP3Qhz8MkwTmyb333gvVfPzYm9D+yN+bTtNhAHtrUF4+m+3GSFBbi3TcVlypbBq4jAQ3l8FPz8+hpAaMgGzHzCc4Bv47DmtFJAasU2E+jU6MTc3Nwv3PlYqZqSmAMjKxSDEBUiHP0dWlMkB/lgX1ZFhh2cUaGzvau8gB4M8hB8Yq4tEY0H9sbDSdTiUSsZ/+6Z989umnvvjFLyDPgxpDtLmVtB6fPxEFJcW4/wtbF/QP/cD1A0jQkklzUysRIDYnp6b6eruy6UwiHM3PpVriTa5tO/7qiSfuaWtr6txUjAUvz09PV9xPvfbmww++/+YDNw/oqjVddYnT4jX11ORZu1Defrq946/189PxG8/669HG4Wkd5a16qa1ZNTYEmGxpbZ7aFxjsAN/NumocgSAOP5clu8WRvT8ADoC1x1YAcyJwgYoNuiWXAZMlCFNYrUMAxoAzUyD7AlMudVF+hhsF7FSRpAV7wFpnKcObUmKe4ALBVyARTwMbJTFJUiEA2foHeDZ4lQ/6Ccu8gkM4Bmbzws5A6MIAaNWn3qlo42zBeG0jrcd+EoeMylQ3EKvwRWXjjNIMXC1OJiiVnjJN0ztZgTVV76uhklOmmqFPAuzKCicEoP2VCdH5AJNeMq8wjcV0Ul71z2oNv8d/aAiF1j8p0L7akvFf67H1tDGdCDba9/rpVNUW5NRkTbnVsV8Tep1XZMjisH24iwr2Rq6QXJyH7ZLFqEA01NfV2dLEpbkt6AFOzS8u5uaWFtPwwbPpBQw+VIoVLkOhw4oIuySToASJA1Q4k4zffdetO3ZuzmTnORUeGL6IdeWFSez2NGHsgdsWkXyHiAZSw3rfuLGfO3JHRka2bt2MqEwNoPs2bOhBfxV4CiZoamyB9YIsEPc4Qr9/6S//8hvf+Mb/8o/+gYQ7Xa7xsUngJhx8ODZQc+AGEIfIVa/35FtvwVP6+Mc/Dmvo61//OhHAGQ888ABM9pbGpvbWVorj9NUsZyOY4G7gaHZxaYls2azHE2FyppTFpRRAFpFNlBW4PQBZHZYD+A98A1CE91/w6wJLUlE6V+AgEKUbLbl9LJthY0G44A4/lzuTzeWzSdCP+K5wE6DhPA20EebY1FwSIU6spxL/yOHbDx468K1vfYv+5X7MH3nvh+66407YX5jT7u3uujwwCm5D4AcOD5fb01HIUCHQBF4BG7FS6St6gD5hwiBoNDRxkXVI93Z0b9jY00fb+jdvCiVif/C5P912+x0fef8Po0v2zNOvJCLNf/qnf3bznffQOuoA2iMTrV3jwLKrRC+fv5fOWVaOx5bmvFpP/ZMIvNacA5kVsJpWFLMcYyGQbIhaA9mqcWgoGzl2aJgXR2bXiPAaNIAcP9QNY8FPUvwmvjlYtmvQAn3rh7A3hQAF+QsrVBwjA+H5wHgK7IIR6GL6Vt9UFXYgig4w4hBaXB++amdKVWE9QvcbNhwHxuwigZ1EB6Ka02DKqJ4BmFKvepDxVe91L+t+ohwk2KQFSC3FrcEArDYcIBwoFUq1qeyT1q6bCUBdxD9fDQojGl4hg9rBr460cbC3OD6BLaThqIJ/eb4HTn1dly3Vpvy6AAv0q62rD7d+p5nXJiSC+mf1D0VJHswWyEDBDhTRoIEnkGro8KiWxvm76jF5rb6CJqsp7Qczy9dUvvZl9W+1RtX1qspoxivX6vEwb+L8YKjVVUGxK1opRdiaorubnJ+dGMsk57Au3BSLcryZKZQn58TEyOSxjriM8CJkb6mYjiCqGeIiAMzTc4yKtAv3npZh8kRC3u7O5l03bQuFfSidev3B8YlJqFoW3J49e1968ZWBgSsf/MgHO7p7RsbHWHu3HIm++dap9FIS2fZ0eogT12g0Dgzv7GgdLeXh9XMmDKqg3lDWbB2wKNfR3cs2YmJyFhEd2hyORkhlOemAP/ATmrGTExMGoruefOIJtgg/9VM/BS/od37nd2AHIVEPZJxGZAmDCpp6DBA/iV+XEMRAwM7r4zj20oXL/kADm49uTCu0dwHfMWeBEjJANhiKoPQGZwz4yFgAGVnCWBOC0scVSgXYVpzB0l3oIGO6U5uSfAEhn3AoxtQrlLCsV2ZbxXDoJLlUuXh5CON35IZ8HKPV1tq2Z/+eAwf2/emf/vHo2OCe3Xv+9b/5l7/8K7/03HPPbtu8eTa5yMn5wuxcwe+69dZbirnUmTMnlxZBRW0LyblY7BBSp5wSN7e1LmZy8wsLW73bmhtbFuaSffEWdWZXZGR0PNDdeuvddz75h3/w1je+MVxaufVd95+6PDkzPt/Y1ff6yZMNrYkcM8Ps+KUna4DPt511q/Pvu+Rz1t2a/JxwO5sBcgrRorZfGEnmuijx2tLERD9gFEcAY8Vs5CO0uO4oWXF5sXvBHKCBwC3+wM80bGufOxBgW7fCJT9IhKI/DA0uPgiKXWSu7NQnxiN6WMmNnreqYUumQAPtODkQy11m7Q3uMQcA8ut2MAvPoYdVa+XIkTS5KQ8ioxcCGkBASMwfbgogwNDXLGk+iosEnlClBCg0ZjgGjEnJBxyvTCyetrrkit/UTyEKtHDaLALxt7QjAFTTS+bgRIfcwAryIXPT0RYGyVKMwWBkZzK0eE9FgtYM0UBfVsVWQWGyLaPaC/AKc6oo00KwhDpLC9EAu+qz1rN8Mr1Qe6rK9IA6mqJsOiXVSlbZ5juP2gDoXcfR1ikUvxJWHV1RfanD5/RR7bv+OrGBoPj5Siol1OZMERDr8nCNm8AsmJPJwEBp6yZkrw7XqZDy0aiqu6yfYSKEVyAUY6Rs+cJ4COOLJclAq3dMESYfM8nqViOBKv5qxzzSHIFjyOZKEI2GQVR4yxibdHsRZqCHEYBuWCk2VLJhdzHRsNK83FBcWJiZnU0lMYhfCnhC0EGZ/PLZi8M+3wSwFZlICsEyJQAOqjwc5XaWKAJt4xNTs5Pz2PqvYF1saSEcbPA1FHft2NzaGMe+DmVcGhgJRdsaE+25gm9ocCyTz2B4Z+++Az29G469efzjH//YI48++ldf+vI//Af/r/HJ6XMXLnW0dsEOwkDy5o1d58+e2NDbzhWOWEhAhjIUjDKrU+kcS6K5tfPRbz55//33wujo6um7eOHKiy++eP8D9yLkMzfHBZP+TZs3Qp4vJVNU+/nnnmHiPvjggx/7kR/90pe+ND3F0ca0NqHMR1is9K+G3vSyXkT7lCt5VmMxX16YWSzlS4mmFs57yQpFYxbW9OQMWDCby+zZs5tNDEfW7BKQGoJ0kpFbzSjvUiqLRCy4JJ7Q3cX+QJSB5o4cgE403szAJZdk4DmN6QwYRVwtGYkuZ9MN3CiJYtty6VM//qlnn316fHKksTH6b3/1l86dPvUf////noGDzzW7MA+bOhiRBVMscqdTroV5diRldgM93X10UVNL60uvHWX1cQ8nBxFUu7ulO8hGrVg8dfHMXfe8a0Pj5stTk139G/bffMuXn335ka8/uX+h8u73/8jXvvHY8MhEY3tbHrl2QCEkv+YjD+OY/GaN2ABnUdQ+r/N3zfy8kSTr5MKKq61R5judYBa3XaG2LgpiZcEbsTGt2LwhqcVaodq2aMy6ydorILGC9gb2aL3FgLu4jDE+DNqwGOk8bmFhErg9AS+64SvZwDIj4guWvVyGkbfZsP7Q6KCepnVCNsYPfEc3WOvdQE8BbzIE0igG1BXzyXSlQAEQXkS8uDiARVVdD1l6UCpyIKnhnyN8g6koA3QE8MWXF/ghDnOXV6arVruk0BgpVYQ/xln/mqeJRlgVutVeq7F4JUtyMeS7fFQVMERLBZfk+EtBdqkohG8mnDrbkahlZVCIiUcSASPAmgHwq/WsRlVuqCIJ+angmjOVWX2tBVf/rvm6pvQ1kXll/JWEGazuVU+uiWNyULid7lc15uqoa8qyr5qUOPUPM4DMVUo1UIidhaQeYCJcnVn1rdqh5o2Emq+at6qwxtd4akvAvF5T/3WzVXvV+5ATqhg/TPfohAkUBY+fG3Q9rigGf7DiOZ+bhyAfE0kOzwSyF1YynQF0A2osou+4mAZFsT6AdPArQFaIciYXk9y1m8pnZSkFqOlryGSTe3dymLiJmw1hVugYzeXFpDP5wBon+cLU1IH3PsiFLb//h3/w0EMPgT8+/5dfxD4BK2fwClygbblUbnh4ZPOWjfEEysiFAwf3TYzPINNyZWAIJgz7j2ymaGR+4rBlLlwcQOpRALRUAm1cvnyZOnPpLyx37o6Hic8tAjSE/QHAFOY+PA2QLBQ+2NZMNgE4OR1OsVYxbsR1MJLh86xg+kG3icEsIvLM3CJ+jDoAr+kH8scQNB01NTlj9Fq82DWC9UNZsIwgt+bmk1zSzv4JZMmNkCAAOpZep1SsCxTYDOQ5feD4AaFSqgJG8xdzeZc3iIlECvrUZz6NRbzHHntk2/bNv/u7v1vOF971rgcYypt2biOrrvaO2cWFrZs3wJy7fOn88NCVn/iJH3/llVfYZ1C3iYnJzu4+dCaGxyYefv8Hv/7IN2Cvvedd75oeHQGLe/2eN469dvDQYW6SKa4UN2/cnDh6JpNbOXvmwtmBCaSU3JFwWiIATMn15yrV+147Jvy6RdSH0xs44lVXh2CzrbBwlJYQmQB4OJUVTmcxAqAFZZi6WloinUXXWvKfuCRWcH3R8L4l/IggJLJAqMJyIIzukkErRBdMYSOhtastheCYKGSWHFmbbFhrusXQVFQrVjBO9TaMbwFVYimq6lotV3Q2VAlZqdKYFgcmQSkLDSgA4kL5CKAIC1AL5WuoFpUi+GWcXmrOZL76qAWv/7eWQfUvJGq9q/9qwwVU9BNdY8qnlqrRO3W2/fXPG8nBxrcx1/jrX4ngvFqP88RjnZNJLWD9v2tqRSSbufXUF3S9mE54fQH1gY7fepwi6sNt2vqQej+IhzGAlcBTfjPpjAdZh+XASoWnv1wOuxq4bzfCDMsW56ZnUqk0YxeNxrDID52LpQIaJ8DI0S2mERB1CYV5BYASAigEMcBY5ySANcQOhlfUJVuaGzdv3NDb0wEPB03a+dnJ9NI8zA9kK+emJ5MLc5u3b/3MZz7z+OOPg0gAWL/7X3/v1deP7rxpd7yxaT65iP7XyDj2L/M7d+yC4kaUhThwXGiv4a1LyjOVXqQ4cAkAFH0oGo79CERCMZOAA8QTDgLbsX372OgodAjcHjAH0c6dO4teGLcFUGEtWxag7l9iu6afsX0Ag1cwRctYtAgX7TUUK8uIcnICzA8+2PxCch4ppSxGTnUQBx+JOvOb4uLg2XkCEehHR3pwcHh2dh5BKTQNuABMKDCd4+x3amp6cnIaXV+EgpZS6aJu2mYlYSK0gR0AXq5taZPxuzu+9OUvvv766xjCO3ny5Ac+8L54PLBlM9JBxba2VuD+z/zM3+fydw51uV7t6NGjZ06d+tAHPoB2JjtJjpqRQIXdf/niJfBif/+mc+cuXB680r9pI61D6QwoMnEtOAgAAQAASURBVDs31RFp4ubJPTt3drW3IdSyODd79uwZ4qOwxowwU4bo6zu6ht/3yNkJT+aOB79mr2xnylMfbv1OCB4iEAMyjFG2SZys+Ipb8wpeJlDRwQsgCLPxpvlm3UAPcx7Azp7dPEphCIbCD/ETIogn6F7tBsXXj1ml6lknjI/mpB7a3YPn4d8D3/mZ3b7mnbEopxB+2P4zNsb5CgZRC9hOsCUgkAD70/W5uoJMzFhtx6u/clUKiOKB0fZpPVTF1kkEiGmqE2I9To1tfF5xFtAzMUGV8mu89YcQk0pPnIJM/jaJSap4KvI7ddVsTfJ6/7X52a88cfar9dS/6ptx105YglXV2tMWaEPwiyhbzznxTa6mB2rRCKl5q3PUxrFPKmAjVF+dqMbjfHJW1mqIGVAbnUD1ec3ZOLW3+r8AEi1iRo0MlUYECmsDgIYuB6zuUmi53OTzNEIXZYtL0/OphSR7A2AlcJbogA+yA87yhEqFEQ8g5gn8BdBD7QJ/00tp9OM5b0VIMZ9OcQuM310B0Hd2tXFPQFtLI2KEE1MTSPWw34VKTTTG4Rp+5tOfYjsAm2RT/0Zo25dfeRVN197+jYBIVjemPTGFtgXatqlpaDiJUmsyuUh9aCkIY35+gZ0EqMYbjQLlVQeMx01NwZQH1FL5C+cv9W/se+ihB7lb+OWXXmAhQX77/J729lb81DavO8gAd2Ioqfe0Imgi/+kobQoENLjUm8XHXPewzUf2gQO/Cnaj6Qdx6KAYPcjVlJG0wYAEA6LrYEsFcXOKkIkLAb8XMaG5mXlWLMkx8LlSWSQZTSZXFi+BFCnQAnCBomSqQckhdrXMzoOSXVxjAOU6NHDl5lsOffObTzz7zFOFbGXbtl4qctddtzNAvb3d9993z3/7w9/HJMbM5EQ+u/Laa69xug7aoxS0zN48eYpzFFQ0Lp2/tLF/09zM7LPPPbd5Y19zUwuDuG/X7jdPnQwEI4lIe4MvtL1/09Gzg9HmpvgyFLFsdQmWqV/UNXK1v8Zf/2K+vu3D5PO2Ma7+6MRf66ktrrXh1I5P/Dd/yOwqjwkWzrDhdrBrTz5aqGgBo8aIn90wMEZStgXcw2hB7xWzEF6pB0OJS0oU8koXYdXKZI2pGUaghj+sM+XM3OAHm4fFByHCZ2ay7cxqfRh3RVUttTmsOfF5dcarBSxqhH9cJoNdfWYK80a8BLICW+hUVdS/TomN47NimF1JLbdq56gQ45xwPPUh9X4+kY99mixhB1Gw9Vaf1EXVsV9UWVpAdcwP9tQ7d/UVqPevmxMRCLfPaz3rJncCnVQ2Zxte/1y3RCfwesmdatgIa6I5ya3HieNEq/c4X22eb/O6Jlv7qvnBOQLzg1GBPSiIoxnC1MGOG8YeAqVC1LUS55rcXLk4PbcwPLo4O48UCkQ3IBVBFBCAlWkBzvIKd8WiBEAtLA4QAwTs4sISYj8wM1DUyucywNnWlibg/vatW3q6uS8AM9KIpszBGopHwoix93Z1vO/hhzb3b+CKYA5pP//5z7/xxhuwrffvPwgpdPTNE6gBD4+MDQ6PdPX0IjIv2Uo0hI2EqM4bsDW0tAio9WL5MxSCvw+xT2XOnj1HDYlGzQlH4pNJSVv4SpOR0OfWRgnnezHQ4oYJxQZeKxgsaE4FWch81HePsbVuiDg2tZBsWmUEeoNuTzDPcYdmHN0IG1aBMtnGRYGeAAa/2A8AErhBZHJ6bmycDk1JfcdgXwBKvlCSXVQoN6nRsowQq/ejC8YpETgCwM+HKPe2Z3NCVj7/iTff/NVf+ZVvfeubr758FJgE3jl4cGdLa9PBQ/uPv3kU7d//9R//7G999jcwyNqciF84f3bblq5CLo+AE/UD7r/xxrEL5y/b02Z2IelU9pZbbg1Fos+/+CLTgfMFrh7b3Nd76tixBhfMtMIte/bquhsuvZGqHfKNFW3mqL1mURW0qeVmbeNZ464XvibaO3qtXwv1CW04tQJwVsPxGADKJzFOa37F5Fd7VXx+gscaFb5aR2NxEAcyxgDFbVqspsNqF+iH4a6DX27oBO7Dm+F+uDLbLHYDssSjbYG2COwD7E9HnFpoFCNcUsuc/KH04d6s/iD2K5iF4Ck7ENYUBMS+/ZEOqt+JLBuipWVI/pL5yay00nKehKUVrlRkTyBlXTkLm62HJ41UqPHY2tQaXv1rv9Y/lcTgfyctX8m2llN93KpfnUo5gBuaTVeszpl1Il8viOIMxtF34yfTb+PWRKuvsE1JiA00f1a7goIUbuhKU3XbQLWBhOLT6XM1/vUqoSimqmsi1IcrH+NszNpbNWdebVonzrUZKo7pF8fjJGFQro1vv9I8I1tgSAjIHMVkKfARhXSOW2D+rMThOxQKmZnJ+eHxhcnp+cUMEuyW7w+RCAiA4AUwMW3wAx8pDorbMlhy2QISMNC8cOEx34awe8DT0Nrc1NfVsn3blkMH90ZjwfNnT2J+B6M27V3dCFPu371t7749P/LRH1pYSg1dGXjh1VeBh/fccw9GtbD41tnVc2VQGlhZGEoeb1t7ZzAYyqWxAKHbIpuaWrhVGJzBzoNqIMeiamB5ujEObwd9Lqp386GDoAEsPTS3NP7pn/45UvO33norN82w9IhM3UXZr5RhbdGTbCOwtcYSVXchrsDpH8vY9KcUgTg7Z0MuWhiAoPWsT9oMiQQCKGAUx0wVTg3gCPuXuTxWy14xywX0t2APEE1iD0rLHoKuZ5FA7LOl1mmQ5I3IkNyJSbeSG3CZ3gc7cbzgDvpgbTFJkUCJxyJ3330nOs3gYOz+Hzly+Kd+6ic++9nPfvUr37jvvjuzmRRDBrZjjNghwVna0L/l3IWLx469efOR27o7e86dOc/JeWNL0/6DN48OX37jjaMP339Pamaurb0rm8qPDw7723r39G/cs337E8dPYx3DHQjCAuKGAHoJZ+pffdi3NYF8q4bXR63zXxu/7uM63vr4jl+eusrUh+O3r3oaPw/63UJ+FUC4BlNOsL/meDUGmQWmQfZE0RPdF+F+xg86gdNPCQiBsDndQjWAbSNiFCUPltJdmIcVDUEscYL4SblLEEWHbTi6TqNv9hgG7ShA8JHKcZgLz5FZxVfBG+08VEPr5wlZoBXLXNHuQLwmSDkdMGu6QPSrCDIzpRCuV3srBR4ThfrXOTW95uqCq97aFzKS06uexlPrMhPGZBWW1AcLIVVJM9HVe4L/Nq14DyanqyphMr+Rh7I3oNl5vn0qFaoqV1293wZdG+KE2yJ4JT1+eWqxaZCNdu1zNZWpqhOhltQJWPXoU113qJS6OjvxTGA13rURbIitp01CSP2rkw8ew/9nZppZaEgm7ROZrcsV/8oy+qZRj6s0tzgzODw3OpFfzDK2KMRyZSM8E3jWC9lFdgCsDRSL0LAFuABoGGOEIxfmucNxLo0ECyq/aW7g4nataGtztL2V68cxmNPMLZAToyOjoyMQLq1NjaTnepP3vuf+H/rhTyxls0ePv/HI17968PCt3X0buCfywoVzGFmYmZmFqw6ZjIoTtmsam1tpAqVg9w0Oz7vuvh+RG8rTeQSoKx6jGi5vg0z0yJBOCCTR3tb6rvvuxWQFpwskgYSCIr7llv2DA1fgm3PXb1tzy1LDIhCb8wx/wIvoDQ3knkqGGVYVhl7MPgnozzUHLDjNcy1BrUUzIphDNBaqobe46YbOlKEcrzkRAXmwyyeajWlHVsjDhGh5kgMwwsAURFAcJw15OXF+ykX0EubmZ2gg2ym4vCADVJtvObSP+x17OzvTS0sNUdc/+2f/9PFvffOzv/lftmzuxjplO2Z/xscmRsewGQFWbuvoGRkZGxkenZyYRlCrt2fDpYEBzgM43d9/cO+GTZuGR4dRQ4t53AH3Qv+27WdPnVv2JisNwdsPHTp6aWg4m3WHAtxDw45JtGjN0RmOs7OzPsR+ujbEhq83zZ3M1vE48TW3zfeqp1YHuwr0RZyqKl1jef1EUWQD8LUboNPrNgqMhjZ1yJzbZW4gmYQjjYMDY49X9VHDb4gn9gHc7+bxw/fXObAnUPYiEcCcYFvLCb+4N4LNht0qAQvqIwSgVQnX1WAUA61VJb4TzhaBRESywB+oCY4hooWZ1I1qQ2dQJzWYFzOnZGOfVy1mhWlo4MKbeaVwXHUHYF9M8WrntY4Owl0bbkP4pG6qZq2wWmT9rfnXphYKpKdslU3fGfRELcGm78CRPzV3Eqx5dcL/Op63ydO07qoKXK8gE3P1Y/3r9fyrsa/vq09rYynE9Ef9J/z1vbRufmbum5kCAjBLgWzgejBp3JUCwudhD3yNCspDOvudTzLdmhCm6eiAuIaRgmAl1DQQHyYMdmbAARDawF+IUMAHZPgS97YsSNGJMUcLtRvTOa3xYEM5Lxp94fz5s5mlWWhwDma5GIWd8tR08u//zEch7s9fPPeFL3weOn3P/v1sBZ57/Enk5W89cvvlK0NYRkOohqI3bNoIEYq6GVD+mWee2bZ1Bwdp1ATxf56ANvg8CwtJnrlUhtMwUmEnGZ1emFRT42O0l8MARIBmZmKHDh2cR1ie0wKOu+NR+CQYcmiKJ/o39s8nF5bgUC0tATdZx6wl1pXmuJ2zqNZDv2udmgHQR0R/xMyFtOdiX2A/+wmIeMYChIJFYPg45EE4AwQVr/6GSDPEKMuI5W/WrM5U5DcG1SWOxRmMTvcw2FAZGxuiSHhsXP3Y2YFZusOwzjDlSf/PzkxNz0z+0r/5ZbDaL/zCL3Z2NpYK+VsOHeSoGTEn2GgokGE1CL3fp5599vmXXt62fRcdyJbu4KFD2LXu7e998ZWXH37PvVu2bDtz8kzXHYex293Y4EMpYGR+bnxidmPflr6eromBK4C37OJiqDHxDteuadb34FE/8+uz1yqofzd+G9n5BMwkjiCnBabXgXvEN075QW8LcYhsgkw35L+YPH7QQMUNAhAagBsDJcDMB8ILHKsUrndTIgF1+CBmB0huzjrV9sJAbwqSOKRAqZ6aXRSrSUItDXgX/OQbTx0EVGum+8sko6Z9g2kLiVR2XYtkrIMSKVV5s00wDo91CjWuiu6Yc7XEeAhkFtokwmlVHKBOJbmeMDjF6zfNNaH6Zmhk5a+9DOtFVjQsxDIIz3wxuMYWbWpnkpkaqlz7gfZqH6WMCFC+5qncTN1siPXzxCkX2xGmpauB+rC+s6loiDy2FBPRtE8+FW9atH76ulBbMSfAJNQbOdvuNYII6jdeteVjbKEWRH/I8WqT8FUgxIwFITaQr44zIdX4Slv7QBITXUWQM08nrePhfk6JEGg4iaO2gQhWKkVXKdfc1BRecU8NXJk4f57bckHe8BYB8bARgC+ASFgKyBoCbRH3hPlOyQBK6HHIcBADX3XgmS0kmpujkTgKAU2NCVRVF5NTy/kFrJY1NOxE4j4el/Dla8eOIULKvYwA5fMXB7DIj2AP0p9nLlz+whe+1NHdvWPXbohWxKIxgIO9ILYaRL58eQAjdN985BuxaOK2226j0OnpCYzBUUMIcFAUPQALCDu9iP1s2rgFnhU9iYGHeDyKzhjcK/oEjDU1MXnP3XdyQIoIBiu2kMuEAlC3iL8WI+Fga2szLRqdmKTT4KLqonid7XkNKMeDaQcfYhZmg66rv2zfmiHGKrS45PQ7h8kKEWYQI0mkHGsANGAshjI6CHvyLRAOcliirBowzxyEtbaswwykm8BubO211/Ajd14uBQPB2w7fsWFDLwMrixuVCqz5Rx95/cMf/jDiVf/iX/wL8kM0pKm5GWzBWIChGWMGDjPUWJp75fU3kEBtWUyiisyQYRYJh6mlcGPsyaee+Yc/9unWoHd8dKyrrRVI1Ix2mz/yxqvHzr51tikR5zqBC7Nz/nijFvuKbn7FVaes8fGAlaZQE85qtx79MSwJea52ddP26g839kaf2xzqn4LTzGWDo6o0Pp3Oj47QF1WLLlL1NOcVlWg1SegqeNTigwkkVTzheeYPMpckZGqxatiU8QEv3A1xPSQ74Sm5uSsABpCobe5hQSeM/MHiXCFJb8nUp0xF6I5oWP42ramnodipkn4UpZYL3JmeRGvE+g0AVGNt/9qW2DimRSYZ/W93MAb6WZRhmnv1DkAlrOds1zhfnNerPbbHq8NM5Ku/OqkFdKgshE1V8kopAHdKTissOjNrplr11ZTX8SmZA49NuWte69OtiVz/6Xp+ktD7qvbVBdn4JvB6Sa8KVz51jleF1NW87mPVayLIL09tCdVHM+GrkW20q1Otfq3vFhtKTBtoPYATJFMYBDubgDbS6Jbqb6U5EgpyN8VSKjkzAV2ZQ/hHRwQNwPTCMpdfQX1myUSy61Gs9ETYExACoATEAIiZ1hC5BAZapQiGQiwzklTJ+Ul0yrqaE/fee+8ddxwJB9yvvvoanIfmlvZbdx/o2bBpdGjyySe/1dHdceTOu7iW5MlnXwDBbN++c2Z6DhY8e4Wnn3t248YN4IlL5y8slwvf/PpXuOsRVAHuQbqfAwluv0LJS2wXDl4D/pTRUaKqVIlFyNXDCLUAkEEPzD0QCfARDtLO971325ats9jFn5mHk86KBjHE83Hs8oOu2UCgEsERAopuuvZbRhdg0YjOgtMjVRscTHphBe5sJ0s5DT99pqFc4ezUxNH6RXpIfoUv+0PI9Wf0Sj25RKFUQIQEMxKIglJfDvVABpUyYkVE1hoC1Pd0dW7s35Boioe4ktjfgEkhsB03GX/uc5/74Ac/+LM/+7O/8Z9+TcjS5UJECjPRYJcFdJkXFvo3b+nbsPHsOW6z6R4dm2hsaeVAZf+hmweHhmBzHzlyhD7ZuWdXLOz/q7/6q5/55Mc2b94yPz0B36xrudLYv33Hju0XXz9x+cLFwoq7o60tzSU2mQzG7VgsdK+aYObtKkQwr0649Xx3n/XlrslZn2q1cupA3Zwka+LzgWVAMwxRLcRgiHCiKyODzvUwo2AAtIbDOH0noTCBhH9cuh8Gk3BQykwzERQCwFIj5q9gis54ODDQ/RIMDU4dyNJiNimyhdmqqYEAlKJzKSOmIT+L1ehJ4SdbNuviQdk681wPZqiSTk9cxQKy9b/eUw2v9Zf1rxtzbTRblLMpNmm0GrQmqstBQrKEq43oLcupsTfmKM6sKQEy41+db7zi6rNZ82o/EagSjVOC6yQh3BZEpa2fFMazmtbJx+ZW/7QxeTrOfrWva2LySrh6p9rhjkfh+mTC6z3WvzafatXWqaeNbzuNVNYjuWF4uNj4lwUnsSLhYHjcy1z13YLdymwqOT0xPzGWWpiH/AwFYKOHIU1hwYMGmKvsBpAWRzkrEolxSy2cH/jIQH+oJOAvRspADLFIArDLMoDqnJ+bnp8Zb2+KtHV0YNP/2Ik3F9ktTI53dGFrcnc41nTp8tDpk2eIyTVVYxPjTzz9TDCa2Lf/ENAK7d9de/ZCvPd190CmJWIRlFqHB68A9D/18U8g0oN+L0UD8oChSJQircNekwogHgrJRY9QK3WX6G9stUDHlWJYmIuGId4xMPrEE0985tOffO7pZzAj6msIXxwY3tjXE8I4g98HCwtKns0BdxxhTCIaxkinC+FOJEq5+AnKT2Qjs0X4QAr4gHXxcDWnISoVqGJ90lEwEMTFASr1hCTnlOKlF56+6+47+3p65hbmn3j8W5USO4ZKLr1IB7oqCIZiV5hslqUg7Auxcelu40aXVvgwHr+nXMRiRBDMymaMAf3//u//vKur5zd//TfGxiaQVmlrDWNE+sC+/VIgRtUik+HmyM5486OPfRPQzz6gUC5xeeTcwsL03AyXzyymFptbm0Fy27duOzo5ioBsP0OFnl6h+ObJtzoKKx0bt2/Zkn7u3GV03NiggPboHUmeM3PN/KSZeCytbUkK4CKttmuyOgPVGeu5aqz1Pl0/rL7cajkWfmo47ACIb6AMbIjxC1yKJFfdBDQJtKlqBRFuPhm4z8OwHASd5SD0abIEYUlnNg7GRzYQtXSAEQpCEYwf+z2kI9ClN4Bf+wftgGQ5R2wg+pAU4v/BeVTm2q8rU1Nd58m8Mm0R1AJC8F9sfSUjimG3aDkrH6EvUxJTyCAM4YhqfiY7HtdFAGoEcWvR5TcdVEvIFzPOtff613q/xZCKBQ4QVpMzHC/pOqunDfVDMzQikp+l6rZdJuoNPyhU6YxTBa529SHWf70n6fjkuKuz0RufTG1N79aVqA7HmXG4NpVNWP+0RThQXkmvdoTY7Nd8sgnXPJ2kNrKeJrGiaUKs9kx95W1kJ4SYTDskVMwE4pCq4iuvBBvcmB+LVCrZhYX01EQptRSEmI5jZRkbBkg6qkNYDEAKEAB8A/xQjiiRWnlQZMzhtBAIacO5KwsCeMGFJ4gLcYgKu5mzXHQFXn/jjaX5CUDgoUMHtu+4KZcvn75w4uKlAYl1trVdvDR4/MRb4Uikd8MGIBcoh74ZHR4Bst951+3Dw4MwdgCRF8+f4/4A7EVjJI7NB1wjdgbPPvssddPcZ7qbfYAQgAuZHIkqYdyHmlBhjEAQQYR8ZZk7UqYmx//qC3953z33NsYTjz3yzaAPXgv0nMC5GEpiptHqMkY/4dLQtEjAz24Doz1gBxg1IBR4NBLiU8/TQ+p/rXONhTZYUPGaKiac3TzoljPwaDj4f/7Sv2alPPmtx3v6eu+688jrR98olwowZLjcBvnPcMhcDRaNcbsedoVaWhv3bNuWaIxmMqmZmWm2I2yuQLUcb6AkAS78gz/4b+96173RSGx8fHJmNnto/04kpjgIYXKAG8BEXCAwNDp2aXB42+49WArlgh2ks7Zs25pMJeeSc7uiu5aSS5Gg74H7H5wZuXj67NnDh/b1bNxwanDwwisv7Pb4o4loT0/XyKUraDa4ghGfrq8BldJKuersqnlM0Gq4E0FB1zib9prgGwpw0uJZ4+fVGQ/z0UQwNbavVBocQBwDPasjx7DRqupomSrozTiBLRh5Oro3XBoObEH/Bseb70Io0gMwCECIA48Y10A+YLLKgvIXfUA+2HEzDj9pr8WM1IqaMKFsLFYpTrvLOjYaIU7dyITlTApmuypDzQxUqNVd5VwXASiBcdV+qRvF+hDrN0Ua8Fc39iaQMnAq2DpTZ9Wo7pUmAPfVk6wDE0FtpED8PGtxr/vXFmQiqzji1ftVvgl0nvYr0epDHL/11BemEHWcGuikdSKY+OuEOxGspz5b6+dpPU7MaojTO6aGKtuiFnz6qYHVmHVNqAs0M0BzzcatZm9f6ut/1Wcbi9NIoV/ZX9bXCib+XdGKKwLYXkoXZ+eKcwv+5UqQaw590RUPIu3uJe6uSqeBmzB/gIMAQRwLADBtzwMARnggOYnDdYZLiyl2Fki30xTu8IqFfTG/K7m0VMwu97Q1Hjh4kIPW4bHJs+cvJdN5OOWhSDDR0pQ5eQY5H44o/cHolcERJD4pi0td3v3u+y+eO9/d0wE0npocxbJQV/sWrLbBw0HpCeP1wyOYfhuDC4RUu7GirIQAYm4phepnnRran7augK4yiI+6UQCTw8e5NNuIm266CRnK5599PrXETcLBSJOuUuFgnIw4EsD8dSAa0v6GO6C8roDPUwrCgAH6V9gQZLmIC6au1rJAP5sGU7SoMZi9+Lk6jOGETTQ7PYlKrdfn2ralm5t7uY64pa2pp7MLWp2UQH8yb2yKt7e0Nrc1Y0EaW6Es53g00Naa6O3rBNbnskuRcIuOBHyB7dt3HH3jtT/6oz/nlsk7b78LoX4uxoF7hG1u4E1qiXZ6uns3DI1NxPLFLVu3T88vsK2JNTUPjFxp7Gi+6767v/SlL8YS3HawEg2HUwtzOc8KGxRQ9fj0RHy52Ltl0+ip868eey0fbsXsJdfKS9nW519IpbnupjpHVyen5lY97e/Q18x0oKGdemue9RN1zafrvTrz2fHYmPaVJ3Pa1G11BWl3woc6RxLeBHcUWRnIY2Euf/Ab8EL1WPPmK7tZQD/bAEF9EeJKWHVsDdhsAu9RuBIFVNGdkQDsBoTqYN7AW2VlcWyA5JaOgzRJ6p2+mjrYQAoEkBuGolLRpTy1Xk1NanGq4EPVUOXtqzpZHaDq6RzX1FEprosATKRqapO4WhElfVtXH8Fmck106kwfaZ9j2GHaK5k28OCogvzpiyoQvybt2gCKcJpv/NX223j1lSHEvtpo9Z/q/TaaE7M6C0xaClK4wQQEUF1eTc1VWjWJnTUKuMrZrwThwdm0zqsNtAnw23AKsiH1TxtzNY5T7tXjoggmufXwXFNPJ0+nJngAo0xFafySdrmCYEpwpSFYWQ67V4rQ7PNJVyYXAkdw4eKKKw3FWCzPz86UCzkISUsdA/3FfoaybmwEjAIZCbEks6lzA9wTeOOxRJyzWWwTuFYKi9NjC9ML2zd2ITrEUjlx6iz3RGZzXFgYpL9bWtuxn8ZlKLv27G5sbk8uZoQ/0mkOKnfs2IZyLyposcgWrG8mL84xuYHamEBAlp/7IykRlQJqQjXQRCuX01SSpol370dvmX12hRtkGmF0+HSdAFgqEQ9TbYxWwyyChdXX03vm1OlwMHj77UdeeuFV8iEJzaH3uOqOHQCATVlC8y0XoeJCfm8QS8Coa7l17w16bkXXCjoKthNISzy2B3api3Vr6GXyYZoVYPeUln//9373//r3v/oPfuYn33zrONJHmNRNxEK5Qm77tq3gQqmnBf1oUJeLuVg03NHe3NqW4FwxX8hgdwBVBqpNWYhcgdiam7neoDg0OMz1yJgz2rZtO4fz4GAkslhojc0trx57ayaZ6tm4McduZcWFFl8IzbvkQmNz4uDNB6h1JCb7pW0bt7z8zGP33nGou693KTU7PjXZ1NPbs7Hvjcsjk6iLrfjpEExjcq19EBVoZ/aaGcYQ2IlpoYZ9YVpXQ/FcZ7048/MdeVazrS0HG8JTnvq6mRBbE+PVg1cR/iwdIQaLtKpiM4LNteVITN5Wn/Bq4Jdym7uFZxbCmsFWpqJ/dSAM3GXKgQ8AfKYqFAACgGcISIcoMUu0tuQB2KpNdRGrD/hioL8F+CxCzWTOnPXkYy0hHhYRNdEuQ06wtIZaDKYSHsRBlMtdFwGYZDYLO3YKIIENr/prPeK82gh6Xv1Ju51aiOpqG2vqTWRTezqFOPAfjFP6almKUJ+dU4OrPTYf53n1x3UaYgpdbREJr02yJsS+2iLwO56q/20r6VQMj3U2lc3TPqvhtY7i1Q4rHieCk8pGdp5OPk7k+hDbWJu2vuH4bfyahwkB4Q8fexnlRajT4LI7gAXQynJ+PrmSzmILDZ456x3oP5dGe6lSRrKei8BgoPj9kCMUgQdASYZgAmujn3A2AQBfGpTOZLnZCqDc1NqE+MrE6ARs/6CXG7LSV4ZGEAZiMQRDsDiC5RVvPNbY09P3yuuvsUBuPnxkYmLm9JmLEO7hUDQeye/Ztevi+Qu7d+2CwOJi9VwmlUktwqqm+jt27OCsGDEeaxcICIUZBqSQqBUOBjqse/CUbbt9UknMLRCfGYgfC3SLmO9Jznd3db11/K2mROOHP/z+l15+tcPcocjq1i4BqAcr3tvA1WbQY2ACVhr5qy98gVLQ7+U8OhRi6wFqEZQsl8EK+FGYIBpGHpCdryEDqflyjUzAu3zm1Ml9e/bMzU+NDY+Aj1eWC5s3weRvh8hGTiSXTefSKThNvZ1t27ZsSjTGRoYGk/NzIc5/XSs+T0O5wTM0OIgtoPvvv/+F518B6D/2+JPY+eEeheT8Qiwa5XQBHeMMvB6YaalUCBHebJ4rDrivc9uO7ZMzk2cvnL39rttRt6Yf6Byw4OSmTdPwmGZnNm7qHp+dTuWysebG7rJrcWJxdEpnPNrx5PJYfULD2048EmpJ14CGs7rU2+bFdjuryJmoV3lqq+CqwG/34hTneGwpzHKF2MoAj+U3z1rpNpqpmwOoVBghBhWwJiQSZGEnIbzyRRSARsVMJEF/m4G+8H8dp9YaVpGpDRGcBtHVHPtXOAbQoa40A/gRgWlCHPWkdiEWV8jjNYCSZUZCK2Ngs+Kgi/2IaBtTdzIwpbBDo0jVT8tbla+GqyBwhSmuynWiA0wIgdX6mSx4NZs1sfKrTtnVHEF4a1/0t+7VSJUYZj9iqWyCYD1BZBp9OZrLCbC4QFqaBuCZJisHgxPkWeMIr3d1BSl4zeu6ITb5tTFteP2TyvB7+5j1X53K12eybnGkAhOaT7Uuretb8tFMUCfoaWeCfNpsqz52mKqUghkavjJ0JrJ0U+xsJSkhGmGcGSDrXxNi8jNRZH+ciV1yl3OBcj5YyYWWC75yvpTLwth2Yw3a7YPLjU17pOHLhQz8C3IHdjWYKQkABPpB4ANcEChENhQLZpIQNbLzABEsEmfzGXBEIhaFuz07PQPFihw6ti0XkunyckPfhs2JpmYk9JNz81zjfvr0aayScY8jdv+PHz+KdaC+3s5CYenWwwcHLp/fvm0T8icB7sF1N8zNLuSzhcmJMUxKcFiL3sHlSxc29Pa2cMCaaCTECCmK6KCGgXCEjQirwh8Ow8Ji30APwNmHUsZwEGcbbBEwkjM0NDIwMHDbrYdh7yOMtHvPTUBkbfa5UUsyRXLc/8Qrgvf4wXyUIqeLMRHRgP6qYCwiFgk3NzdxOwAcc3hTMG06u9B0bkMTohtPO/dIxsgIWM9Z8vmzNLmPs+iFhbn+3vb2jrZ4NMqBNqbjqCQ7DApCLBVZK9pFPyPSymzgAEb2G9JZc5gcP33y1IVz5w/s24thuy2bNqJxce7sKerAcQIXTc4nU7D+ObFg64EmHaJNVBmsSf0527l87oLP3XDTtu2zE+OYfc0mZz74wfcns+lzA5f84Qg3HwNjuONmW09PYzhULmRR2AYPsdPDLpOdrlCgdpFSYWaVsyh4rU7RGoyjO+t/ROb1O3a2OJI7HvywV0yIWB9VIGYKcMBINXINfJkaIk5DLsiJyWMggEku2kijryT4DZy3mZssBbJsbobTAt1vjDXA2lZeLG/9dFyAtU7hE7PKgdbMSo6XIOchr/RXZAT9oBlr4H7tKQhpJhcPKRqs+nmt/tB0NHE0/fiOlIMy5MZp/Vim7pqfXSriRwIVqrTFCcKUNMC0QWNl4IgaDVDgpxuQjDMRbJPVYL3yE2VvfOZp+kV7Hw2B9j6UI3lYHZ9Bp5htkbX+T/3AbcqBo0IEgUiiZpv2qQGGtOKYnm4wpeABaZhxMRuLKjCr1seUq1KtR1WqOUKuiWviXf9BcxkJUumnOqhiqoadPtWqasYRrIm2utW5KlNG1uk6ciALsYSNIDf7OA+jRmpaL0VKDR1bOGcozEiAvTEWoCMm+ocMmFKIaRaBWupXZUgPUgWxFeHf8G6a2rCCMQazAtXF+mRQv4lkQqiHMiQH5qzblWWLCn8g6PKnM75cprsxHlmujF8aynH3LJqNkSgyJPllTJt4gp4ihp1lFxMZ+kRTKBIDrmLCEOoylZvFHgMsImrrD3EZVxAREZ/PH44neqDeo1FAMIqn8zMTnK22dfXEYtHethaY781tvdyIiLgnsPj97/tgOjnP7Yl9/Ruy+eKxN95wLxd27tiBnld8Rz9CqQ/ee8fxYyfmpsbuv//dXNo1MjiGqD6mtnp72loSMSQXC/nsXUcOAzrR5nr58hXgU1f3BoAmGgastKa2tunxMfFz1Gvupqa25NwsvBUm19xssjERC/qCEM4IFmFWdOu2LSeOHT3x5tFDh+8YG51kvEJ+OgY9LGwFIfooa7ughHDIz21fgAjEiTLptAdBIW4j4FbIQgGCm24OIkzFZmG5jOwpRQuBBAKwdJgrnCNwaHzlyuWp2Zlnnn9u09YtZ8+eZh/D5KU32PJzvxqbKlTeKGjjhk0drZ0oTEjWdiZJnZua27hWYGF+CYxMnn19/edOnxvIZJHm7O5sQxwriE4Sm7eiDwvVgWA4nS16AxEunedW5CDIJJFgfm7dvLlc7M6klk6+dvT2I7e1eoLLyUl/o398dvjhj37oiW899siTT3/soQ+4U+XB8WmubTi4uX9wevbKwLg73u7xByULZC43t3NX0FYLlqf+Vh3gRBSm6GcTchXAZ65qYWueytkYxlt9WGheH2L9WlI45WtKcjymLEL5LjCgZaEIwHD9VQALR+DEhItbY4o1lVD5eBRfubPOzEIRy0UL3WwExL6DEA8qfzIlhoA5kHVFl3Ih3E+XsKyZY8BAIJwyVHZMGFQAEBFmihAfA+bkrgtV9AdorPwRDqDi+kcKnc/Jkbd+gAl6CVDKVy1kx+kWePIXjKSzBCnEDlL15QRrGWg127SgmpAAMyacyCiWYps0pip6NZ1i/q73qCYxCe135VJ7VVYCMmw11IHWo/NnGiK5IIMYq8WpeHKgWkpk/DTAyROP+r2Wsw13nuuGrwlc8+qkvZ7H6VkS2rT2aeObsNVwJ/K1udWn4qt9FZlgqAmZeKpzTACbg9l0GlyjQtRHmgyG7lCA6VcFGHECgzSIIJpFA8eMJIWyUGb2adM6IcrUFlUtUSxJoRPMYbpWEj63v5SppBa8y7Cyl30Yeo4kApE4Gq0MCtdcoxnFShIMC3MPDExQF0fB8SZdm+UNQFsDIgTu+zb2c8f6gZsPcSrLhKTQHNBxKYkFSq6uBcZhiWwpnZ+ameGGrzNnzwPjYFwQAVOgBuJnn3jsUbSxbj64NxLyhYOe3Tdt7WxvevXlF3KZxb27bzp7+uTR115n5SJ0w5kzcjtf/OIXIf8feOCBDT3d9AZ28DE/t2njRipDcVQSqp/+DiTi9EwoHEYmFL0BrCDQeMwvFzmWxVJbNstWADYU18BwQoAoKg3F0jIatl1d3VxlFgpGWFvcNIDyA/FBwSA5nzlF1laA/14vnBk4QvCLZBECGG/IGegydg6yI6eli/IEAlSRoB+MykH3FmrCrgigT5fSXdQwGAiBMqHCYLbgwYQGGIg46cXM/FwSxWr2YPlcmb0BigEIfcJt8nsk88q+iz5sbopxz9qRWw91tLZeGRoEOLESJbsJ1VmpFJbSzALGIrW01JxoBrg8cM/97c3tLz79LKbfItgoTU5DNJY8rtvveVdLR9elsxdDbn+Z+90GBhryuc29PY2JOJ1JbXV92zUrtDrB+KDJKJAuUMvk5QPz1pDYAgp1s5Qvmt6anGudyWadx9p4tXegMl4KkjOzn8R462vFsq1buQYgqQRTVVNNi3UYKVuwZCwtxLTvRDWLkmxg6BNWLUvm4CjUUPy0WZZ8zJrkQg2aKxrOPA25Rg4C56KEtZjxCrgL7Au+88dxIuMUV85y/w3SEQlnHJ/sDwK6GoFo1/7ocAJr1RU+rsIV2wDbNHVazVm/2lZzNiZv1mMj2o+Ov1opU2MbWKuovhCiStjh15io02vZr2Zri7DJ7dMpZc0nJ9zJZ02q+lcnKyewPrkTWO+xEZwnn9b1O4GOx8a0WRHovOKn553OX/NaH98mcdKuiWnDbfz6VIRbZ5M7n+oD8duvTGvmph+yobSMUGQs4F/O5hemZ8uZHAQNd4LEQuEowIjpVK6gZs4JkycWh2rhThLY01wyjl0aXuHepJKLvO7eedMtBw/t3bUbgZZyoYj9Nc4kMbkDHxwACEeiFRNAfh/mPxcX5jgwgIOP/CinlCAAqgRbg7q98tLLoyMjNx860NfbCyjt7elZmJ+HNSSJz0MHOSJ+4qmn2JtCxsLE37bzpvPc9nJl8I477+bu+MuDQ1xCNjUzxy4FpSemHIKqLCrAK3wu5PopBeAMqkTeBviOZleWC1nQHZBQUAZ6CWSGTgPm0lo7OmNRLmgscjjMNfLd3V1kQobAWThIkNYMIiAeAA2PBp1ew9T38Er+Av3oQYBBcdIeIxJnB4LvwE0bLgyK+m40ygk2ylaIz1I6/UA1+EQ6oD8Vo/7EodrgMBR68VA6tVUmIX80Bg5zQe+Dvdi+gJ+KhTIdDhcOvEJW5ExuZEUISAJVAmawcImx143s7LbNWxgd9MUuXrx44cKFjq7exSVsL5UvXRygsshTsXnitAAzEjSKY5JyMZ9Z5DrQOTav5Ezp2klqAysOCWvarm6mln7mc22+iakivxWlZ9eqhASaH4flFf20xTQ/YwdT0phv45x15HhsZPtq62D9VORtnOp5A85m7kRcUzGar58BEU4cB9fwQXsAMKBwBkNdhYswZvDD98DRn3o6sJ3pYmAmuRnv6qvyd4IM78S+KZerXV0sec2xQK3iTq+RW33b8KuAukAbUkunv87Xdf0m9VUPZoZ+tfZYFO1kcq2nPlsnIxtoIzuB9WmdQCem89XJ0IY4z/oITio86zqnx/ha71838pqcnTiEO5+s377WB9rI9qstq744Sz3xlSmuOPb8rTpoGkoTtjpG674q2koFMZcAsgGlMmgAgZ/8UoqruArZjL8BMRNtYgH0Mi8Iz6NU5hcAepr5C2BipgFlgD5AHGA3lPKGDRsAYcAXQAmMHaA23QTcZNNLBAAZrQCKkQoP1BLnpkAigCaaAbHGBGb93zr+5tzU5MF9mATdi/YZFDRyKcCpQwf3YzVoZGT40qULYyMjmLiBUblt103oiAH+b9qz9+Chm984duzc+UuoEYxNTGzesq1YLmHGB6ZHJpXCgAGNpWIcXwPvoIUxD0fFqB6t0d0ZGDheLmPwJxAKI3U6N78AROLKXDYx8JRoIJVEsRnozxwGJdB2+oFW8GTdAu4JgaSCTUfH4rc4gFTCAcEg0SiCJyE8qQOl02oOP7j1DEDPV6AwgUQmW5Ljx0N88ic+0JwQiylBmfQ/MakSh70AdxAAwJpNGAgMZWzkYo8fP86TnKmwzQG0AZpp6uoqZnN0PtKcp946Sc6caTORQGlPPf0s24WhkfGhodFcOgcOYHvU3salPSEaiAYc0i+N4ei2/v62pkZxJCT0CBCnQdVZZz30AM7Q36uTkElrJOgNhV4lPhWtSqwzmQ2IUF7GWUSiGOs5egbHl2s9Nrr96iSt5fp2f21DnNKtx8kBj5NYfvNqK18fx0ZzIsNioY8so4VAPLbpDIpkegwa0J9VZxk/eieKSqSjjaN4srLOhigT43itecVId/xOuPXwrO4AbK85fedUlxjWv26IU7b1XO9pM7E5OHEIlDM9oE6A9QCvygyhgk1vrolsA52vSm5cfWQC1kSzmTjhztc1IWsyMRlXH04SmxXP+o5yAp3w+s50/PXR6v2MDcWsGSFbt/pojl8zxoy6U4f6dWUTOk8+Warn2qdZfmu/YrncV674kW3nIi0mJAAnX3QVy5D/UP3YF5DgyFIql8nKwBkIoLwMDAUW2INHSFFUc4GGHLtyomhJ46GhIeAOB5W0kdvVOVmFSwM4Q8oQqn92ahKxljC3w3B5cBAtVg/Ai2gkBzYB10YHr+zavuPWw4dzqaXlAnImwdTiAse8SLlg4AGMAjBq62oPx2V/Qmq9Xh9G4iD2H3nsiedfeg3SFfMGk1MzXn+AatBpYsen0wBKIDyEPh7gHZCXJtA4wG4EqfYqe9oFrCcErlE2XxmbmITKBp5yo9ZiMnllYAANNmQxsbcG/8RWHoIOboyF9cj00GQALqI+MGo5gzbHwmLa4hepu1zCg/IXFC5dUSgXWtpbALuI3wD62Qmhzww+AI/SLVQJcM/I4uhzUKaqykWSAe+u3Ttz+QxG34hGIC2C9qeZVAkcQEJYVfQL9pHsNgVSmkvV+JrFUGhDQx93MPi9CJiyNcH2xNe++lV6niJAHgzlwPDI/FLm5ZdebXD7oEsHLqGGMQy/gkWwa+dNfV1dzdFof1dXyMs9P/OWCQlMAQ6KrBVvUvhAP3GBJShpfpKbJAsLyQwZLLjv/GyIxQCWabL6tLld82Sq25+gtvFXPQYg1CMPWx/bk6aS1lvFN3wl8vWc/aomGCaVnSesTeKvrlBCa6jICbQRbLY2e7hwIhaMM6xabZ6YMAZegwrsmS5vgG+mi3j+5pgPkp1u05NJSi/qlNmep4JPa7Wo5lv7Q7a2kgQ4VTLVhF1cc/a99rb6t5aJUtantzHePoSvNlshPeNIxV9O0lXnq5y25BIpMRTTVV/Mi62GDXcKtR77yYnwbV/JZE1CG+IkXLcUG8iT+lu/46kPdKK9jccpnTi2UMfj1MHGseE2q/pUNsT0qCrDdBSs1zIz+0m7PGryQk5WNtWap/MVD2OMXTFUXQOcasGLzOd5BTBEQlwHKf4DnPQMlvw5k0WTi8gwQJBM9/vxQ3JCyxMuiNzWhgd8ADQnFXCKEEA2Zht4BfASma/AdxgvMCKgPVmKnKkSHyCL/OIdd96ZaGxEoh9WCXIv3M2IDOlyqQimQNaQKwSeeepJjny5RBLAyGVee/fuBnoC1O6++26W1gsvvPTUE09ifJTrUy5fGeE5cHkQ6xEcNrCgrAg/5xBi0EOMezxAf4T9C/k8+TfGo3Qm0Fsyl7kc2IKzAXgbk9OzXMQBoQ+2oC20HawGoOQVsEvnAX8B/Tg81uG3SEXr2IhU2jlDWo4E6Df6ijgkpyCe+FFjRpEND1UiMh6KICZPIhBCx5InHUiGwHqqBzcGFEVl6Fs+gbTQgSACr3v37sXD6DA0IIOO7i7sPeQKhUgs2tzcyHhz5xeDjslrhI7y2Wx/X+/I0PAjX/tqc1Pi0IH9ZD45PbN7z74zZy489fi38hwc5/IMykuvvDg4NAD7gDN8d6nI4XUxtYScGLJTQmy1WW3nJD0jyG72pvrERDUzDb+BpPyVs9Df+m1CC7WJayGyfdoI1z6JtsYRx4bQ247H8a+JfO2r1pRxWlY1v5OnrYCTymkd4fLzBxBXBytokY1M7wD3OQzQV7MbsFR8rSjJZNpK8jRwv/pKBJJY58jjQBMwK5AvxmMdwAmPAxlsfDvrbKB9OnGqegC1nKt/nYZZD6GOpz6m0HrdJ3M4Ua2l47fjDnFvMCt/GH+GkmR0QHUHQxMFwITROIExOZjWVvO3IfRsbSCd6tnS7bP+q1Or+pj1gfhtfCfQ8dQncfx4TATTD7YzTA61VMrN+mlXfar/h7Q/gZP8uO47waysvKoyKzPrvrurq6tPdDe6cV8ECAI8RJEUD+swJUsydXik9YzGnpn9fDwey7I+I816dz9ayyuvLVmSJZESRVISKZIgCRIAAQLE3d1Ao++77jPryKPyrKr9/l78819Z3SDF2Y3O/lf84x/Hi4gX7714EfHC9/sRXFbulQpZ3xg24NPGMP7rqdysvnjk9wCwxrEQS7jjk4tjLWsiBYm8DlLyeoneYHB5egXVv9ILGtLMAFC1bG1y9pVRja6ayEiUpvbnOiFuGmcjO6dhMVDJHYssCrRUOZBV4IKXEjetIDni4YeSJ846MLtcUF5XKpD7HEu/hUIqlUTyxbBQcKvS39lBJHg/SFHjgpj1/Afe/8ST738/qS5dusKaAQboIP0c90rEorrkl+NGCN2ZFe444ihZWzI5v5Tp6OpaW80h/h8/ftfkxOyzzz5blnI8ODS8GwXORgELB60Xb1xKtKXQvQMMUxCM2iE1t7UlGQkD7Mc0AkorQXYxGkTbsmcOgkj7cISYKQ7m2LDuAHkFMKTXvSO7V1LJi1cu80puSMrseWUjLBYauO4LFOdIl53wCVFr7WNj16naGvaMPim8ibHmIHtDEywGMP+gbfkIZWf1mxkSaxucX/vUpz7F1V3o0FCpQehpGyg+HQTAJKEWQAVnZX8uxAb+x0wLgxBYB2KVgk/MG6gFDA9rqSis2C/EMgY35JBJuYzhjBwdF08mWUeYnZ7p6ulGDwdnQCt35NDhr3z5y4O9PcxCYDwTU9MPPvrorqHhN199k2baNzzU2hSYn5+9ceVyqn+g3JqM7x7rS6X62lPVEEfcSkYrJdqCM4BrHuYBmuTjF3YLQUUepOsnxHDbIuqxPcSJ5aGqN6KUXhEkKd/ukJMJdFjt0w2Ltj2URIVVpGJ6sHkxSOmVYgHvPgnw2QBxKEjcq77b1YVYzfjiOSIpCdEc6JaKSgGFqq+xyRf1KavBiPLSoal4QrS2VK+v4HfMz5UCY+Er5BJeImajCikOMgd7g+wyeIFn2KJPylJleAwJj0/9LWceO51L4D/5iN89/UDnuSXQZePH8ROy4Ql/ndgLDt40B3QtYms+rjWFEw0I0ej3s/1Bnh8S+Qd9+kHhP6gIB/DtT/L5B7NyESzidnu6V7oEh99/4nGluFS3lOh/cl/dk36mlUEUEMd+Nvx2It8tCf1sfQ/Jw1xlweXvIONGLZddKaxjuQE9D5ebl9D4MGPkRLv2nkLmmpvCkRg6dSg+FAqsQi8hPlGrQSghi4ichKOvR/vM/eOoa65fusQnikN9lF1ZZT6BAI4JNlCSffSMYSTij3/842P79r199p1vfefbENbVTObYHYe5Onhhbnb38DAqFwzZa0//5sb4zRsD/b13H78T02ns0L/j0IGTJ9/45tefgpIymtlmj+OoFcuep06+hboH00DAhlQLladoorGbvlIqDvT1QElXl5cZm10dabZpopNh1s0uUq6EpEZMVtjcA62XGbV8AXGbKuMgkUjZrF1jlBS529FxBh6luHZAXbu8tooMTgi15hOjFE1LghlPMMhsAzbAVyCBZJMVUjyaHxaBWS/Bj0VrCoVSAzNxyARHNJ4MbCYHXASJIA+bxF4FnINZAlV2Sn+2XVEEi+qsKBCTjkADBgyATQ50Cl9ZLYDPLc7OUdm2GDM9zP1l94zs2juy50/++I+xGAorOnv+HNziA48/sW/PyOrCws2rV/p6O+++69jo3l2rK4uT1y+vLcwVlpeYB8RjUa6ggdRAwNyP4nzyZyF2VlaIKnoijG34EddwWF+9hEZhRSZFuOXkd18tyu0Pn941fnKBPJ1r/PTD/X4tHGBEJgQnSOoOv0eFTcK9BTwXU3FsVFoiHYoSG6BteJpfedo3F9+RyHoJrkzXAHxXRJ4iGchN3l/t0df6FdvKzbkIfjQX+K5PCTsMXaLSOmRtOCZkvSW2n2Nj8fj9V5+r4HGunrO3/51AMq9/1CSFMSx6Qo144yw6VnHZ+mqOaD4AfhIX6NfKhfvR3tVDZFwjnC7EPR3wjSF+5Dq2iHW5nH2Pe/Wh8st14N0ClZ851SKmg8RP4l4dGAS6yLfEaUxFJo1guBL9Ilw+YqVUmTHjPA1jjA7WepCF4HE/96q+JxUb1NEdc3NtcJPVX+R1dwRjaS1T4765EJZMtvIQYLh5LNYUiRarFaghxI5lRqRXtA8QFwR/Fm/djk9kT0RgiD5HrTg8BgmEPGFzE6K8ypWNKXbbx1Hs9PX0cCgMo2yf/OTHMQb33LPPPv3006iAsrbLhVttS+X1VghMODQI+elIv/7aK8xO/tEnPo4ZZDAHqs1pr/EbN868dWqrWmbS0DvQd+zOIwiwUFLWn+ErEH2qDlWFpKKaYtt1P4XWqqw3AO35s2fRYB3cu4e7GQO1SnsygTEHuMzacoYJEMsLbFvlGjCINcm5eIvbibHYc+jAPljI7Ox0Nrt6xx1HMblcqW0w22COiyfWGqf6KytFNv2w9YeZejdnHaJhVEykQlWSTCVqG5VlqGfTFlp4bgvp7e/hTke233zmM5+hBehulDlOjYZenmakCjQgjBY6Tu3oeig+PccC8JEjd6CYglhTI3qExQO6gNkDjpN0nEBGkUVrsOeVbVwcMcPaHTOM3h6styZXlqgmO1ZjXDDJltn3vfdxZipf+bsv33PX3Wxi+vrXvvrwfXd/6sc/XMmutsVCly6cWS+uPfHko//4Jz/x0F0n1ubn2sKh/buGCmvLqbZWyJUjdvZECnGLAZBOPNoGDtGzA0VMFzhHDgpXsafETxTAnngcNXAKEkmKJi9CK8RPtPBpIUY/tWfSfi5QMXeGO2BULiTYnFOuu1HjvrrBgtIGUggJwuNGFmOCFDz9salUXBjAOCI3fRBtAeedgo5URr1UKzyNmbiieUL6XQXQdZAZyVWGjhcKRrcOzEQSW1W2DIDekLLsK381stUe/Jhf2rKprnxxPw62Mztn54IPg6MzgIHzA/G7cNcCHgPwQ/2qCjJzDnTnd2ka0/sheFy4y8H3O48YlBXME9WqeNW2U3+DB4icGErxOZ3Lx+XP04Om4Q+ANbzd6vUT3u7xo7ps/aeL+a7w31KdH/GVDN81pivoB311SQDSj4bHvb5roFDEVcnQ0XkNbzQU8fzojsiyYoMcgEmf9XUWLdGYg2xs6g8hAXPPVLwVNrBVLgVKRZhJa6qN8Yd8iqheKhTCpv2H1KIWRyKG9EBwEZChSqwrwDO4s7e3q3dpfgGQ+veOcrlKubjOMiYSPRuNOLB69I7D4OrM/Mz84gI7RjH4A52dmZpk2HHvOdbQwJC3Tr6J1ujnPv0zmL+vlor7xvaSz/dfeP6l7z2PgjyZind3tJ+482hnMn361JuTExPQSmgohBKuA1lE8mXagf4H4tvNYkIq+fbp09VKKR7hWsrOREvL1MTU8SN3BLeqTAW4s4PZAIQJZKMXIKxkAjtBisf+Grzt4YcfRmBH/UI1OXKFoA11pu6MN9pEh8PYO9WM1qXMMS5URKx2kA9cRId4MX+BrWkIf6AJW2wEQsGZCjBVwgNDeP755yHijtzTFI7oOyZENGYGzCcwqsF5aZqacK7EYfkdrsNCAqUDBmzjK1/5CoeZyRAYUJQxmwFIygJ45RyNaQEGmlytcAYYUnfx/AXY8gc/+AGmF++cffujH/nwG6+89NSX//bDTzz+Cz/900M9HbuGewvrq/Nzk+X11UNju+87dkciHKwVC9hGgv5I+ICmmW6kgRlI9GG4Qp0d0XSY6bBUn+ris4+3BDq67Aa5njbBdfjsP2lM30+U2/3K5/8n5xMXb3AZkC4nCnWOV+cBfs+Z4AUYtACOQNcU8vBf1wXDoPSdb5oK6FU/29sjkczPyeibBDbzeAX59MQnn/AZ9yMESvqDnAPGPT1Q7Y/2ljkHyuLxC7glKq/ONcaBNDCcyIdU0u4LSK1EKxOW/AlEnwy1l3UBlDvgBuGIAsT3pjyuWvB2hdk8D36OgotmYiJOdsoEQu+3SgPsfG14k1fF20B1T/eVwB2unmZHoL00xle55vC4nN2b+U2U8GBy3SOtPaF8lb7TnELodXsqnKqbn3xcOK842hOQUacQgTmRexKu4lQETWiYY8XzIIK4KT/XdhZOhvwlIoUT24FAiEvL1/8TboPzRE0sJtYq67FIOFTZwJAN4EBx6ERU/2AJy52yZ49teHahRCIQGu6HoYaJDqTzdvTaTBLmZmahiZAYAGahuBoKQ3e4eITVzpmJKZQf7e29qvvWFnp9xHnudd+//959+/aitbhw4QI6Ci6oYobb39/LRuhcdg0Jl6WH1157Jd2eYjV5bmamndlHunNhafnNV1+B1leKati9B4YOH7oDgxMvv/Q8qvKWCIsam0ePHCZDaDcjhLNp6/kslzpCYTkyhiC8NDeLUH/i6BHWK67dvDYy2NWKlSL2pLKXnxFRqyKV0CMgBMCnEy3sHYIHwB7IE00XihTKffnV19h7QwSU7ywXg+1rOd2FGUPNY0ohgKVrILg0Dg3CLs7x8RVWDuLJNuY+SJG0JDSd1XIWgb/61a/+4i/+IlebPfLII1BzJPdEvJWC6AhaFaJPZBofBtDa2tI/cBi6gb9cKWEtlC5irykQXr58dffwCFfalEtn0FZhBJvZw+SVayjHmKMwY8ssLaGmgwcyt4A5sRZB961i+7NYvOv4cU7esUeLY3e/+ks///zT3+RI4P/yL/8vpfLRGzcvxxOReDS2mi3EmuMpjINXs+GtjdZYeLGYj2AmVpgop/U++gSSYM5kedFrsFjIaQjsfTJcJ7K6sI7A7pNhtDeOYBPk7PgK7AF8F/WRvlskwoXf8vQ2TllefHL5+0UIvHqhrjj3dCOoMcQPtxp5X1QLyJariVXJ6oRPgdRU4O10PtHXGVgag/oQWWCwR0oHxeABajGd17VTUQ3JyZbRRIAK8Jw+09xQVT4xkWAfnGW2/Rmfy8P3WBLXRdhmMLrvngxIHBl5qXemJND/hMf5ncc9XQQ/hFeJ+hL2+S8KqJmLXqQMwVMvtOqmgvVPO856ACv5uCeeH+4aI+N/V/fDc/C/ktb5fY//CQ/wu1dVqu6A36qgdxen/mX7b2MmP8jvwPa/usTuVdsGrIP8QD9yo4fIdK/Xw+7DbU8//0YP2QehRExysdnJoVOmq5Xyej4vKZglAdzqGpXHlluqqxsCRFp04tAL+jVoKwGIlrxCGVEK4YFtILcyIYD6Q3DJAGmUbYzAj/zLdns2UiL+L8zOwDZ6u3ugg6+++ip7SVlnLlc3IJoQMggoswoE9mvXrlDo/v1jTBZbW1pya2sccz175q23Tp1iJ/t9dx3+9V/9+XuOHZmbvHH94nnMSJQL2cGBniOHD4JpCOwQcSRiJGUEdtARyRv1y4VzZ5Fb9wwP7RroW5ydQv9zaP/Y9MT1cHCzlSNcTHdocM48MzID2hpPjbgmjIpD7lGYQKwJvOeee9iyiS4eSZwbCyDikH7qspjJQtNpe24wpmVoCjb/tKdSXIAAa6RhWQuhQ8mN9sHYMnDyFxby+utvwQh/8zd/kykUOdBc0HeyxU98xHwak+rABqgOZB2NP19ZP3DqCGzYPfDAQ3QBMx7mB9NzK8wqKEXL8nGZoKBHYF1M3QCDPDmPDdW5ef0atxoc2r+PKRo9xQrEoYP7X/7edwf62h+558Ta3OQXP/vfrpw9PbZnoKc71d3V1pmKs4zfVCslW8LxGIeKMaphyhlHcBz1t3EE8xT1Nwd9EmbaoJYkrE+Atv3kVV8VJser8QxliqQkFZDRXPLR13pZ9lUFuBD/eTsJVqQfzZGJy0dw7kxioNUftuHHaWTqQWIMjQ55wmUgYZ/a21yFUcorH5yHDjWFmU0ILDYhaIUUbs3oMnRjHxoDLyBXGkOsAsfohYnAQOpOqe2Vp+UnPoqrf9dfzQBAO9+RTyPcfjcQTkycSqrHcR4HnMKAX/1lMUyEhVuBugohnI+Ix7AqXiXqKm/T64kHwywMRHobrRTZqMUIdXA7kLb9oI1FcuEmBugjga6G+BkwPIlAiJ+PC+GVmrvILgf8hPD1H3TKyoBSldRhDkhPuie5g1ifzPkeB4N7NpbiAHj3cGWmJnBN4WICqt8L+F0gGWqQABKVMMAIp2iNJU5aG/oCkPu5RvXgawSFRtsMxECPaq1aKNbyBXYGcrcL5wBa44nNSg2JBZKYTLRVMRPKMJTYWmUvJ9GD8Tg0GuJFueITuRxaUWglEOKH4tC8gF2usNKDkc8U6gLYw1BvO2SRxUYE/L1796BzQP3NijFqChlra2pKJNvQv6xmVzgWcPbsGW4N++CH3v/FL37x6rVrmGNgNolUy1LtHQcOHr/jGDtwZicm2OBy/dKF9WJpGBND7e1YZ1icn1taXuGqLCzXV2tlbgiAf3T093EjcYYt/JjlSbQeObh/dmaKpeYjBw9gl59dmWw21QmIKvfGyM4z2AHWILlgFW6zVqay7AtCcQ/eQkMZPpid+O53v1vUOeFlanrl2lUMgoKDLa0cNobyJtiel25LsxuKw9Lr+cLC3BwDAdMQLLq0tMX37Bvr7O5aW8u2RFuh2kNDPa+99tqTj78X/kcDorPCA/+gOJoFOk7D0vgg+cpqBoPYXV2sZ9Syq/DEtTffOAnj/PEPfZSV4e88/QwTCDbwFwqcba5iJaKvr/f6+DhEn7WPt1bfXlycHxoY7Eil0UbNZjI3rl1/4snHmQqwNYjFmMMHD9yI1s6eeu342L4PPHh8fPzyxLXz6c5QOBrkDAJ7itrKESwP1VLRK7n19cJaNNGJwSrwDTQAIUXdwUNHlC0QjARN1ZTewOFNK46+c8PHe5W4j1MGUoWYYGwB4gAKsOHmPAq/3Ul77onhfs6OpjfGNWCUl2Vr8Dd+rvu3CQTlUy8GGtXbdpbB9qvnq6fe/kspovgE+DBZdRiYVJNgBHqoOoTadTfL6vW6KhPQxq89soOCIHFmUe7dN0gphlxjQ+EHPgK1B9k58Ml5GumLWK45R3f8T3gY0kw48JCLwqEI6nfJAIpMSpxUHITLwoxUFq736UhES+0BI3Pgoh3VGq5NDFAxMvFGWTUVJaOlyMw+AbkIGq/qAidWKIo7QKGvOBeTJ86H33l4J5DkgE+Iwaj4tzgXmacLd68OBtdtpORTHZnk9/BDNoHlbgfDQNv+6oq2tSB1Bq82aAQwyfWquHrhv17N+V3gh7hwpWqohwADTb0hJHhucYp/u0NIjEYDuZVNrCJXq8FKlQPAiba2WKKtsBFEjI20sNcxPz+XybHtsrYJzYUdsQ1U8ivUdmsL2o0+wa2JQTqRT6vZLNAH4nGoGBIrS5FEKxVWwyGZION64fzyAnrwQazrlCsY30d2hiuQFoREznWzBxZa6S/kd9jDiy++iGYc7gJNXFzMsJMd+/tQc6x4Xr14Mb+y1NnBpSnt3X29vQPD569e5cRWZ09vSzw+Oz+XL65jT6ejr4/tlRnMlGYyPe1J7FVgQzSzOLt/ZE8k3LyeXU22sSWmJY915aKWglF46aKKQBMqsVRbG0p+ZGfIMQBwXWXZJjrUeveekZnpOWTt9s4OJjAwwWhUVl1oZuoO/KhuYKLs/pyenCI+RxzooOZoBGDYw4Mtfi5DXp5fhrtQfWZRv/RLv/Tv/t2/o20pbnBAywPI7zQOjqxoH5ABezPMPLq7MU/UP8l53WKRsjCN19aa+tCHPvT6q2+QTzodJ1x9UVjHLigJAQ8uAp+Yn51jVtfBjk9YUaXK/GxsfHTv3tHLmBK9fKG7M/neRx5cnZ/aKOWbN8sf+fEPbdSyE0uT0WRbMIAhPFY/y5zn0WRAJigk/ts5HvYQC7ccjoGKPrKJIzRiHSgqYi6C2Oi8OJC3OgKLcbAiZYKjLlm0zN0Q80qxdm7MRH4l++FU8dYU/rurgv/qe/y64PGdcQKPAYiq2ZzAfeXVVU5sxkgZpAIJ2F5taIu8uRaAhHgbQKmaNYL9sVSusoDhe+Q3sAjBiR4bvfbbWCF+L9Tbh5iWSA8gDIFq0H0eoAXO4wb19QBHxqE1ju7w9COoTGOwZKSvdQaAwpT4uvceogYdR+2jXhZjEANQbQVBjfVek1sdAyDIzQbQY5EvDUo82ohwMpTRFPx1ZwxYFFg54rRsoC6gwi6KAhuco5XuSSO5L1731BuIr43hLrKqYJTXfyqOQ1nQXSW7RA0MoI7LQOK+OQ9ZNcLmQCUDTLeKR25qRuI5YTlM3w0VPes+gVyPpOZ1zpXilSWuSENJ8McBgQdgY6Qf7KfBudOD5V/uAEilO1OBDQ77A0kVWl/ZKmFxDATBmj23c2XzkSDXYOmilUirhFMAg/ojroIMEHpRf80eKpg9wzACpBzi1ZbkMGqNaESGisEnsEyMRbm+3h62xGBi+uq1y8g9xFyYmDQ7Q8l0R3tLooXDR+hYZmamvvWtb3EYAIvKtuU+gqn6kd17c2v5t95+Z2Zmlq2KbYf2sWl1YHg4GIqdOX8R5dWRQwcnZ+fyGzrVRaEoTLhElx1HqGuYMLHphZNonG4dHurHQvWNa5fYaQqrwhQoEyCQEYtttCZyLeI2+3moKWI2RXDeC+ZUXVmmK1GnvPbGm4BK/pnVlXCuMLZ339kLl4tlndsiIW2C0I0b6OnFbA5L08yl6Bo4KOah2akJ+8RMv/Re1Sq6F6p59ep0d0cMjT8jjoKg1zxRW/GEE7DxFEUZk49dewaQ+ufmZvbtO0D+LO1y+OvP/uyzn//852kxxP9nnnmGzMkYbGHjKG2OWSQSsqqsnUW5PByCDbKwDew1sah++cJFbMax43YaNjU5PtgTG+lN90SigUpx/MI7A7t79oztYaNvqKWFSyE2oP/VJpYN2E3L1qY1BD9vUAs/3eiAHAoVea1jI+HS5RhaE03BdTStjx6PJUiyra+LKjc3pqAmzmNjyqGzN9h24rafmxfHitr274z8o7/tGHfuRU+rxvarUT2rl77Vnagat55sB9Q/qHKuEmIDLrQeojf8jQSdySh5EOhn7ipLCLnoac7P3aX1X30P1AeRCEvv7IjTGR/9BVtN8BetEY012g3UtvbIoq4iEQdmYD/zSDetrFDnQ9phB26XVxV9P+xQHIKv9uSbvSgj+AbKZU9pRGEUqD1CFkEcRYyHO5OUG9X1fw2NrPp7EwuSe2sOFibo5cjMf+rdxzURVjnXFvp0m9P+VHMAidOTupkzGL2H34D15lN4vZE8j//amFB1c7nVPbwBEk8HlQ0eQWhw6pP4qDmpd3QXNVRemjQ27wdt3mUcFgmDVMQHk8iK2dStTxfu44FiCP1Q2FW3SsVEJLSrv2d098CekSG2yUPQkXa5BgCb+1hGg4iAT3Bb9QllsP2gJPsKmAbjiTE4qJUAKJcxi4BoOtQvO5po/FlpJMVmpdwiG7jBQnaNFkZ53dPVDRUmLcSIfCFw0HTU5b09PVRnZnIKEgZrefbZ72JR7fCBgyzbxpq3Du8dHupMrExcnr/+TjpUPjE2+NBdBx994M6f/cmPHtgzyA3DyXioK9lWzK+wkMEW9a50av+ePb0dHeVCfmZivFYsje0Z4VayV1/7/tBw/8hw/8zUTY7/hjaqaQ4/R5qi3Pu4VYsGtTOKbZtYQGWnPMcFXHdArFHlj+zaDbuSxr9cWZibRwTubE/REGN7R8ZGBhjKUF4kVuYzUGcaYXDXMGIp9BpeAmWDoA8O9Y+M7EI3hSA/Mz17x5EjjIDJqRn2+LQk4lDzSrXc0Z6mSbF9xDIJ/AnGSyoaCpaJ+p4NRe+8fQYSfPz4MRgGLOfIkUNnz09885vfRHPEIjBzCCLDg0FCtP5d6XaulFmcnu5Ot3Wk4hj73OQagrXlzVpxZFf/6srS5UvnhgcHDuwbY45y5cLVZm6Aa4139fcm020spK/MLgRrXEK2wdaOtuHe4aGu1dW5lbmJeGCT5Q60fkIlaXt1DSK7XWkE88ADeJVU5/BWfFVxJEWaX09sETo/5IYdMyL6TIyVgwin/MrBobdl5WPwu3lsg6gDxivdYGPI2PgyMRzYlBS56R9wLsL2E8QH+ZXUG56OoFjgdm7UYUfOqp2sgPrAk5o20CC28t1TFYeAE01f9FMu/JwUydMB6wBwfrUVLYkLSVi55ali1BwwVD1tuZiLUVkEtm241SoLXBzXFGF3NEgDWz/Rfa4vxc4rPzwcJWeraYVj+zXUwhv82GvBr1JFJ4zlGJ5bsh/DhSLV4EYtqK+wBGpCRyhTaCjvVd71E42CJAg3bJuQbKdQHoFMHMQzZBIbE/fhChYK+G1sqmh2vMIpbDsxC+f8/M2wMotBCM/6T1jERNJqzFOpxFaMWRgQgqrOBhqNpqr1mVXQEQBH43NqQc3HGwwJ/qbijfQrO2NUZpeDWRTLl1w4zto2pgPMVIf/dB4fODW1msV6xwntDou2ELrLjg2IqWD2Xw0ntS+9DA/Ar+ukaEYUNbUKNAs5OtK0GcFMMLpSTYy02Yxd/Bp7HDLEtPjOp0aC9BOUr6qQOygHmYg2bcUC1UR4q7cr0d6B1fjMjakbcysLU4tzZdYAEm3cpyUDZljLbw1WN8uyKBmJ0aarmRWu5GKTeaI1QcYoTfYcOHTnnSc6Uu3Iccl4W0u0ZW1peWlmqrMtgcm56evXc6scsAqxp5Od+FB/dq0wDAZ6B5bmlzDdfOcdRzCiz2UvYPZQ/9AX/vpvc/nSkTuOYbTgzgP7j4wMXD/14otf/ezChZeHW0ofe+jAZz7+yEcfPnJiX+/0lZM3z78+0B7pToSnbl5YnJno70z3tKcG+7qbOG2cW61k15rL5eHuNJsaL15659idB3eP9M/NTrBLNBkJHj+0f7A9dfXMO5GNEtchgPHpeLSrPbG2UmBlmPEs3K+WsSeBsMTcGSqZXV6Bq7HfKIq2iFt5mwPV9ezIYG9LOLA0n4NNM7hYR9m1Z+TNN1/Hyn+6o42rHMORwPETXGu2P59bO//OGbRh3HuTSHd++7nnOWSdy2+wkHv4jkOo6Tu7Uj3d7aVirg1IujqmpiaYtP/Mz/40sj+3hj1wz73JeOLZb3+HiRiTCXYWHTx8CL3V62++CasOR0II+wMDfSzXY9iDqxgKmaVWtvA2BzLTN3f3diRjTfnMVCJciwUrfVj2iTa9c+r1Z775tYP7Rt/3nsfnZte+99KZK9OzVa7NZJ9s/9BWpbmS2wpUY1uVrc21pWgK69xDDxzd116qdtcCcXgAmwMZLCaOiLZppIuKULr7YWqQzSfNVX6b2BwEGZgiEcIaCz+Z0K9tRTaauL8Au9UYGZcdeX7afMYeZUfC0OwwrPV0YxYywU+zjh0/brgjie6544cVJsW3J3tvGSmihiKwIkDKzeiqs8MDkSQ7xhlDD8Lq/JBHlWFEAUyAEjAOvZ+RNr7iNDqxlgWh2pbkFMYl0vA86qsqwwPsqngj/dJ161iUOccE1G72H1WJI/0aruIEQOkJ+GhG3I+tZhhYRGaCNgCwaBNEV1ZUucIPDaZuiXEe96Syrk1odgiyiAl1wwNxN3KmnfnOQcT0SfL6FmQNcuQmCv6JAzgBJApyhy6JtMSRQohAo9TKTRuplbCepXb9+D9lXnfkqcS0mpsn8CbTFlQI2grxpI2okWYGOJebF1IPJ7J9dHMOZXW7o2He1bmec33g+W0K4KL/gEQeGJTrVZCWb3D1mm3X3YvmxVHy+lxHHr2aEzc3jLbe50XY7Zyho1AVFgXuglLoe8BWNw8gREKNkztMgjIZxwLdp/pT2LXTIWpkFmY5DJVOYhsslFvLXL95bXzy5tIKW9qbWIMNt3BdY5KdlCyoYgciHGUvCiZ6dPAV/Edyl16bozHlCvImdwRCoVAy8BX7cWgnuLkQVMutLGOPE6IAyqal2EhSa+5rZAW4q6OT12NHj8ZjLawHYBMrn80h/H7jqW+RFdcZsXaK/R9sEr383e9kZm6e2Lf7V//JJ//Zz33ygeP7EsFSJTvz9uvf62iLjo30r2Vmblw+2xLa2j3Ym2qNpOKReLh5bBe3xbSvL2faW8K7+rqnblwZQfOTbBnHyNmV67sGO+45dpT9LFM3rvV2tKHFX8ssdre3dnD/ZCFPOGe4OLjgTPvTAdQRUQwj/ljIQafPiTZURm2YFW2JMNRpwKNHxmgNzna1xtsYsmzsoQnmFmY7OtvZhYngj7adDTyYcMD2AwvdXHP/1FNPcW9aNlt86D33/u7v/i4Lwlx72d/b19XOKYjU/MLcwf37mA+RG5eLHT9xJ3oa7kI4fOjQO2+f/eP/8occd0AthqCQiItIsLRLGzKGIBPsZQJhuLwmHg53AmJgs7qeX5qeeOz+u7l9slZa6+mI37hy9vFHHjh+x4HvPfvMFz/3Fy3h4P/w6/9jdiX791/72oWrlzFwzbp6R3svlz4EuLYz0cZtfsX11VRb9O5jhx89fjw3Ow9Bkdq3fiBLtFXCk5CTFhPVk6Dnifke0tYlYkRjSce6XlcRkOOch5sSdRhKpB3aaEdHXbY0rgJ3IvHON5DcBoGzSSe/C/HCRVpxjU/R+h152GTaiyby60U2xuCNSr46MCTkSoHj4igfy02vLlsoPXVQ7TQJEKnXzMZmOPjNQ1SFuwzhURzGcT/kMxyEnF+jQ9znVbfEiEm6b6TA6alA/ZHf2J73hCuQRGsAoAtP54E88Yozcg3c2l8sbu05+jcMNa+EpFJE2oFYAa5HtAnaatY+D2RnUqrzg7AN+lT1gVSYw+978O9wTMrAHkW283aWCn5LRuo5TXwgRDxdDjx5V3znqCEfuW3NxSHQZk78cQXqCcB8dYoUi6DpAglxvJKhPevxrRyfjfDJUWf3bIypZDiZOuGP+ptScM7D03lcIE+KI1LYiStNTVgeQFrnskz6CWqohBo4qo3vXCY8CfGffuAP8qjdAKbhR3VviVyHUzBziy3XlMCXINezk9hRnuUOyK6enlTf7lJTLJQtrayxehksMhNkkFunwMwRAOgmGACaHUnFHLStQP/XQR4CKQ79O6Z1mBi2tiV0uVityjFUFN7OaD6KCyg7WiYU9KwQcIbWNRGpkIzI4fz587QZlmpoHMhuqVBi1fTw3qG+dCKfXYGY0qGrK9nJmZm9oyNziyvsK80saocP9po7sXjc3ReLJ6kIapapa1ejTRvsXGTRszed7Otsz+dWZsenEtHA8aNHkq0tF85cmpte6OpK63BssLmzt69QrXENWSoFINyIWUgm21H7AAZWNguBAiMDUQe5Es6PxM0iASoXAqk7u+zLm8HTZy5D+h++/x4ak3sy+/sHUbN0dHVyeHhsbB83zHztqW8cPnyETZxnzl5AOF5aXHn/k4/93/7976Kj/7f/5n9F3Q/FR0dPa2Rza6j1Z+bmYZZPvP9JzMCdPX367//+a//s134N2vHUU9/ctWuEg12sM3PLJMvXcFxM6SEiYEKa831hdiUx5WqJLWXXIonW/u6uG9evrS4t7N01yMzsyP6xPixh1ErpWKg7Fb127szn1pY//Y9/4Z/8zKfeOfvS17/8xfGLpz/xkR/v6BoMcNd9KR+INgXgJNEYq+MtwRbOwb09vnxhOc+AFL5pyMox5vgJlaGkQl0jfuYRbhuG8yCJkU7SSvRWWqMYmtDqK9+3HZxMSWyUkEpfRSYgSEqn2YLvlJcCcb7Hvf6QJxkDMxC4JDsT8sY8QFbU8OF8T4PPfdn+6pdF0I6a2AeXiR+n0UMzusaUx/atAJOLoKzMSzsZX9B9YpAxTLQostQV0ENaRo4KkUp5+c78oTplF8WXuFo/TAaNY7BRR54KN8YAJ4DBa9iG2AAHmaiEgwxvW7WUzgayTRrraK9vYHiQQ4PDClaTNFTAB8YLbELrCrSOShu3Fa3VaSnNugR+IwPYzso+KTN5rMouZ4eETlVNiBK4Dqv7yZ22s6fmX2TQGA3ehkV3F+KHCyJNDOV8D34i4Ki3zwD02tDkdA6vzjl+QwRQVcwA3bvn6EzjUiqaPFXKuzrSEl4vwjy8/MiOcuEEQItkwMwKdiNJo2krzvWw+SCELJvVqilCfjLdhea6tb13KVth+w/CPFshiaCpdBMXuCPHBNEJmTisnkLeZ8MJJJPKs1RotZPlfZgn15oAIKjEXAKD+UQjnHqvruY4vzq6ewSiyRxieZGLeZcHzBw066tzUxPEIWe+It4yJ9jV1yvtf2a5uLzAoS1s48M2WPU9dPDAufMXzpy9ODk7n0h333N8TyCEqirFDfTxVMfFC5evnDmZX+JqME78Rjnly15+tgbNjE+0RQKPPfjAUHf3mZNvXL042ZEOo9Yc6O3D2tFWKDo7PoFU19XbmcvmgAEjdEwC6EdqrclNuQxs6PcJYaGC+nZ2dzDfZ/7AQQH2Yq7lim+dOssC9R0HD8Asujo60Nf39vTtHtnT2d37V1/8Ul/vwP5DB//izz/HKnNzKPqv//X/9df+u1/F6MXv/4ff+/znv/YTH33v+9///nNn3uYoQ/9AH+3MqS7YxtrKakd7JxZPr1y89Prrb7KQ+8wzz7B6/IH3fzARa+nqbAc9OG4mCxrBJnRTsVAT11FCt7gPHmxLRsNb5cru/t7xy+NPPH5vVyJ67s3X7rjjUHusuWN0CJ3+jevjZ99Y+uOlzJPvf+wDH7x/pCf6zNNf/8KfLf7Ykz822DcYHh4IlPMBTOUVipU4M6EWbjxmkNJTvkwOujMYPOx1Q8uekC1ohGGgCK3DWRfN/A6ZaU7SGpIbqYLoawHPkF7fLGdKxEM4f3zKqpi2ldLFsTxdOnktAxd225M5N+BbsGirLTkIBssNUMlZyRsGNa9UmZhWcUFs83a4kkcivOIc/bWsxOi0ekcBYjCKYEVSioLqQAkOtYTnqHI9lv5C6tWMFAfBMEIP4pEBkeznRdefBmjrmW3/FQOAuIPB7okHp8qYAwT8vuMTEkplozmE0INKC1IF06G5N1khUAJar4EBCB/UIALLgDaWTuHE9EFwfi+E+EyJLEOqQ1aU32zX3DqskvROBSnHd47bmyhK+dozYJEkjBO3ruUgT5fCGlkN62eAh5j+0wfMwWmQC1dVOUHt/DQLIYSC8c7vakRd3Qxmu/csB+UKc8bvHPI+ZdouWTEAa3MTfKwMItPmNgNQ9tuIUgebCCr+3ZwQ1370iyGQEMmwwostvBF0mvIABMozUImmYo6NWnA9u5YKBBLshOEMbbPurkNdh4FJLKLNLWH4awGFNeo7lxfJAR7FD2QR/JHgX8Si5zqWJBgAmFzAugCTAvT7gWIJjQkyPlvgKZ5N7YgQZYyK2v0k1IUWICv0PyNd3S+/8iq5af97tBnh99WXvscUgWK4cx1zOrXCGsue3EMVj4a5znB1YYXtjOykfP3Nt/7rn/w5dwpAWB996IGt5nCtKdLW3t3V3Y/4/9df/NL3XzqJePLQ8V1ozDnhBQsq5JYrK4vJcODogUN7B/snrl65cWkCxX1fVyeTY4ouVTYWMGG6luU8L2df5xcWkxBWbDKXOHVbrrUApowY8YOZMS2gW+k4hGKYBMx1Zj7DNtGPfeQjn/3zP/vG159qjUY6kslCvtzbN7Q/lWLfzpun3pqamTt4+I7/1+/9PiaSjh0+8k8/88sPPvgwVlH//b//93/1l5+9++4Djz/+OMfBmFWsrq0MDQ/ShrsGh1ANXbt2AxY1x8pzoGn8+k2YNEP52pVr2fvWGEbMA5hpceIhHtP9nRxwi4W5FjyAxqq6nmPza7IlyuoIi9XR4dTk1Yv9cKRka1+qdSO/wrL8Y/ccG0jFz5+7OHFp8ksznzv9ylc/9fEP/vPP/MKl8xfefv21pqPHBzfKoa4Uix5L8/Mz6/OVaF/Xrnvvueuu8995HjQXcjLSGB42YMAWj1o5vDXUdQhsT9ahFJvI5gzjHW1ERhFuarSRh/CVWMJejVlRaA187TqV1EhiU54QLtw2P8lQgTpI9L1eCoNArwTIQwOZB69+mKp0sJBQaV1dXHJpsQSKEvEUhfOdi1F/BRPwqvH5NTgFUghb4VULCYyNTuW7wi2UTFSKoIME8gVizwfojKBCG0R0NMBqDBE+WJSYlIgALaqGoymUgEIbS/H97hyA5vBGg5TAOT+NvfrbeKTKZ3bL+i5rPLZ3keIlvaL6pzxg4E53OlB+FISqDFME6TSsw7xy1QQCWWDhGj3sinT5kqcl0ohSZOt9F7KTAXh52idl5eJ4DEAfDTFcSfBwYZp4Zj1AfykC6oPHkGu7EVwcsnAeF5PIzuO/uhBeVZqwVyUK5gbnoKIU5yGyiwAjcBo0tT9n5tj74IAxBgD6W7buuaO5GvL+Ub0+QOAHJTkAhC8aPwwXpBJ0M0VM62CuklsaUTVgDr5jMxhJrAbWOWeU5eItrm6vJVoYVJB7wKJGzgEE1JxJA0/8HBOCVCEXiyuwHciGJ+EEbrKZMtGyWcFGphZO4C4o0GE56PpZDZ6Z40BSBiNlE5PTuzExli/OzmEXYv3QoREdXs3lQrXqtSuXQtX8YFdqpJ/jqDGM+Zx66y2ufHnsPQ9CvFifQDvJTZB9/UPN0dZTp8889/xLJ09PoOTZM9q3Z/cgGxZZmciurWzk8nt6u9lTP9TXP3vj6unX3uHw897dbD1q2j28a3FllanISm6dxuKuSHgbLYWGh+ognNBiWpayzqLvYFFoX3tTvW5+ACcDxQpcqLmUSSU73//EE898+ztf++pTH/vIhwcPD3WkU2j8U+3dV6/dOHbseGG9eP/9D3zkIx956NHHbJts5qt//+U/+q//ZSWT+Vf/y/985I5D4+M3pNYxs6A0aXNw4/jRY9iHWOpb0AJbjdN2mG1dx4IY56svnjvPqQgUPxuh5kQstpGPINxV1nMt0IlauXmz1p1KYgyDXRoHRkeWZqf7ujsX52a6RmmWxOsvPPPoIw8PdyRWmqqbfR2Hdz8xO5t559ypmWvZL3z2SxdPff9DT77/3vc9Oj09v7a42NZUjbR0cRfYjcWpV998aWBh6/57H/r8cy9ilZgGoXUcDaLThWmgCuPDSCHoZ4OfMJmDNDkPvw0fYkM5SKBXS2ejT6Ofd8IINxII2oq0ESpU1icbcBp+loeIO99YotrOt15EQ1kuduPTy0CEmxLtC34qwD8HgEaM7a8zXRA8n1cRegEgryf+K8Re3cN9wk8BNrsnf5e9cQLpr7Yd5eGISYlQU/xkzj8T2sgWRQ+vWg6Rj69G+F2GAtKonLIAIve0uju/BXgPGIBoOo4+cw6c9rbIGOB6szmB+8rZyFrzRjlYYw0dDQC9p5GgOMYrETWsRDUYqgUgYQ2CZ93hJ1cX4vyudVwgT+tIaqp8rU102FxlWR5wPCGFoYHRYbLalkb5BCRO0FYRUrM7Z13kSiJvWwNwH+SnEU0GtxBlTia+g5FIxEcqsPrhxwP3U2Dd0TIub+VgaxiW1Y4HBeHgMvakaajoBmsApkjB7AKXgWgegP5fWwPE84QklGJ4rBbjVTkaqoH0rhXUXMInN7J2lOhe+EQEfkog9udSCEMsnCZyiIs5Is0A0ty4GGR1MIdhYu7Awq49WiCmAswT6Uj0LVvxKCSebfUAGWI1QIZuIPK6aYvd8fhpf04IsFkFANDwoAnZrJYDkRCXo1MFriLR+v9mRebPjHXkCvnVlZWero5du4ZoE7b8kzNFkBZRfTXL7VtrXV1xljfRfkyNT3S1xdir9J67D28UVi9fvDBx8zqzirHR0bb2DiYJTF04SNXV0weAFy5efeXV18+du7y0HDi0K8JtAcxIyLYlGtrK17jYbLiDxe42pgILk+MYuI9sBvp6Y+m2BAbxuE6dDfu2crEOk8bysgy3cdN6a8vC8rJWwFkBpkNYX4UeQ4btnAEzIW5CJkOd/ELrgiWg9Y3LF8/v37+fxd4XXnj51Km39uweZamjs7sns7Q8ODi0Xi69/sZJpH72a7788stQ+bmF+d/7vd9jbfm3fuu37j1x/K3TJ/u6uxilnJVTk64XsR9BE9FQkzfHOQTHmTUu/oUzYWRiksNgE5O9d53QRtuWWF9XV7WQq5UCmbUVjLxSHbRAzS3RzFQlulkZPDRaXp6r5VcHOtpWpifH7jlR6++ev3klVMrfdffxke6DNyem2nb13HPkU7MLl99558zFt2fyc3/+vsc+9NAHPxKItwRYipmfbxkYvhvbc8XYN559NnFljmZBAw06stVCCCtyTTvR84xowzpCJSOaDMt3DXlRC/MKw4WnohhSssuLUMliMHHEFGwHjvkZGGp/MQMb5hJgiA9j5ima4yiD4phT2p0evfHV5WMeC9HI1DxeQFoClz8gEWgciyK8YWUVI2fPKcN3cS6Xd3262O/6yQWKanj18WR/W9lVraEltK0gURSBYklM5LdAa2/HLsUl9dVFcVnb0zMGBz4ZDoNYkD/RNiCzPpJXXyF7cihwQUVZHdpshi5rEwgk1MKZAogtUoT6FtlVLBEQ1YqqhjlXNJnzhr+xtdwrsaGCEBHRQksISZdflRWevGtCF8gTkuKKU0Gs2NM8Ximi0Qo0BuA9iCJSq2Ccyx+P1V1sT3CaRp5oLlBtYM59xYvHhRABZwjnIQ6vlrGXObApguGxK45GYnGD2vqZuKx4SqFnzjLxMmrMsNHvYgoVQAP3Yk8Xombkx1eqRs2J4+WtSNJLycAAS2+cT+FCmCZk+7VigUXgYHO4uwc9cxdLubn1Yq1S1vayagXrC9B6lhXZ8EIOjljDAGBjQAX5w0nbY3eEsRMIBsvCKNSQFmWflzZRrucrxRzba7BxQA7laoWvzADYMCO9+cED3/zW04VSmTNfTPDRBe0Z2ctEc252tlrMdyeH7jx2pLyem524ubowjelKFg/YTJTq7EFpg3ae+NcvX7p48TIW8PO5wuhg1z1HO8bG9iMqUARXG9y8caMlUDu8dxc7mlfWsjeuzt28UYCgHdrXI/zZ2DxwcN83v/Mca/JtyTQXIlJpTkTnSgV2VFBBTgKjwsJDfak7/Q9TQUUDY+OMLcZNOfGMVow90zBG3WETa33r1Ol9e8fe8+DdL71ysuUb3/j0pz+NAuf1N9/gVjBOkHEfC/r93r4+DlKACX/yX/+ITUT/9t/8mw9/6AMn33wdW9PJOLewbDEBgsGwGypi11tisYdfOV9iSUCmWjkkbGb4MDu0OD+L6WyU/lg7XV6Y5XqExVo5Gk9U1gOJSPPS9FJXkhPOW+dOn3rPQ/eszM9i2T8Vbz1/6vWPffQjU5M35jkQcT64f//BA8ODswtLk9PXezpb/vt/9mlOD3AtzBsvvnDu9Nsf+4lP9N5zAj3hRnE9MTb24x/c/ezLV1783gvh3fsRRkFy6Cc9C7rzhIOykgbi2XBk1G2jqXDSRtw2PjNGhJNKrfQWV5hMKmmXpAQiB82lLU/iMd4akiuhw3N98Yc3wY3R7PXWhxErsvJyFmSSwQCicSaxI5WSsPZs4PLkZ8Kd6tjgHEdyAeSvAhR3Rxx0PRqG9VSOiNCQqigUVswOMFRvt9bNF8RiI3g0ixpdOat93ESBMshQT9MCyQMJ8LpAL3LeGgCoDNGx9O4h9mc+ydQgJYjOkRYt+mEgssqO+I2QlQhVoGCydQKydlgKBuGA+gpqwpQACOqqDyt0+0FcXlyRzk9FiUx9ScFhAPiARWB/u0h3yPEzIZe1H3/dGoDVk7rDe6yttAVexajdBJFQRRRQ4Clcgr0MbOlTMwvackDrPrpXnmoTzSAZfSZfUCbpxTIglfpIWUj8xh0tEQKIy96VYVCZV4jhsqW61mciNQaqF678zLloeMmXDV8UQoeSKyF8Euj1Inj1krjxQAUcuoApRur1qg154JBGkPDLohhKKDfS0ya0FOuE7BRmezJmkKUztouukHMxgr+azUVE2wPcBonNdiITk1t8KRPlPrsGpATn9AZ4gvKHDBE9ozGsgaIOYjmYY1Ahjg5sbqFCUVtGmjCXjPAImeSKLu425L6ZUEirqSz8YpQGQgbhhn9oA1EzC7zFjq6elZU1zPrv3zd65MDeoZ52dvNPXb/Cyi3X0g7093S1d1IoS1JIaCuZxRtXr2BUn9w62+Jo9hG3k4kUW0hRSEGws5x4KqP8X16YwgpnbTmD/Z7A6JCuoY9FYxhUoJlfeOEFatSaTCOVM6vh7BUqIzZ2t/emy+vF9Vwl3ZZi+wu0H7p/4cIlLj5DbQXkLG5zyBZhfD2XZ2cTrZRbhyluomG/evkiuqYPPvnolcvX/j//+Q8x3cwS9NIyez4zC0uLbWlU/GvsGnrurz4LA/tP/+kPWLtlsf3OO49ev3olootryj2dXY899thXvvbVM2deQTfV0dH19um3dg0Moq9rjUWxMNrd2UXv0GKtrYOg18riUvLgweGhweX5xUyiNYXZ0UJ+dmri/ruPv/7aa8VsIN0duHHpwrGD+zkBgPk/mD88AFt7ewf71tZW5qdudvf0DmsDanhp8QaHA9hD+48+8bFKoena1ZuXz59j6/7Asf2lYCi+toqRCozuvX51gSOBFYwmIQqw99ws1ol6aPpopNyGgTcYHPZrdNlsQLgtOonExVAE30FVD9MZ1nYcFRZOnmhboIOgL5+Fu9sDwlIrpIH6WlYEOaeP5jS+SKmv0Ko6WMZiGJgI15RiRMKGmEaqRGMpNShXRIA5DjsVgcDUOUbENL7MaWRZljrPRG0MHNFAtOXY1LJBCCUzdiMGo+MEbiQKKlpOpdSzonGMeKmhRBsRvrX7mKM2LkS0Ceeal22gtI9aRADUHRFUW3P1NvVeRftUojU9pIZgTbl2OCOrdVpD10Io0BgpA2lCrXZSXEuXp5YBXpXuaA2QKo7ezXnFCl4ry6D0S+MrgCovcypBB0GECjQ+D4oQ4TQAjbCLrFk090el6L2ePx4yF0K45tDyAt984ASTbFW4r5bOJXEA+IDh8WAyKoy/8ZPSOacdsbSM39oKdZmrpAbnAqkNB0L9nPH48V1+PEnk/M4DIfeLJpyu9Vk6XavOkDiivucphZNrIXEI4wmMHGOZ5KasaD6OX8qvpfYQ6LzJreixeFMzUi0HO3JFLqSNcewHWon0jmTLoF6PhIuQ5kqNGEI/26mpkcn5NVvU5Yn4T3XYLkbDOfECdgszQPPDeUKgJj4R4BEhttqEPQNnEK9Cbg0FFLMMdG044nCXIRmiAsK2QU9ne7VSmJ5a5jbFsT1DfZ1Jll+XMoucP8NMBSdyz555e2lxkdJ7Ojv2DO/CinIxX8yvZaKRltm5AgSdw8zFClfab1TWy7nCVntbpLOzm3JpM/Ydwe8xgpNZzXd197BXkqst29uToVjLanYe5MN4EZbt4nHNb2gfNj4Yo2oqFIqobjh7KeTlCFClxBVnrgtQScFHl5YyBMLk4EasV1Pcd7/73RX2YsaiGLxLtidZTsYOz7ee/tax48f+u1/7Z+wtun7t0nB/D/acP/SB93/+L/9q/96x3q5uWMtqZvnc2QvkMzU14xCGPqY3YTZMO1BG6XoBbpgJcQlBkYka978zaWNuBHR79uzOZTJTN6/fc/wIpk+nx1fDtQKvY6PDhbXVSqmJmRlnIFiPwYZde1si3sJVDZhQHT52ZDCfW+K64LdPnUy3dg0P9tMmkVQrt0YXEP1WlwNbyZ6uzvvvPfHq5JL2lYkEadgh/BuWCg8N3xxtIsyPYdRRAduY7KE02Al68oTMGpESoWIIW1qjel4So1uiOyrFsiKETCx8x2C0j9sPEGz7xXwaJVaiI2PkpgFnOW9HFU0XtQNkusDOaKoWEol5N+JAZo2ZK09oBoRLA06AOThd6QqkatsFGAWxEHqWfHgqB1KhpzUhT2uHWgrgIJgAFpwGpriMHAFikzyd36J4fsRzoNHIZdel6lt3pLNc9BQb0Ilr8SZGywaKf3NMeYkGdwdafAAGKPhUb0IYsKoH57gBUPMAbhgU9A3OleJJ31aiK9+FG9UStAzFMHWAQMPq4AG2O14kjZPBdHTd1cmj2Aw5kJ+bEli1qYigVahaRyxdLU2DqTVdfHuz3Aghlj09ck+wS49HvI1X32NNqyrXPeo+6111ckNLOj+lNf4oFaJLgRBHGoimdXjjnhTnAUfinc4g1Xqa+7mPwOw4Eq9CFNXPfqq1Y5E7c6F1lIdZbgEwbB4wu3LYsFGJBFug69DQJaw+lLnhi1VV9S/yeCjSTP8zqL3W29gq1fJoJLCdCW2iDFKJc1RL1C6KgTHbHQThY3ZA47OEUyliPmYDSaY5Igl6LZ8LNaG0kKk4yCJyNKon7jyH4mNNEyYxMT61xj2Fe/YMcaF5scQ8IB0N9KUwCLGrVipm5ott8RYmpmxafPvcxavXr7Un27AEd2DvKDcqZVcy0zeus2baFk9WqrJu3cVVX+iU1rFnVGmJVLFgFIuKcLanOjq7ulhJffaF1+azgaOHetaLlUKxjLjFXs88lSoHYpyADjWzysoOIq4mpmqMCuwd0SNMVVLhhGQjM/3PqbcqCwnsj2KDrAx5xlFeSce6xW7RcGp4gD2v0dYxcBFhHxNAZ89eZO6Uag/v3j28d2y0r6+HTajMJDg9cPjQQSzfQZEnp8ajsTDbgSDl5MzcCyt4doULSsRNiD53MbdEIvhZJUYFx4QGpGKT5uiuYU5rM5mYmZrmcoWmSjm/vFzFtESi9dhRTvQFZiZmwk2Ve47fOT83tTg7XcytYmeio30ISXN1eSkY4hwYF09Gevs6Dt1zd6BQyS8Vc9nixNRUKNHStTWU3LWHiyFmsytXLp1/+fsnI7sPafKvkSRUBS81d9ZwZvSBIIwYEJSq23g0rPQwlmCje0aYwE+ThgjTOHWjQRNbMRVcfVybH1pDLCQbynEyFNKORoGexFCy2912oJF4CeJEthHD07EwagDAcpYHEeAqRvagw0Ai0d2EX6N+pPGlOVK6hD/6kwQM+1tGPsSBcP5D7+kRZuo2A8AmI60h8i0GoNFIXdXiko+JD6TQQfISFaZaWAXQd+Ly5DtPhcNOGgAlpermQng6R9WQ5Bz113FcrgYX0detpCoB+NRDJkWrtexHziJQVp70y3IeZBaZnEmCcx5XkP9qJWpbDqzUJaReAsLSKtySu1Suh4RwxieVybZIYR2pclxB1peaP4pAutz4ROOS1uXvlppdzoQovA6kg8o9XXz/6eLzVG7mnN89VXw93C/UT6KGVU29tQQ/3M9BsBq4hACqg8pFa8hZUZxTtDrMGmm0IZVAWyjWSgebVEAH4dRzQmlWM5nHkjnLAJCQSrmwkq/Mzy3m8uvhSEsEwhONct6X/Qai4Bj3qJYZaUEIIUfN18vNnBqOsTkojMobIogDSEIgkRSCX4C5P0y3JEAEm2QYNAKV54Lz1lCgM52ASayu1qB66BpZUEXLRA7Qsum5Wc5b7R3dF9iqnnn7dGl14Z4j+/YN7luam29lIhoJIsmOT04tr+X7h0f+6S/8ImaCuF4mu7KCXTOuKhke6Em2Ism2rCytQt9XctmFWXb3FNDvo4DibG2oOYr6CABfe+2Nt6/mAeaO/Z1YPVpYXsV+P0fS1gqFhUXmPAFunaSC2bVCa1o3HHCnejabY/MPHQhRhnvxFYBp1jyXsxfbWAwgWpQbYHSVwgonJRCpaRNypUX27B3lejTufVxaWkgkYvl8if1TY2Oi9e+8fRrV1tE7Dt28eYMTwlw2wAah3/6t36Jhd+/awwo3Fkk5ocfmV04jaBm+CeakXsJGEJmTA2VhEJWFalbgI7GxdGe6OaTrIQul4vve++h3nnoqu5Y5uG/f1MT1/Mra0GDHwszya6+92tWeZA8V06+rV2dv3pwdGenbNTKCKadCKXfh4pWLl2ujI3uG9x9O7O5OZEt9AwOTulZydnlza1c7JxkOvffxR7LRru9enGQQARTc3cdDRE3Qk//6gzOPowGO6Fjo9oNown/QE/4BCjlhVfwBSdMomWWih5Uh5DdsdqUosYlixm/8kbGdvxISpYEWqbj6qIGyi6JBRgxOA1tiniiaA1o1EHEQe7MaiRlADfmqcaSnXiwyWYlBWeaE4vk/64CTHMAr7YVpQqqAB0hhix8GYOyWjxplAOMqVZ/kq1wHoQdMQ/n6hjrXJTC/91BZsoPhZuCiDQxenJlpMHMF6JURIK00NYVRN4st6q+mh5ww7A0KElqGotB4/IKcX41kzdTo4RNU3lJpggIoXibqZVEqSLgKtcqIa8vpj+t0EbU6wVEs8geF1AG0hbg20RRGo1nR5EP+rkSXj0VWoUSg590rfhfiPL6fV+dcNFe6JbrlAVTuJ0jqP5KqdJeb87in1ZQaKiJPgWJOMe2MicvdNSNd4XczZRCRr8Jj5aJiCfHCzS9ewAc1pcJpCGZZtDNDjONRKGEwRpBfL4TZz96Wkqhu+zvNghuIR4dK5o0GwlrnLDUjQbO1hJWAHKeSTCKWOgjTIKz24jAIisgPSEIk5gHBQBSxmCvggxgMDWxyFCAKDWVtEyUGvQ5jYE8RT7Qr1A5lI9YriT89xW7Qhc54GE03Ku9ULFrNL6Mdwqgch2OxGnpzaubZZ5/lMhhEI7bbY/ft8IG9SLrZjI4KI8yuLOeWV9YgwWiTsG1N1cvVzZUsFomya7n1xSWdbN13sDcUbX3j9I2unhgWL8AVJjQIVe0d6NijK9xcVgzsOdA7NDjI8XooMl+xWsE9X/iBlr2a2MVYQ4uFDirRhXYeO9mXLl+mSRGTsebmZujGGzjVXGV/Z7aw0d0a7e5O0vq0KmsMdBY1fe+jj5wul1988YUTR46cuP9+FEeYbmZH1OTUFG2FkN+WStPuKRmlxjp0EmmUDNl8BQ+g7+ETzMkwxMG9zZwJQM114dKlzPw8CxX33nv32Xfe5v6Do4cPrWbmxq9fSyaDqyt0fRYlUrQlFi5w5DgwMTVXwWgrlpr2Dh1K7Z6YuHru3DtXL107fui+9sPHm8LY0ujqqa4VdJ19BavcU5MTr3z/xc308JZOm3mUSGT0H3JQTnCWn8mqxBbi+rsihcw2VL0Jq/DZOIJlq4FtiXl4VEEILTURzn11hMICth8KdMNEfy2tB4V2K5EF/1U0T4nFcrwyaDRYGDo2BhmM7tPtT5cnMd0IdRE8imMvKk0MTjX/Ic5LzuxEXEBrAKAQP8Yh7cZsAAaABxZLJhQnCOtk1nmUDNfQEaIJdScGIIGexFLoO7IrnYSLQDU4XAWXkQcvuzjswA471vFQoMqwIp3sTxytOVoQfwBW5wUaXL1cr3F5tYz1cH7Vr84AXGS3rurlYUHgA6+k5M31gV6VlZiNy4o3l1yvHgOgsQETAL0olIUPKugKJa0mcV5WHrkXtavD5kizSHCdGbgQZWJxDAbP74c4MLaBUVM7aIlifWfflMyydXkiOetH/VQRVbixLBeZp7rc8hNrc3hcz826nTB1CFRbiwOGIpbCmsByYdeLUFyYTGksrxaLy8uY8AFIhFy2qUDjuLBXl76yK5N7VdD4REJQO44tNDVV0eWrl20TJNQf/TcnrCCyQItQj20EShJEHPyVLS9WdNhWiogK9Syx07MZM4N2eJi0MABJ1ujZcwWylgmDrS1oN+oiPKiGUGVwCzy2oKX2CZQ6+3oSu/u5zndmdv7V19+8cOXa/Hzl4L7uu44deeD+exP9fVyDkpscZ88784x8LhuNRfbuGQ3F2rBaOL+UnZldgPovLa43hwPc+rhnLNndPzC3uHRz+sbIaBdg8nUtm6eLunqwwxyC7OaKxa6uKEsRkFcEakR+DEdjHYeVcKgtW2Axas3N7YuZRepOI0Cb29tTHDjAHGkHdq1NTY9ZLK5Y6O7t4cauVEf74K7B2dkZNOp7x8b6+ntoATCOaQES14m77vzW16b+8i//8uf/yT/51//qf/3t3/5tJgRYjICIs+QwMTXDNZashbBHiH2i68U8u7NYWG6NixuxnpFIar8/Z/hgSxR354njr33ve6fPnD62b6xaHPvOt0+ODPd94AMfeO3ll2SZdHNjcWE2l8+xq2rvfl0rj57q8tWFydnn9o71333PYQ4hw2MuX7j20isv916bPHH33eHh/lhvL9O0UjTGtZ/Ym+OY3tX18qasTmjnD73mCCTk2NEfw3vRKVEIoYVhrTw7nIQTAhzOEtOkNgIlu2kSq6HuEtgnz9/4R3KNYTtDjVQ/igNaL5rGNzRDc2V8KpeRZUXyak7hvod6kpBXR4VdJt7nxoKVi8W8DZ7bIaQ8F4t8yAO/fjh0OYwHTQXsZ2wAZqCPGtjWtkj9llrxjdSoL4zqW/keTK49YQBkSGqRzlucCrb0eAS7OccAWBJQX0iLLf7IE0JjpMqaG0KsTFUSEweXrSOyCjIHgeCvy9NV0j3haOSj9laeqrzW5OUBVLI0QiWoCJHf58F1UAFJqeq4Z5nQmV4noehDv63ZnINKVFXzDUkMhHCu2eVDfOeoHdnV38QVcNuvFONeLI76wZvwqU2c4zsevwgXqMV8jDI5hluP6mfrPBTkGADdTilWcr00hCQbGC63et31Rtp6ye5j/WnDSTk7WQmeIr9mbmos6DnpyJ69jEjgpsPZCLWw6wc9DXGggOg3EMyLZX2FrRDmIQPWoEvrHAOgN2TJAcrN7FR6LdgAUwEEBcgpCwgsNIQxI4I439S8gUUJbhtmnye5oT9ZZ6NlM+SPC2k04SCQssiJdV0WPAGAQDQt7JPBCDNsA9F+bRE7pZxVmL50+QZ3Eh84NvLTP/2eO48cRS3ConV+/ObM+DhGgXIrqyjl2bfDMnYhn5+7MX19cnF6XsZlMWPDysX+AwfQ0kzPzE1Nz7Ig3dc/mOzoPH/lEisFyPttad1mLOqfK0Zag0fv1eWLnFzDMSlgWcJIdlOJRV5mA/E4xBfgaRlghiVgK5/bbPDDD+gmFGUskuCBf4gBpNo+8YlPwDDm52cJJC2sBUF+cX6BBYD77r372LFj33jqazCOT/zEJx999NHvfOdZIOnu6Sc3WhjA2rjoLBLs6EyvccfkOlYudrHVFc7U29/H/QSEgHpYbQpGwvc98NDK/Dwmk1hoQa3EBV5f+tu3NsrrH/voh3MrSzPTk5BvzDrJMKRhOCqy/lJhanbq9Nuzl6/P3nNX/9jevWh+pq4vnD1/DqFptFzo3jfYNDBApYrsEKCyq8vVpnRtSxfA2fAXjgknhYOOF/DkzWnYXYholkWoI6r9pcVAG4kvktJEoQiWGOM5SahG8Uguu2EauxbksN9ROuc30ldPV/9LFd2ooSAS8ko0/PUCgNADzw8TxbNaeCEaixJAPSdOQxTvzU9VL1B/3zWwMcLtfpKo8rcNaRBAR4jq8wBGM+gFeK6JnCqb3Egpp1opi8am4J1gzQBoAIvFAynR84qZbBcr+ugICytZDGsWe6V1siZyCWgLcUqWxWk4wCJTRGuiGIUGIahJQ4bK3DUHT+esCC1iaCZiTjTOJiYsMUAu4VI1KbPF6ASzVYAGpxqqnOWOX9MV3uke0sNMeDIYic8bQLGGwUyG+Ko8Wgnp9qTOsgzwOyDrQEHf4Y1qOAQPGpfS+OEMfhIBi70b5lB9jLopa3PWJZ6f+DjvBfmI7Vpyks2Jpj6WNs8GgysbfgpYmopRLGaWmCuIpkiZohNuBoP1qLoMcKgBXWAlCDyaznLzi1QQhEDtgPFsctM/Oa0jYZUXS+4b6HS4CiWAiB5tCgdjmFJY54ZxNrYnOjZLuaS2OYYw/I2aoryBiUbyg5tqHZtexnIrhIAbTlAH8UoFoeDUl72hwgFaDaVwc4jvrA3zCpHSfIyj45sBrCqUS8xUsIXDxn+oN9fQB2ORAAZ7WKwU0dRu0Q0EZA6LoeDO55bfvHo9uzi5tjTPtqQHHrj3wMEj7Z09tPAWe1mqWKnJLS+h81nN59fz6yVO5C4toe7mLNdGqRag/n29HKBKYLGB/Zc3xycxdDqwe1hH8Laallazr75+ZrkSwNJBsl3Xq1MX2gn+BSvC/trC6ipX09D23MC+vLpChXv6+9h12pTdosrY5BUYmipjFmkTBsYkRpNsKrbJFkDs8+SoMgfKdu8abEu0vPfRh1dWMmzuRB00OHAcG3ZPPvnkV/7ub3UMrbA+Ojr66MOP/t7/8/9x8+rNf/Ev/gV2/wlcW82wq5UjzdVaKRRJMX3jsrbC/ByW15H0mYsAbVdXN5xpKcIqbojiMN1y8OD+Pfv2Z6fHh7s7uf/syQ9/uH/w1F//1UuzC7MP33/v7sFBZH+GHeZOtYTQ0UGtWUJYXJpfXplfXltkoSRbqMVaU0OjiXRX4eKV81hi6loe3nv3vcnRdKKjvac31t07ODWbZVlUYqUIosMwoR5Ow9YfAOYhQmOQXg2lzQNxkbyrEQi+ayALpRmsIs08jdpZNmgvtSJqfiG2y4cElE8mLs4tTxsvAkcg2HhRXBsSBDLeNVxEzoyo2VCyMA13vfmDx8gBGA4IDAaJM/SH0RcjCV6xlpsRIQeOamHl1cHSyBU4OJEU/pg2QjSVYPyqsCiC0tkaADxWG2xY3EMYh44QQVmachdkwxnnUHkSax3vtNIdCMoPGijLy3wUEZQjmREU8qIwFYqdSrgLEECEsMIvww72E8AUXHe0AIW7QklFkzLOaCV1A+MBEkB38AMae+oTFbPmExUyZz23BUkAJHZnst6hLKgIh8tF0UTa6WjpodUQ7PtmMQICLYleSGF9rz4jqhb16/8YjmKk6ulwE8dvAUdUmzypsfu5ehh4ioZHRZMhzE4Fq7LW9w5SwFActbiEezWUi2OChTJTY3rIp+5kOCmqda331aiEopEJuYnViM/YEwIaoh3AKmt/Dk9tIAMDD2SyiswjGNWp/Ogm6BZqF6Za1EudTXE0M4CzTwBJnFkay7VBtosgNGxEWEbDYirdGw4VUNAFtuJhrOqUYpy8bQqmEu2tkO+WMiYQCuVqRyyK/oTrEru1mxBCzWrAOoRfa76h8EZLDF0B5sGBIaxNPyEdBwGhmoPr3JmlLcsYAEWoxBqlbOlvYjC5KcQRWzYFqS+DMJ1AqbiBbeJcodIUjMzNLnBlLrcXsA30Q0++h/VpmoaSFuZn9+0d3Y25+tbYyVOvYku/MxUZGDjYHr8Lw2fRcEukuYUDaVDd8kY5C+FfFelnSWJucXV+fgnzO1owYxN5oiUlS9YxFjYwnMDQmZyf6RjqSac6uNlienZ+YnJmYSVQhkBHArHWFgzkaCF6enp8Nrd7MPHIY48uLWeu3LiBjp7DvVz70N3Xs14uDg4iBYcg/VrULqPE3+BWSM4wwwPYgl9j9/fGZn//gNBia6MNQxRFjOWtjR7cO3P9Msb07n38scnxq7MT10uF7LE77xrZtYtlFU5idyY7bixeya9m3/feJ770hc/vHxt9/+Pv/Z2Xf2ds/z7QBobU2hIulApcGhOKRV87+WZ7Z3dzOEq3tyaS7LM9coyNPezkWkUXxGEOWuS+Rx555fn1TLnY2tvZnE52j478ym+0X79w7qXXX3+5VoEBcN27VFVRnWTu7EhzjqwnlawU1kqRVKStrWdwmKUIECczO7Xv8C6WTrgkOjO3vB5ZreUW0wOH77n/vWe/8Vw1FDa+brpbhg0vjCaNOP2h371psw0eNYnGiXiFBpHeRbAMv4XJ/GdoawRpPEKV8OLTmOKr7ywzj/TLBA2OES+y4BiDH9HzODFNpcmpcPfTODYtsaQliJYKkhTGpn8KhdqIKlphIggUIloCwRLNYrRKIc/IbYZEcT0Eok+VEYqYxwv72BnQjFeVYGXaKFZmzfAMbCgAAeAqI/0hYyJSfxoOaI3e8CYNEBSfdygHOTvyQUyjOFQZgmA0V42nNjJ6INrMm/iHCxctUog7zqVmV+x6KOQDvxdk4Upr/JTMaV5gUn/yYtF4WpurZvisWZXMZavABscr4dSTMJ684vzvnEblKyMHFPefLkNCrJwtLE67+KSDxgu5eFfrbT+VpwBUkyvYpgHUn93sgt4c4YSoUdSaRsStHZRWSeQcnLz6zprBe6O9xfO2kUy8imrTK2QI2HKGKXUGYA3r2IM336InSGMKAiChZEHuQKetjbmJcQgS6omgLRUMlaDpILVMaLjrhVReb9EGlKj5Fj3OSMDPfTkEUhWyRlbikg0QGz247SRA91tDfROuluKBYBKqWG3mytu1/DqoBrMvF7KsCjTVKpxNBZZAUHbfWqPRjWbmB83rbAqyC98R/OEI1FX3NlAuawBFxgT6NuDVIoRaE6hhuSG22FQD/NAX2bQVq3HVylYk1bKykm1LaLsRjbBvjO2LA+OTM0jNGD5jW+d6Id/U1InZaPZKDve2jQ51VNdX11fZ/rMWDhRbo4losAVh5uy5i6scbEVw5brgZTQ02GMIsJTdGk/qwg2GYphb2oMocGAqy9ncobuOsM+H3aVzC9nlVU0OopFAW0sgnogN7x4h5o2b4ysr+cHuKNeWcfL2wswkh57QAiFfr9jRLSrLzIcJKl3IogMCOIMURQ3q+LVcgZsc49jNb2piB05fZzdXyLCBj/E8cePa448+8uAD9/7P//J//LM/+9Nf/sVf4I7i7r7+T33iE8nuHhZislsBTJwuzi9h8wcDoh/+0I999s//4t67T9x/790T0xOsLtx57G54TKqjKxyLnj7z9vziArfBHLrjMLf5gp3oozCIwQQCvRnYsooGK7/e29P5Uz//8//1P/9BpLk1U8jdee+9mblpboJsizUvz80vzU1PXL/21lsXuawhGg709jSxtf/ogb3zS4snz16fXwscPjZ0z333jO3u7xrsq+VCLYlopK0rfvDuQGzwf//PX3jz5kr7gROgiInnIDBIKElY40r45/00tBqcBsfOIEI8XCaaknk58KZM9TCvP+qUhYmONpwtb1cmFJShvZ2Zfdr5MAqmDO0HCdFIo1gebjDK49FfDUqwuw6RjVGRCJzQG8fcRyOPV6OWAsycpDRVpU4p6n/9CDuA4quRJQ0ahDaRGA1dSiZng000Xc1r3I1jF7RK3YngEKfuFN9omnuSrx/iMQDoFPmKZphzCeu5bf9VtepOpMccHuKTjngEuNiE4Hfl+YHuU+MrxJ1APysXgaeoYr0CzuPyF02xvToOThefJoAj+5jgAt2TyHgo0bm6ny7cZgAA6fLEg2tMXk+nWQKOOunp/IaAwOOHO3gdqxV7Rh9J69ZbBvpOTNQ95OnPAFSeqkqzq61ErRugJabaxyJBrPlkAoHqRDhnBuxpxwcJg6DDBNXqQiieAswNBiO8wmbeBa/XIARjbSeASf4QDGBzo1xCL9Takki2IvpXZzH5VixEYwmyhlDKdn8kgh8tPHcFUBGoz2aoFZ1NMFhE9YtSHzEZx/yAHzG5F9CByrlHWguA+MlsGcfCNzhtJgGH1lTgJmsMuk+GzFGLJ8Z2kw+k8/jxO2lhzkahX4KYQgqjQe4TriQSaCdSLS2h69dutEa22LeDoYVascqK5fI8ZvYzWW4mW8rI/EQokO5oGd7VzlmrQDCczRfYfMQCBouoMzMF2mN4uBN6+tb5c+UNFiFq2Damf1lcTrY1JdOpzq4ellqJPDuT54avzo522uzypQupgaEJDODE4v19g5yDg53QGmiSenoC7LQ5dfo0GzKHh3ar/lu6KxhDRuzXZH8UEB4a2w/bAAOpF4MGXfzRO4+98tqrn/rUp/7Zr//aT/3UTw3u2g2F+fyf/Rm1RnF04cKFZKvum7x25crdJ47DWm5MjMNo2VkEB2J1N9baig0MkOfytasca8YfiUaZXnBsgr2vnU2B7r5eYtK8dD0cCPxYzWYPHTmaWVicmJlmK+sDj7xn4dLl1nATl00GDuwr3XPXSmaBEwNz8zOs/FOL8alJDi2nevqfffHlm9emzr0ztWco+Is/99M9ewba+4cCTbHSYiYyPHTH8WMvXf3Oi9//fnRoj01ThWu0p8NJwzw9djqNUAkoQlhDEcNbBdorT/fTV3MWUWS9zlYU6qiowradcvYovxu625/exScwRds9ioEGRzxIRE6RITAmqjsobQRRqOd8j70L1+XU+3XniAZvJqBuU2rlrOorf+csqeVgddKrBol2NBHFy1okT/CImmw7SIVKBmqjK3q6PI2EyO9CvNmAvTrAtAaAg6oam7H0FuIBZX+2C9rpc3FUcIPjlQzcsyFYtP6WV+IQyBPnf3KQGzwGR52MEodAF5Mn30ii1rG/fnLf44ojpnMWmTZEoIT6iPcQ7gogpvP4aeuJ9LeRATieaSV6DSrS7Uv6lgsEkr+oWgj3PhlieQzDZCJXHDUQA7A9SBTNzB2iCDC+owwxBrOGzQxTh+xEObUi4OJAPn2YfQ88xrBKLEjSDJu7NMRIqSZzkgmVJz4afJaRtNN2cyMaCrayyYZrVZYX2EdfyBa03Z9J/OYGp404G8ypK807ahUwjYVeVEucdmXmSzZUE+UPTxaQoTWoqrgHHd2V4ltToySDOwI4hapNxItoWk0OYBdo11kjBie1h7RQDCTCuzHa2dfH5S03bl6D6GNfEyXMYA+23sIjI7sruQXWO3s7ugK1XBnKurxSzBY3Kso7ne5ItLQMcG0hg3aTG+lrHGTjaj7AZlpDdjNLku73jfVglQE1zvPPn6YCwEgvR1Hxp5rSnWi/u1ra2jIra9cuXbw5kWPyPjSYpG1ySNGl9SMjI6fPn8dqKcSdkxB0BNoSKkP/oh7BsAOVAHgyh74/dPgRJhBY6udwsipsJheTbQkMwz311NfgLuzM+cxnPvNXf/W5z372s5/7y7/sHRg8evTO199488TxO2lM2N7MxCSmftY7sfufBTK4I+yS8NG9eznbXKwUoe+zc3OsQIjW9/Wi+wIDBwZlNRopgWPGzACYDVA0zhQYzXfd/+DnP/vZw8dOXLlw7uUXX/rwE49XY5HBgUFRo0oxNS9jdl2ogjrSg709c9M3Zxbmd+/Z85N9/d/4xrcymTxWg/7mC1/4mZ/6ZLStLX7Pw7F4N+bpmpEX0u3NpTWqKdRqGNGNfj79/+nIzYiFPSwv53PBGuF154UbN6mHbf8lPsOQdy+hA1vqbY8N8A3JyZEnSK4xBD7pRzsxahmK5GHjUbHkYfLvpua811vAeepPpDq0AyrXXAO0xFcSUU5KgBQQSX6bRsmvNzmNfV4VEcri/pKZl6lClc+2cy9+ZZ3H/+wxAPd+yzcXSHYOXsvZy9r53zVTF3hLVg6mxqfaq8H5AFE/0oK7PJ3z/T6QojVeJYm+o7Z+Po7dWCyayjUerSR5t85yaWKomSGIsMFL2gCUvNbaIvc4+oWnaw/2uOCnP6E77D8QXTMHIeAvMwBCvEB4dj13gWLO4gKPqKf1tSCkpqwS2oVm4nvEcTydDlCvy+ExHlDPR5lJS0RU4aWEFzaJycN/zTkRHwxPNftQkDmARmhf1zWtapKmzWokCAHcZNfgtUuXCqsrGIZAmmfTCvtMZN4yFFxhlVb8hp9sUAEFZaEXIkct7zJfqWkTC3cZo/kUs2ENF9UmaiRaQ5xFcMJzgNe1EKsa+OkZzISyLRLDc5hWY2NMe3vr4YP7UBbd5BAvpo+bWRmOZlbXaA1gWS+UVpcyiYF2dEuF1dza0iKcKRVPdQ/3peMdaNLYP8OMAal5PZsvrldgKouZldXVUmY50NfX/NiBoWi0ZWU1e+Xa1ZWVTc73xuNwMC45bmJHJjSvORbBAPVU5ubs/NLCmujB6FCit7cHANhvijGGicnJtXx1YHgonmwLRSPQ4jaulIy3ws0g/SwMcLh3fHwcqT+zuoKfa34B+43XX6ej6T/8OlCzuclFMRcvXmQqgDHUn/7pn37rnTM3x8f3Hzr88suvHjt2lN1Ejz3ynrvvf+D8myfpN+7/YhLE6U+kez4xO6E1WBjfe3A/GufTb52hZ+7kfrF9B2amp+EizAvYbLuxmU+lOyLRFtbAYYSpdDTd0fn3f/93B1hM2H/wtZNvfPSDH/zmV7/8s//0t0aHAgdHBnYN9u4f2d3blWZJPInxvtYWdpnsPnCwk/ZcWWW68HOf/pkb165O37waC6czS0u9sXggs7K+VF5P777r/vvPLJZuvPBGUTRMPyEa7Qeq2atGmvW3XoWdHgYLkdwn7+nGoSVTYvdTUnNCI/OQigROoFbOdaKqcKmh6s7Frr/t/GsgEAFIvWiAJSUPQMknGPXUi0vpkRJLomSiYaJFGpmaKYjqeK/yaNcGCd2T72SkgqwwDdIGRxyCbbeKo+mUqRgIexAIykFhymAFdTgIxheFk8ZcvU1UEI4/oAeO5HqtEx9eoXgKwYMzAHYwAKWuOyL5zoXxiscFKn09X+dpfBLH/9qYicvBZeLypOH8zF1M19YkdznwhKy4DP2YeNxXILIlJPX6LU5dUgfYJeRJPyrcKkEOLh+FNzgX2QfM5UNko+YqVy2qtEIyPDz51OgIhKpDuQiU39DRlaKuqzsl5bMyoGEFGOSGJKhK4CxkweKueh4yCuH0nFRAxMSBbYJfCOhywK+agSpibCZmqDi1FZKfDToryeJvYp4ZSzHis/zf0AHgKOf7yiU247fF+prDnIFqrmxipSHOSm6OnewVjPOwz4fD6Cz2Ci6AYqhoQb62wS0w4Q3ukw+EOd8rtohCvHlT+z5Zd1YrIM+62YyWy4DOowAIztB/ZNnWucW5WKSJ2wjSqTjiOUIrwiwmHFKpyvTsIscDpCkqVb/75muDXa2jgz3Xr12PBMvcNT+wZ+9gzyDzpMnrk9evTVy9dJVZiLb+yHYpDbBV1NJ14MiRXmDhhMHN8enFxVoBA9XN2gNK83d2Jtl8ie6OVc25qwtLKwGoGJOU9kSgo4sTZp1YbF7LraLqb+/qXNCJX3UTIjaYydQktrJ88OBBLm588+RJhH0sN/AVBoBaBvU9t9Ow55L9s9xqCckmGiq1s2fPihNsbmL9FC0QUwEEfI6nYcwZSD75yU/u37cPy6CnXn31rnvuHb9xHfVRPptFEQdHQQXHVKN/aJgk6fbOk2+dZrbBUTgcc5H1YpFDapwSgJ8BAPMnrF5wtouyAJhlADaNnnr7zM//6q+gcPvqN771L37jX3a1d3z5rz///TdmXnttJhE93dsVGO5P7B4aYsNVvrudZQMSjnTspWvLyyuzsvYcYDdAJBjD/mqgtBFpT+Sags9+73tPPf2tYjCxEYoLLYWS5kxpviOk/sX9ZRQJ7etPEBj/7U8Gs8KF4Tw8pzffbQcrjh/sFBuW2uXhP4Fxh99lwECkBG27diPLU/obtZUohRAIvIDC3a1srGAbIUtdpNCQRJrjizzUyeiPG5tqDY0YDyqGouIRCncRDHIqT+jKfz5a8bSicRjovuLucDtfvQyUp4tlWXoPVyrhvJMvT4gOr06f4amS/AR+KX6I8/j5imQ1kH7ntzCrpn3yIzRm4iDwc5PM6BrLsvZj0ng4lwNfGnNmXEFW+OrCLYmL7TWihXgPusHFdOVaIfJaudugNiZx8XmqC61LebIJXjBAjVk+NS7AdwKA05P5RV9ZiNEioBF0RTKx3tLJKyBVNvWyJx75Raf5gE/laTLJMJDVJZtx8q4FLNARhAgiL6Ndr9hBPH8NwJgBqAeeeHzGUF/AQfEtF1BHfIH//IUrAYfEcLEYKfW1phtgZxd35Ea4Japps9w+trdcyrMwW97g5lcqH8QQJhoGdC00fbitLYqVYRoC46DBLWgoZhawDssecFY+TVqPNLEVyFQiPAGDvUAUqJuimSdx3XCoWdcDwNTVFLpblHpjohkzbR3p1ki6hQsDWA/gjgB21TDAXI8jm0PdWKqFFN4xdjfzgyNHjkWD1QjMpsYCwCK3+F69cG18fHpqMtPT05FKpMtrq7PzaxDr9nRwaKiTowbLmezcIhfbaGtRIqHFYbaA9Xb1osfHIujswvz0UhXS3xYMDHUFWVnlNmD2gGax/gndjEW7enp7hwerK1lsm6JNAvxwBCl765nvPJtOtT/48EPpNMaoI8n29rEDB1jGaO/qwlbEq6+++sQTT3zwgx+Esr/1xkln3geW8Nprr6AI+t5LL95z373YaEOb9K2nn4Zk/+Zv/jYafIj7H/7hH9Lyd9173333PTA3t8D5O6YLu0ZG4Ry0z9DwbvjBqTNvc3wBnf59Dz40MLyL+ROyf3dPX0trAn3V2XMXYpFoMMRRtXY2RDERmpia/M9/9Kc/9uEPXj9/8ed+419+/U//9PSZc5/++V8aG9nz/eefmZu4ib5nbiGwvJSfnLzYfeliMhnv6e08ceIEbITtv4f3H8BC3MVsbn09f/bsud2H7wxEYqFEundw7ONjd81stP7Z3z8NRmuhy/EAelgYKXonDOQpIdiGgj65YSuqyVf31KBwMqs9nV9fLZw4ui+DEajoyo2nmwe4kQVeE+JW2vDg3CBzo6zxyajR8qH+IcdA8LVDQH7hKeNOVIA8TdFDKYJagFu9+KrxT2jdiWLooDvjkCCJaCpbEVAuSoBTve0PcFMz+6g/qoY5S6ChTnqaz8WALNj4l+zPoHKv9twuup6BtTC1xQGetQOf9Gp+snUePz4h+BkLnuPdBTnPLbFdJBcBv3JtKMOF+M9GD36Xivh+chfoCnKN5cexWdR2BYyYmhy9rfZRhqKr5tREWiS/1bnMCW30qCMknoqCE+6qgMdFc1m4+ECFw++60hUGXiiyiOt2iWTiO6DC7/LxA927C1epVpy9IhNLLaBlfGEN6eydCSizAci8elI6fALQMNhtzShsjD/ZPADghBdgB+1hOAaOaNsnsq6GgnYvADkILWYisMBSao6H7CrsLY1sNUWaNmPNTe2tLYMdHaji56urRXbM50qI/2wUAn+x3ozgWSjko+HmZCDO5YjY5mY7Vax5i5tmo5HWLMcC2MezUeGCADbZkDuafTqF1kDbw2IA01XxBEGJpQcs+HACwMDhrC9mR8tVdrOEIzGtgti5s8mJaU0F2hKlmkxEwCTQAsEDLr/z1rGDB++880StsFypVMORAFqeKaz7X765vLjKjKM9jd3/IzMzsyhhuKt3oL8dSRw5nckEq9mwP1Y6sW6USKXRjSAmY+h0ZnpuOcOa6FKlGujpwigph5/DaHx3jewOhMKr+cJ6rcz96R1tvbv2jO4e23/puRdggpgAgqOgM7rrrrv+9E//4j/+wf/7+s0brOXSZdBuoEXYx7L0z//8z3/5K1955plnHnrwQY509bR3wg/SqSTbdVAN4Ue/f+rUqXvv/ZXdo3tee/11rGFz2e/HfvInv/X1p2AVP/bkB77yxS9+/NOfRrPErTIcvkXLBG2474H7WeN9+613aOq+wYH7uc14QPafqSkXjXV3dMIhTp48ee7cuePH7iQOdeduhERr68zcXF/fwKuvvL53z9jo2IGPfPqfXHz15aXM6n3v/cB99z+4NH7t8rkz1y+dW5iZQAhojYQTbS0sBb115kwi2sI9DfNTU8eP3AE/e/PNN/fs3b/Cybi2jdhW6G++9DfXcoGlzRhXR6ysQzcZZxopzuOkYMAQ3X43ZwhZ5xBCTvn5q3Cj+y7EPfUJSQJsrz8ZJRbRS8JXF0cZ1Z0xHg0Ei1l/MpQZPEovYZSvAK0nWOhBSmGqDjKcLRFTpv34qlHHFh3bkA6mE1FZSdgTElMMQ6/h6eWvYJx98J68qjCay54i4SS1PPCRoU5WMYoFnMUhmsX0Xt0fJTKnDZzKQ44A3+N9thDndxHEAMjCETvlVSdPzu+exHCkzYljjXkR7j4R0+XIV+fxs2oMJ9CVRSrnIb5fuvwGPeTPFU1al5wnhMClIr4Fu0+u4W59EhNADAaern3pGmXLVj/XXjwtH5F3CJWDjZ6GrkKg+JGQF75SObqBbeNos1nfRAsORUZSlwUdK4VoViJxXZ7u6XULpegDn/hnzgCD6LP+COVHvyetAtIxS9SMYzLT6QvKYTFB2hMO8jC6VW/2y5hhZpiTwa6ErLdie4ukBBEfBQ0aJLEpeACorCEBqqrNNDaEoE3ano9tH7RUtWKxeaPam072dabzpbUNXeBYxkgnOz4jMV2fAkWDnCH0t6CqiXDNVCS6hUm4ItI3lwsWKoHV1TKpws2tDCe6iI6qForkLKM0tuGylONyWlkAhcQXcrod3vgS0KlerPuiX4qGwqw6076r2Xxws9rZ0Qaxu3pznC47dPhAPBLjyhR2v0BGsefck24JNlWXM0s3r1wcv3YN+xL9/YOcj1hcWvnuC99jizxLo7uPDcJ9EIozmSVaG8dsgN3/yOYdPb2caEEznpXdgqZ4e2o35v1bWtKYEk0l2NTJyF5eW61uBcZnJ+9+8MFL125EUone3UOt6eTefWMbwRCan+8+//zP/MzPYBbil3/1n/7xH/+3L37xi6+8/hqvv/Irv8KW2I7OTnAYjP2xH/uxM2fOYKQIQ57/6Cc+gdj+/ZdeBJjDhw++733vi7+RYBLwwgsv/PjHPvobv/Ebf/AHf/Daa69948tfhnwfOXIE4f9P/uRPDh08+PCPf5iE1IXtRqNje1GRXb12jRVlTqm976GHsGPKPQQozQ4dugNhf2F2jsvC/tt/+3PaissGxscnUUz19vaPX7/B6+joGKu775w519/Vc/d7Hzt4/8PsRgokE2gUuw4f6zpw8KGpmydf//75d97CjEd7Rxvtv7y8NLBnqL+76+03Xv/e956/764TT77/g9dn5nLlWmckwSG0idmlp156Kx9Nh9I9WnwH9QzVTVnN4LFhyK06OMlUsFcNAzdebHxtE0Q3QHiCoqQ0Iimfe9f4EeITwJFGRWHBjcHpmIF0jF5UYT1eCquHQdUtHcEiB+TknlaI5GwRJsXXcNbWNbCUtAx2o0R1Gs2MT3uZRe11oR8nVnQlp9TUWAFUESZZko+G65ZnBMFm+IQhkAWhG2oQAUqpKsWm+pQliDRY66SH+KoFQPAJisR3JvUULR7lOYpj+GsVETWERbQmqH+2FrCypJEmtIEZq+I4neanD3wnMNUUags+25s1nN8HdQ9l4pSHOd9/u6ceZTumy/yWcP/VFeqeDhL8wKnyrH2J6fw8XT1chu7JV5fWZbjzkxJYqsYcFJGC/IS3tIbLx33VTnrP+WswevfTNkYm3JXlUvAJ8uw7wKRPVSypNUbsmK7U/+J+5K4zH9I98k17KAmFitIO5mEBVh0nZAYhyQRUVTaMEG7NMElFbaNDlOCQNnsKxYggZOIP10aQJUql5g04AdqWWjG7vDw7DR1hryQiJKAXq+g/ygxUbTrMrUTRcgU3kfrJgPjR4EaoNYblS04msHwQDXMRpIYPxXGZCakoD4WWGtYEJFqcFqBBBC6zCDCSelZr2OZn23k4sMUtkazxcm1hdhO+UOZ0GFYNDhwZS7V3YdBtan2de88ZE+iIarXyerU0MT65vLza2dmFggk1OieS2IK078B+tmNCeZcW5jOLixhzoC7s8gxHg+3t8VS6q5WJRanCPQccjiVaqj0NROx70QXGsTDDkRtf8hyVSra1pjtOPPTgXGZlMpOBDURa47r25NjxcCyOPodZEcL7HUePvPe974U6P/3Md9i4SeDv//7vP/6+97ESwPowkj4503qcH+aWm//4H/8jNJ34qP6h0cj1jz76KBdAAjwsllfk9+W1LDMDEqKj/9KXvoTCh9cDR47ce//9zz//XUg/+39Onjx1/tIl9vgfPHRoeGQ3qIBRa3Rt169cI8kbr7y+uLRw6OBhWnt9vYjqLJVKc3QjduAgSie2OYFAz3376f/6h398+rWTB8f2ooPjgpwjY6MtWHddz3IfwMz0UokVn8rG0uJqgalAS8Q292oV4dxZGvnVrWjL4N4D0Z7BUig6wxXOa6VoW7ocbFldyzZHEqCyGwUilEJQXiV9gBx2aEVogHPECKolhlB3/tisBwhh8HtPDW17d5isocNX6XIsgsW0EJecoeOOj/EK/QMYV5Q8XjYOREdWhJn8NEEwtZXQVhkhgGsSjnwjwu/NCTQVkOQonsalFzooxhFVsjXq4SK7BlAeDUSbF2NPDEWRHPilIqihJBaJHtAmDFwCNRMwCDy4+VRvDTx4vacF26sq75w+m3Me7+l91B/32bsS0sjKNicAGt81JHHlKeG75u7C+eS+kkNj2h+Sik+uOHnqfkIcIQY2MvThcazMCnmXgvxC/cL9EAOGLYce/A5IHyojpl6JrlwvxCoNWNAzR/JZzaRj8RtSKVdRXc0T6UkPJCvLewAAoQ4MGDke55QOEowIoBV+qf+8TQBQfreAjPhCIZoqaRYAiqGWsZ4SOyShPYkCKCSHuYi8a9qIjM+cQpK+sBKg9MQBBZMD8QAdGCYdBhk4jCsLD4GN9ZXluempdy68g0UEDq+iXG+OotFOh4JpbhSZKqwBJJty2DMOrrNeG91iDxBXi5c4IQzxZ3KAnQeuloYTcTLX5iPwLYSpmnCNpWTA0A26MB41FpSR82C6Lw44WRwIhUtb+XyxiMJ9s4KKKpzu7xkY2tUzvGd5dY11TtoQ6ZULZCoxznJXxieuY9szs7jMhcIc0+SELyRPy5KhCJfIz8/NFXJZnScuaZZF+Wyi55QsK8OLN8YzbB/i46Z4EBuBbDUqwN2U7e2B9s5UWyrFlWba5xrYms5kZpYyJ+578Ng9996YnGLTbCrddvjwkQOHDrNJH8BQj6HGOXb8LlTtCO8ogrjgl403ExNTf/d3fwd9/6mf+kdAjjjPQvGV8xdZFmbeBWM7dQoucOnY8TvRFF29epnbgH/i4x//2Mc+9vrJUxx7WFiYO3/+7Ikjx9G//+7v/A5p7zx2/MEHHorGYucvnL905dqe0bFHH3sMZlYplq5du3r+PBuKriLskxBim06moVSs8w/1Do2Ojhw8eJgtv9yqhv7t8pVLL7/80nNPP4uppAtvncWK3MLMNOaSPv2Jj29V1jNzU1M3r1TXqz0dsYGerpbWcGdHz8rywre+8Qx3BBw7enD/weGLVyefefGl9yTaR4f2tnT1hSrhKOseXagFI+XVAtNTpyCl1iKnIL+kZY0ORgmDyPBVUjWB/Nd2AXnlxwl/608LsNElzNGbdKbgsKIIm/SuFxfCOCKaOxQlMU3xQTSVJADs1RVCuFQafgivjEE33iWfS0h3ubmxJWgZqfAGxrn2CJGlmMKt5AIJjeptbOoojDkGKQbTNXzJwIoDEtKqNZS1wNMfq5A8RHJ+IquppP8R8KokA4X6qYpWaYYZdZVTboTJg8/YlxrfHB7nc3/9zF2ePD0G4AFsfwTHTrcjC2X5Lk451p0V7SqwTfv8QOdpfFKae1Wx6ja1rAuBxlFFMnZxGj2uND8fF+FdX4m5Ha4W84q7JQcXx+XD0zkItotmr9ZJ+MBk7fa81ZFDPcjzuJDtnL1cvbxBd6rKf6sfD2rNAVtW5nmiWKRbTYiXEY4NrbXajWPMAFx/kYuj7ERzP/iL1sm0XoIaQ4mJYoIG8HjiBRgKPBRlonyNTTwxdBaYaUDwXc8hL0faWmvVLfaTtEXjXIwFz1mcm6iUikl2gMMBtmTQJhkLVda3ivlVu0ISiwBBPiG1wJhk9tNWR1k/5xoYOBGW4GgWCgVy2BkAAo26FTgJDoUhZOwTYhmAtQJk4ahuYZGUvWd0lNO6hGizDQ2ClfmqznzlMLB282Joq4z5h2Qyvat/cGhguFKoTE3Pj89em5zG1I12qLL5h2p2tQcGBtju04ROKbNazqwGikYQODnAceQWpvkCJ1ArBxbnAnNza1tNa7QdKzOrpcC+Q4lf/43/6cg9967XNj/6sXu+8uWv53JzB/YdZOsnwjiQUClOHLPS8Pjjj7N4+/Krr6BAA2nhNzcnVjeff/7SpQvs6unr7WUJt6Mt9Z73vKe4XoB5cFaANW2qPzg8xGoEjGFkz567H37413/911966SVu60LcpuI0xCOPPMJsYPeukb7R0ckrl988fYr1ifsefACUYDfRc995hgMHzCGIQ+N0pGUvj6Y7duQIJxXIBJqA1X44KNuQsN//9qlTE+M39o3ue+I9j3V1dC4tLBQy2ab41jee+nYIGQMOWYC7B0r50sLcFDSyLRF4+KGjRw8dTLM5rLero6uzrbs7mEjWIi08g/E0lV1aK2CPrxKOh+IpXSoB2rkBq9EsJ0Q1ige98yUg94n+9yK59/pTSWw08cTv8AfqRg4ugRvTjnaSt0N2Ah0FVIAjrFrdNQDIzQKVLf+NwnghlKVhyB9Iv21PkDzPGFKYSD/jUbI/nEDRbKwRQczCFtVE6BFTma7T2hpfevXm6AxVZaIiYA9aM2BYA6VgdlMBB5XVF7jglbAgay+8Nn4tVI86cVE1NYL0zlPaYjEDRedVbWFxXTpi+a/y1Z3zb88AfJriwPVfXXxKwuM/VbI5P1DjeWcI+RDgIpCbH5NANUfdOb8rlCft4764EPzk7D/9tFaUHi45EfC7hI3PxkDfz6RLftKSyvlVAMQC/m4eRzklwQC4p3oiCsbMSOPmASLOtDWqDDZr3uZcHzhIHISuOmTvPP5TPaxaa46MLgf8URE0pp6UZbsLUNdsgFIsBTup36QKaygr2equjMB1YxvgD280m4QvbdqnutBWwUP2NuWGiTRHMKZEiHYWs7cPys6dInfddc/M8iq297Vlh62iWMTMrbELCPVIOpnAVvxGpcgEpaOthVtkWQiNNG8lWrjTEe16k9l4KFNuiLVgzCMAbq25hpUiNZV2+2hsMZWmbvysy3QKgJ3trYm15UWpYLSQSVNgSC7GEIICsmKMEkNUdWuTjfP7dw9j1X92/Eq6JZRqjQ327OXW+lqxfPny1YlrE5nl1SvjHPvVKA41c9Y3sHfPQCQURRuTy8tYaWtrKBxjgsItj62VjabSer5UWGa3KjwAVKDN4GGhCMsf4Xh758OPPzE8dvCh9z6eyZe+/s2vv6cGZwsh/qOrgZqzlsBiLzSXxjl8+DDXlvUN9COqQ/rnFhegwg8/chQZH73QN7/5zQcfeIBaIub/7d/+7eieEZYKqD4sBNrNGQL4R6lagYJjwAEtDU339qnTrNyytENB995zH2WxVWnq8tVTp9+C7OzevYfDCi+++CJzjsnxG+v5AgjDNQlMLNitzyE18scEdC6bO/PW29evXtMmrhzbuLIVDrLt33dodPTA2AEAe+XF77P8PX5jikt6kly3XQtwQVhbm+5F0NysGmiNBkrrgSsXr3Lz+8juga6u9l2je2Id7RcnZ/v2jBYDodV8MZbuHz1w5NzU2txaKd6SxIIUQ50M1L9OPKGr1duG8rYSgJcIYgZqdqO8jlgrlhuQfHDoavmAvvYGtuvdnPkQySkFAuhyJzfj7ZKJVaAGkSJrPLhUvsdRJAXS64oJZjoegJYfcq8hJmZj8hkZCGH5abzJZzpaJuKQK+mEiQzdF6n3VEBunBIiJ17iHFmIA+gPlMcKt9INOKIIEoVCS4lCNIGv2vHH6m7jXc1g9JbRLvJuRExR9SYR0HOKZ8731L9s/2VLhpgVD/urSjhXB7kOuau7X/7O13qw97exVNVKkMmwj/u8XXjdt6MsNa4alMh+WiI6v8uKT3hcboS7V5eZ73fxXRz3dBEMHHlvSei+unA++c5B4rKlFn74zphKzSeeLr5mGfVamFyvcL6ij3Dhlo/mkuh36rhlqgoiiYobe2FjJYgI+UR1CvWXUTWtBOg0iBzfVIpJ0VY6zcK70I3WkY8ff4XXYig4NSwFgtlkFsNsMrjOTb8ctsJAGvcItsVLwZZsbrpS3UKqTqY6oFCZ5Qx41dfdk0zosBhXBhC3raU11J7EVmi2wrYPNEAheFW+xFWOrA0E0b20JjAFGsRAHCTSxgz8jdpscJzAsFa6LACSyVDsTHA5IlstkzFJVIJeN5sjXyNiHTh2/M3Tb0G8hvt6FxeWtkrr8ebNkZHR/o7WGHcylvIItuNXry/Ol7cqWJvGfmeguze8a5hrDfvaU2k2z85PzbKMieHk5nAsGIbuB9fWK8vZQq5QqlWKbXAv9g9RQ1sJwAgE52m5IPLOex9gyXho79gz3372r7705Ugyffc9j6ytZA8fTiO5f+ELX2AJF7rPrAJ7DAwiJHqeyPIwraHduwD4scceYx/O3Fwln3+HjUbwBuYBtD7JOdi1b99eWAX296kpWhqOKrBVicZm8gSDYTvQ1ctX2lrbCMF6BKcH0DV9+5nv0PkPv+cRMv+Lz33u4uVL2KPG5h0clnK7OzuZgqBQYpcWp+H+5oUvsWi8urwCt4ZR4YCQhdzOeGspnztz6iR7gaYy63RSWyTYSu+xGEOHwQNQ/8W4YTjU2ZHs725nYlerrsdb2+gmbuSphYN9I7tSo/sWytXnv/e916/O9Y7dNccGq3ALXJclBxtrQjV5HBaaHzSkZx1B0hfKQmwFI+tj2fW7+8RTke2Ty0o5Wj4iyqQ1CUI4LYFXU1xGA0oRLwQjuiLMvDGXIyuEIMXRWBCLl6pVI0v54BcrYmQJO6XZkSwGXCSUGhUgPGhtEDGF1ZKDsoZPGLlnSOooDC9Igo7QgdtaFTBnI066I8FtjkKVXOqq7UBXfb7TRipeVWSAqEK8qoIMbhvFCqk3msuwDuN2bi7c/9r4eos/xPgEThEX8QDPqQLmbonN6+1lu0Bq7jwGjfqvMS2vLmFj4C1+V6KoVj2tSwUwxKQdXfi7FnQ7VKJzdecojovjVldczg4A53f5u95yT9cINAQQOSGfmM6RUB0OVNrKxBzBtCnar6UduypI2zFFVOSk2LFaCW+cnGAiA+FCRDEA5SF0UPZQfE+QlwaQmMYANrGwwE5QYRtyBz8JFt6P1gYWz5ED+AIIQnyhDbmRr6EUbWioZF+AtBksBVPZDhTngCx0PRKdyazScIlkGqkcHQ7rpRz9SXPnSFNlo1osb5bjUUxqRpGvm7aqrVxziMnmKGunmPNcLxbyqPRZWSVrBF6oKnwBlbdV2kS1JskBWI5jpHB7JNjEpeOotlZXs7RYpVxD1QWRpl7Iv4mYKBfNiDE4VBnQuFpRlnxG+rqRr8vZhWs3r0/duLKeXW+LRUdGurYqm2uF9cew19/bNdDfCxNC/j33zhns30EWm0Ns9t8scL4sV5peWJ5d5DBCIM4muGKgv7t518AQ1vATbdzuhUWktnAiPjc1WahsPv/ia1/55rdXihv9u0Z+81/9m2yxwP4cbh4+deoceWIg4ebEBOI20jSVouWhtsw2uEqMzkB9j07/+WefQaJnrYBdTC0hXXMG3acR4BP4SUIdaavwRg0zEpL3H3scY9Mje8cg7hxqg/Tv2b2H8K9/45scHmYZ40tf+tvr126yNoPJipMn38CS65FDh4Eh2SYTDjIed/ot1o3xUwqHvJg9MDMwPstsbfP0G2/mV1e5UB4r3Z0RGDKozHGuWlskzAVjSYzqxcIRpqEbWNReH18v9Hd3RpprlVKV83RBLj5j/3CgKZJI7L/v7pul7198+tWXL81vRbuCrZ2JRDLC+YP1rJFh8Kw+5BkVNIcGAcioHwjpRgZP0TWho/ckRPHM4XF+/6mEIjNGF43ci1xKBUIl2GIG1ZRKRuUojoQJIT+5qUSRVX2kNH1mfAIV9ECjlZRS3Sgz9pQRLnAZfiLDtqZhzAMSBA0WYSFnHIMQLObgTo19gSauow6oQkRt7wNf0R+ZQIbHyJdV1pJLGqYIMuFP41PVM6d6eYsHilMPJJ1cPUB/XXIXgp8AF0HhBqof2Vq6/qZWD/gzANEUMAYnimYMQCBTAzFDslSL4DTpEuOUc8X40OBxzv/kQ0C4pfAet7wSSkz3zaiVdZs6U1xScyZ8WswTJ0eO5E1KeLg6SCDtCeF0G2pb99S+ArYt8hSZkjLdi0+5SmyQ+yUq0Jx1mHx4nHPhAqwexxBZiKUIEsW16E8OOJFjMMuQmwSc4LXynQwC7KSSTpHWdcl5Im0ousI3uTsNpiE1OWnNSRbR3gUdBcamsvUN391PzaGSwQ2VSg7NAgs4qJ87yKhvGAJVAMUy0GlRes7DX0HKPbuYEg1AwjmqahYtmjq6ulnZwxb05NTs7Lws2HSn26BQtWw1v1aIN210JVkLSBTzuWou21QqJzn7qzPDm3mOFWAvCNPUHDvVKVwGBZolhGs0P6qyANHxM4RI7IaiZZfEiWaqulHaKBa5KoVd/5WNcksshNlrLpuMxROItOPXrrN79Mjhg+xuLOZyyTBGKOPc3HLz0tuLM+MYbYZAkj2Eb7B/6IMfebhnsH9qZvKZZ547+frVaomvsT27RyC1KIHYFzQ5U8iuB7gSgC1Ggz2tQ3099x3dz7I2PYySBJF5eWUVhhQIRedXVhfWSnPLgSzrBLHA1Qs31zYCRLx6aQJdUootr9Ut9tuw+/NXf/VXxycmUMgk2lq5Ph59C7ag2e3z8MMP/8pnfom7E5579jswRfCOnT/MA9gRdPr0ae72griz8xV+wIWOUHD6d3Z6Lje/mO7uY5duJNo6PDLC9ps3Tp769re/vXffvguXrqDzwc42y843b16/fnN8aKB/7+6R7vYO+CwHGt48dZLVBTjK7uFdMAC2hLank5S7gQlS5lgry5M3bxQyS6m2pFCENQTMJXGSIJ6QfLO5wc0KOpOxsgotS7QEdGtDNbC0ON2ZCnDnWvRS4MiJA917drPkG051bxWq3YO79x06enUuny1yyUO0WN0srCyHw5KohZTmNHgdntP5wjg5E6fAe/0gL6YVATk0RkgI4QNXLb3nd+HCFo0oOVFtJSQHEiouowHkt9kyX0SgEOsl9qAN1Gjks4ntvMjHZ1Ecy0Wjw05IMoIFIVlRlOgEENuIZAcDIrLlybctxAbBybCVcGayvs7vM7VlV4Gmthg1IXuGMQOR4ozkkFpFU6J+puTRgLBKCFgRVbWA6m5ciiBqZCEoo8Q1zW/5KJqqoSI0yqVlssFthcAIKV6LxHrlQS7OkbMPjECBAWh/CTa5dH0rT00CqICRP4kzYoasW0j7zTSfbfBqWQLdj8yhwGQvYZevApfS9LTm5SkPkNJKEnfVbeTAVpQN4ivM+05FIKDqIdFTx20ELM0PvWShchPbNYZIykYVByYSO2jgyvhUM9VPxAYIKYtwkz6UozUUADBugROnmYRQklTKhkRkQmGiz7SnPQmhVnyl0vbQOr/NJpkq0i4UozQuny3U3PiUNz0HIuBVBcUZ+A9KWz+RO+A6x1dydC0qw3CGmpRHzjR+Eyp9PrI8Ch3nOgCpGYPs0OQuRmooKAUtTUtFEGCqal7ZIldpJvYLhJrt/2UcQmuDdiC3xkVdQMcJrFwWrsOF7hx3Bsw42yS7VrcCsfFLNy5cuowpnXAoyt5I6oc9/aXZBdT/nb0dbPLMzCyg5UmRMwAGyz3p5HRmtbSaSca5L6QzX65hBgcFN7eTswciV8kzWYbMAQLny0gCNaT6kRCHwtSnBQ4CiA+GYQXhlsRGMJrJFqMdbVT2wtkL0FM2/Vw8dw5lC4aVw+m2pSz3+05HNqqjY2OdbfHWcBCLEceO39MSSxQ3Nv/wj/7k+vV5jL51twYevG/04P79sA3OhbEKuparQNcGh9ra2NqElj/Z1tmeTiVC3NDCFGSVxeZihYsVipXAer4yO48+S30eRx9eaeZAbapps7LFLfRNcQ4abAb/23/6Y2bP3CLwP53+DY4Ns1DBDWfI/uxSvZ65Mjs9w0TuF37hF/7Nv/7fWGP/+te/zp3E/f29KPrBcI5u0Tgc9UIwJ9rEzXG68OiRw+cvXRWtDiULa4up/pGtprnvf/+lv/3ilzhIDHP6+699lVLgH2SC1aajdxzuSKfhjteucj/B6xymg24N79mbSraLqaTa0PhzpSU7gMtc7LKawTAeJu32jO4bvzHB8TbQh9268WAz5iK0SE9PrWPCewO6H23B0gUXQnPMN5Bo3sQ2YL4cYFLz9vnLxebosc1Y/4HWyEZ6dp4zgkVmq91dHfNLa1wnnIxHKlWuixDJo4tpPfd0CE0RatCdzmgu+EgD8FV0zXuarGI0sR6ir4wpxwLqOTcUxDijXAal6IA5IwkCQ9UT2bChDnUkyD3Jxvx81eq1ANaI8vRA7HqWvCZ6uAUHhxaJ6mvuINIi8ssO0GY2oZW3ytxDxzuT5grbNTa59qcgJlarBcEizsBQNryohvTjKZagqdqibazJVUz0CjgYxgYbPoDi9D5F0TpEVHUc5VXpJCWcd8GhTXa2BMjNzl7lKc/V15HGeptQZqPTDMAcpN/9bLHRCIsIimNQlqdIKMVSFVXmVmfgeo3ivgl8wwD3yU/gXmEzeGjZRqck9iMlBJpPDiOoIUCqxQnR1pE6AGL16luRWnoNsmbyLWWBUwoBPdWKNK24gr6qLeUUYM6H1oekzgLVG+ohIZCeIuFyyBTekgZ+VBouB1Lh8TL1clZrO0wjmYFgT2NSiixHHAEJl0fDToXgugBpWYkjanaw1UwxGE/DoALNJm5quYllEhnKTq7izTQL61f0ltavrJEUzxgpYNCYgMg7jUxbBLhcZWOdvTI1znlyz2JtbR7C/c2XTq0WMKOQB7N6ewbZw85W0czS4lou3xZphitEA5tJVO2t8WhwEzP4TSUub9QdYGwDbW1NYVatVkBEbuLiKtYVoCwcHKNlkIkko4SaoJQwAOErOhOsTZQqXAKMdeMCevnMEmZ7KqiiqpuLy8stEThiFU3IZmWJ2QW0DyNlpWqtqyO5e2QwslHiCph0LMqBYRp7fHrm3NnLN28ur2PLPhq472jXg/fehyKIAwSZwlI81nZofycSDMLdamFteTWTxyJEkKMGW29fv1QtscWpVmKOtRlCC1WsbsEDorG2GsVD/DUlC2LgTlIYOiuUdtrUJzkFBswA0dI2CwtRTlOxhTQR4mr7oMzxv/DCC1Dqf/5r//wXf+EzXPDyzDPPoPZBoQ8pp/sef/yJV175Pgol6WBrtWtXrx7YO9bd2fMf/sPv//bv/t9bWpNgW7pvYHpm9sidd771zjtvv/1WW6p9oK8HFRNLGqwb07bouJji0cdgWbQF/VU8Fm9lEyoocP3GOGiA4M/lLNjuAUPiMHPumZlilrNGdcAVDhWWAlWObnOdUL66wT0JbZFAtNXMe8MAmDeFm/q6Eu0da2ySYvrDVl8uA+MXT3YWdEoczA/CZsKxcgcKu2ZYeCUmqiYU03CsP4WCGqUaTLc8rSWFnODbj/AUSSIHI+fe0+XpQur5Kw5+39FhGlD2dIF+CB7fryHkhpQNHnUudIWzYAwbRh2iGK1NFOWjFQLwQVyB849s0wiyc8/QAWt/tkongsA0S8t3CHriHzZqyZo8hEsCiXpbzjByihL8sAuBTxmqKDIdEh30h2QSOjXLkQNU7VyQc/SCPvfeCXJVd09CrW3dmz41tkyI7QfQVmzmagaglQBIDVMCqDPETopsK0MgAIfzu6ffau6VyuEhmh/HReAVz+2O+DgK8p94iEbjuHxoDzIDXEGM/SltDnHOo7GKDHm0BnFJ3GdrERiCRZMwoppQETU5DSfKKOeqhsfy8YBsBMYagdiUoiREA4lxGEkW4tuatt1rtaOCDh4YznYqwamUPCXx22v9KZGCUFBfEhBYSzmIF/wROkj9iKAAjtErOgDMtJYJEYSRbDTBpYGQ/UmF/gfSLwQkKyR/iQ3KAwrAGix7N5m5iAGQvVEtZvc1VmgLuomxkmzFBFxszlTDrB9Wgxx4imN6oatngAXG2eUM67ErC0st/T3MMILhSFuahYCtcn6NDY+JVHu2tlUqV9jEmerqySL/VDK0LRoV5jAptOqxGDBjXRpsYisLnArtBNNFOqKMsaHNaqI1zVHV6ZmF1dzK5nqZlqH6LI3mcmEOBMfaY6xe0vuYV2YTDv6e7jR8lzWLIir/1dWFuXl29U9wldf0VrEc6OsJPPTAXfvH9rFBnsO3MoUTiSysL0xOTwHS/FJgrYL9osDwSJSpPCuoOSYsFV11BoAcsob0szZcrGzFEimakhEHVmpE0qp0OlNmbl7TIEF1RjOrZ3F0riYo4TTxcFBOlgTYuspibzKe/OQnPvGzP/uzGChFTTQ21kINkP3LldL999/Pjp2nnnqKpr7jyKEXXnrxxz/y8dSlm//uf/vX//b/+D+2SgWWUO65+64vfv6vWQpmEZ5DYR3tKQpi2w+8pJBbR9bEuBLtScOycwlGxVcKYtOUTm7DgLmxZwMSvwXXxYYfizLwpBLsCrNO0A+QiHFi6N2F7h/2zAL+RmllpbC0CAqtxsKB2RvSgPX3tvYO93T3Yw9jJJ1MwfQ4ZsFkqK+L/UsS36OcEmwKlGubIJUJLUa9TPpgKEgSYyC9OwOglUVZfsQnnWDkTGSSlPidEtj5b3nSNXSHddEP9FiP6eGiAaeGqoW65NAB9qJLxYOzRSz+uviMLh3R0fY8GoERRi740acoAtlYWh7aF0or0OxWjMWEUzKCwXYDUhmqQ+QIgS2I8jpiZc3DoHAQuqd7FdW3YLWJNaNgq8dzCdwr7USwI/1+BEJCrLzh6tQfQoOqwVRA8G8pf8TlKcSVoz8GNFCS2D0p0pWojzZ6/U9+BNdkvOK53RHunMvHT+48xCdnWlGl150fE8KO3wXXPdsVhH+RM/SIJ5ATzc1g8CjEGg+PKwgPZdX7zOPXPgMgDjjnFwQpNb9losy8TNRAIKl9ddmqbHO8wgBcYP0JmdeFXiYOCEHEOegrTXUgmDYpZb15UyfI6Ru0PMwx0QihJgT1JJxIyoPuAy3kngxUEvYjQCEJS5oVMklgkgKGINFq2xqBWFnT8i8q+1Ihnmzpbk8ztcjIgn2Gtc18eYPN9YNDw2iQrl1mqfVauZDHZmcL24C4hLAlhqnnLJeGYZmS24O5GH0Z5UE5Eo2l2tvXM1mEiWBzCAJFs8M/JEi2xJG3MRTNlv9atYR2C4gNXp1QpxmhhoX1nFpOxl+ZbovOQrhZ+EVkBr/IAkYCW0K8Zb/QXGZhI7+SCDe1BreAbWGO6w4DXd3NsIc7jhymaTIry5DzRa41mZwSnAgQ1cBqDvYZ2NUfGN2/O9nRvry2cvXqRA2jRwhqDE/YKvI9DAND1mF2ChWZEzDhqGgZDHmBbZIoTEVthSQ2eOkoGlzCGEIil/3CTbObkVIk3tYK2OhhYDl//fnPY6zoJ3/yU7/8y79M4HPPPYclNVYCGHTs9+eer5/8yZ98/vnnsc0AfY8n0g88+PD3X3ntpWeffuTJJ+nFO4/ecen8naj+EfnZyAlLY26RXVllMZypQ1dHt0kyoqEiM3S4yTqs48piBzQeWMtcgxrAoDeXka0VVgp2CAJybWc/sMUBC6GjgiiCOGdYYXRTEzsix0SqJRpIt7M7INDWkUYcGBnZw7pFuqszW9uYujmZKQVSidaB7kCeKVSZ0+DN7B1CsYtwLCwz53vc67s+HfnwY/qed42sEeJlfrvnXVPcHu2WEF4ZNkpLznQmhMGoKDJKELIP4aiBr4hh2EhntxT0EWzRQDK5jSHFG9NCxjFDHckKQVpiHrnYKCYCCKQN4yA4U3NRM6PGDlob76C4sJ+WAJ2IJV4pOAQNgWCbeAsByldkikGui5AFM6WKtwp4Qiyiy3nHs94fOwJ5CaHERJ5hCcBOeyP7Kx8wmlLqdFWEzqXjExjl6CkeAv1PePjqnn5kPERzTvlackdhCXQh/pPI+P22kb+ep8uHV9+5IuzpgcEnXi2CKutiUogfDrO0/L2ZhIvDk0D3xANUPngehJBOc8RB9Keb0EzhR6OhrkSw1pijX0XnRdnUi16zQJ39nMEp/M6ZAOB6BEJOFvQaSdTxcCyYPwWCBiCQG0vMtZkEQLK1CqAFGdYdqItmnCJLWhnj7C6SPVKDOIiuNgcnFBO6Je0Fi1hgCwyAJWTtmUBjgNmGUq41sDnS19PTmS7ntXpJngiV3AgLwYW+zC9lJqamUP4gP/YO9GK1H+MJBUbASqm8lsEqXP/gIOSlXFlBMsIOZSzaurG5ygChPJqRnTywolQQ7QTXJDaVWBhrCmJbAsM1MDXM6zMRwEIZVp4nb46vruY4TUDFkF7LTWiSuNeEiGH0GjeWbrDxkUUFJhnXr9+Ad3VRVCRGKescRVvJQY4Hh9LsDeXoE0Lt+Ph1VoxprmqxkltjiZsjvhi7CHZFatFEa1c3F+dGJiYwe7mwvi6rGZj1LesWA6ZVlQ2WRbV9IARRY58X1F9riBJnDQ2kZ6MfrVsJ5Z85RgQ78Bmm1Jp24/AEDU8bdnf1snOLecB/+S9/9IEPfAC7/9h8/u53v+uqMzs388d/+idcBPbE+z/w9NNPc8b5r7/wBYr7iY9+9JVXXtu7Z3f/3r1c0d7T3RmNhG7euEbXMKtgNsYsTLf2RrTXCJSjWU2IA0IRc6wqcT2LCDkoWsNiFRMJoSXciIUQIOYH9pIG1MGBt8CMYEEkljel928LJeIxDn1wuKOtFR4nyxk3J8bRfnUODab7B1tbYlxeP7mwul5tagnFuGK5KOloE30d1jzEjozC2chS/q6Vbn9KfjcA+ORi/ZDIiuNGFMTSy3Pbc3vmLmQnDLfGJ5t6BM9DKlEmJziK93vNZeHoYFH6mybWRC7SgBA4MiEVfcdf5gqMVsQ1KYKgpzXuFlYltUBnEVQNnOi23g2NaD2cqIlxHOXD8OeVThGE+m9RVJCGt+Y/wKlxrs9SIEHg+AaB8IDysNNBqKP4O511U6C+DbQK4yITjulTDICJmZAhSeghS0hpnrNSNB54B/X5isdlXo+sNxfoIvN0ifE4CsurH+g+ufjuSXKyIgL588R/u6vH18zAxXdx6MGGEE/8F9NydVGfGuJbqnom/JWjLBwQOg8h/gxAOVg1mRmZn4FXJVMCaQmFCFLrE6/FGARerVXiTgZAiHMi+LQ7SGF9SXNqWIIcTMHJR7iDNU2IKsAJS5SNCQYIAKREuAOraAJvE5wIvZRdJmgYq9DiMAoiK8Xwn0kH2RCJex9TLaGxwb54mCthF9iHLhg2N/t6utpSnRk2xGSWkbuhqpvIB7pvfTOODbYtlD/rEPi2dDKWShZztXUUEVGsw7cj6GCkk6agHYAfopLLFhCpg0jz0RjGapgah5rXuYkSgYfVae4RQ9xfXytyN2+0Bf4Sr0SaK0wF1Fha9QFqVN6sGSBNr5eq2VwRLXMqgc1RyBR7K5ezULTyZn9vN4Zx4vHU8mr2nbffJHt0+sU8e3UCh48MchMvVBKFCVevUAUknvzSytLKCoySsw1rqwUdheBEQTXAz3ZF0tAVpiA0vZg7jU7vOcFEoxtWDK+VA+0Y87aop2Nz4AJLfG6KwPKo2+jJjlVKR3L/3Oc+Nz392IMPPsgcixO86Lg+8fFPfvWrX/3zP//zD//Yj2Pz4ca1GzDKV155ZWh4+KGH7isVcxMX3rly+RqLB5nF+cnxKfLBtAVcMdnGAnsCLJXoBuWGzptDoUbX0v4Mdml4uDykKYAiKNIcY+8A2qFcfgOjH2JfXJLGXQ4m+0NoqE88Slyu69zSvIGTwMUK/JsPzJniCW6fVzVLterg3r29I6ORdKQjlbw6MVOD/8ebsOTUFo5hxSkSQHrQyLfm0dC4xeNedzwl6RLNSZx6ilQKRgjL7U+JR3zXiMFjT5s/G9WTwoLRs+PZGPP2+BZCmRK+RFKdYsn0fnQvcAEBvwh79Njsw3yafQ+amUtcEGZonVd15M2qYKPUyAf9InWKpuoiITQsMSW2SadCZJDH/bPZgSoNxdVn4z80iVEWVhcIlYAvYsDPd0QAYn5GFET8EQ816adNPMrvxRV8HoSOmHnhLlaIMWkzACYAYgBWDY0/9MbQIVckFXCkDN2r1GANRFmQGs7xJGOBWXcuhCetg8Pj/I0MgPAd1FawGz1UVsqIJjElj56E+L+GSm4TdFe6hGdxThFQI6riInSWaqHwbfbAq4PK9xikegCV+0T78pWMGH5sR8GPnAQ9NaepbvMmO28oQMs8iN6GviCvYnqZG8vBTwgIzpPceMpjx7xUYVVMyAugmDwFt/XVpvfCChxdojYkCRXRegx/2K/tPIYg4KYxD7bDqqqqL//hDbwYRzHgDNPpTXq0OVAZ7ugY6k43VUrLmUWm8TAcyFNvb184gvoiD+VFQi8Uy/lSidutuBgylYznK7lSLs9J4JZkOsdMoFDOrOW4az3aGi9gSKAi7TyLizQXipVKZYObFLHzA4HgicafcGpDeyFfUk2oJIZFOfEWT7RCOqtYFQ03R2KxjQqWnrUesF4odHaky9XN2fmr7A0d3jXY1hJZW126cvN6LLDREW/ZtbdvoK8f/nfu4pWb4zdY1kSFM9DXevz4HkwvbLIjAyk4EubOdC6JYVQ2hSOY+eQWQ+4IK9RWuASY1oMCStbDznWz1FaB5mh+nRt01evQIdpMw4yIsKYqCnT1jjrP/YUHh+B2LJ3QYHA7tOH0JVufNnJreYg0UwH2s0J/uVLx1Km3OEH2wAMPwDCYB/zTX/rlr3zl71548aU777qT+waGR4avXLl85fKlu04c37N377WLF1/63vMzUxPzswtFtuhsbiL49/X0U3ghn2fxjmZczebQ7JMbfoYs4j+qM4g48MCk0eknYlGGDsS/zCoH+A+SaAFGM0VXAXoExEOHw3SNnHQ7MxtX9FWPdGegqyfZ3ZWOt0RYexejTbSs5bMsTjG1CmM1BLzEch8LxrCijapuf6NpyECoLtxVW2177K3hYdIqI4AoehLb/AYA2SiPhqcHlHFdgr1hpLIkFL2b0/ilqhpfFt9yU1cSuR7Ci6AkVHmKCkuAkRNVxQsZh7myy4flf8Y4CkOWUyCcAM8GaBFvCLF01KILmkoa9bDxq81BbOxAbRuSKghABCifcPIwq3LpRThIqaqRCYE8oVV8dsojsI4uFgeiBzlXC7YSyaJRN6Z7VII8HE4KdmWup7gNuXodIb8LF92EliHsAjHU38NxmoDaCBo5g9OyUTiFSgp28OGxKIosWM25WvnhzsNXHNFcTPfqQny/eyW+tuS67rD8GzM0YLyHy7nx6X8VE3SNqyC1mitaOMD/27J1X/0nkPg8ifyFQNYORDAmrYZRnggaXjidS4CcZeL61WsQQsQ7RV7kHANwfkFH7zDqhPKCzZBP3W8U3FO1KZYaXw4MkXimf6Rz2MLmKJQ67P5SDuKSvAu/4eH6g4ChzVE44TdZ2MOuholHm3d1pvrTCZQqmHtj3RJagOVIJIJCJUuhnCmFbC0sLRcKud3Dg8FIFMud2F/LZmbbkntjySQUBeuV3LDYHE9zFGa9jOUGGEBUgkJTGQAgtZjdjBQKrKly2gDw4FgbNeTrJvTUKHsQMzk4k2zvAMBiaZ39ii2yJdQMGcIwKE2R7mjPYmQyt8beS27TZaNLsby+sprn3EBrS1t3T1e6vWN1rYBOnJtxMfg8PBDZs2eQzOcwGbS8umtwqLZZufjOuaWFHK1crgTKG6XmCBv9m+NtW01FjoZZU9LRXIirNXZalZ92gNKGQAJgogbWR9brYrowaUgodyAgGRIHZRXUH8pLH4A8tAAEEa06WhcUa+ykQm9DCDY+0eH8xV/8RS9rFXfcwWFlri9Gt76yVmApDmPXGENF00VrXzx/tgWRvKkpmWy7duUqzcYI4zxXqi1NtszVQAbKRdfEpk+iuf3ZjE5YEAkRyTUR2aiyBs4MANl8bTkDYBi9oIlCURTI2sZG8yIs0SXQKO3O0uQRKlWFaUKm4KNRuDZzLa65hoV3pHfv5RKB/YFkcuHG5PXLl0r59e7+dpb36TXsV7UGUf1BPUF1cBO6JQYjoQaMowHxg7fm3/EUftLY1A9Q9IQ78RQkin/rk1yMDNlmeSqAzALtxbotaeW/9cmMQeOPRPShdijRr5LtEGI1oBwRdX4L134JOhvBXZ8Fv3ZhQNA1w6d7aRlamwHH8JS+hHjQXLeg5RgAQOHonTDfGBViISHt5LZt22yEkyNhfVwLuSQ9Qhuk4CVjhiMjiMTIb1u1KuXSTTSkUX+GLhAIOloJUNV8kjcgUwCnRKqi0WZrWM+P5H4Li3S9wBoAhUI50IUKENqbPIT8dWfw2mud0FM9hARXSb7i8eP4HgEomKiPGhqHx+GceyUHF+hHcAUSiMfl4+eGh0D3yUVzIe7p4rtw93Qx7alyieb8eCQnm3OBhNsnBeHxgdyGCvWJEEtf0VeweYZFQNIy2lGMEI2ehmfBlqU65jovae283CxPkFOvJnEx79YLvUUOcmCOmyTqpR6o8C3lT8dryyld6HEIbdwAU6gC+GtsgHxpY0IRW0kGxtjExwl4KndDWKoqg3KuV2kLBijUIdLSvKs7nY6FkcFLpfX5uQW4BZenQJnZsrMwvzg9Pbu0vAKGAAz22riEBNM5C8srYCSmeTCmD5U5+faZUJR7E9s5oMR5VzQbNfaVg6rhMKohh0bFfGEhMNvR0Y8pMfZloqNGCwQb4Nph7AvFaTZdWpKDikH+UAFJRc7CMafPahuxSDgvcDc7O9tTHd0sbmLRZnJ6drCTPTGdECauASuur7P8MDSyq1ZZTyejkxxzLVfYI9+RjHHP19w0B3VLWLxfy3LFY2vP4CBqDex6shF1YXl5IZPjlcVejDE0scFLA0CNSouqx01XphmeZgJGxcJNqFMYq9JgsSZvSqGYXVZBB8AL6D3YH3dSIhC0cTVjMFHIF9hfRHXIkLVctESY1/j617+xa88uLl4k09bWRBZ7Ps1R5uBje8fOnTu7upJFh/aHf/hHzz33XGuMgwdB2APlQ/ppHEY9uVEaZ65ZE2b8Qi8oF24FA9goNzOlYnOtdg80Bdc3amurq4vzWMZmxsDiirE6rr/BCau1vw7lRmWr2t3VDrlBz8NOUDIE8yilsx/7crHWeAybFStrWV1K3NGxa9++kevjkfmV5bVlNgL0dSbpdM6bgQ8aYcBngvOOJ0hMlUSkvCdjSggukq/xLuxvYA+MC4U3hDi/qLiNx1uerizlufMrRZCx6rqTHNmrC+ejw1MPEpBNxoAoXHQeSkyLNW1i6ZZ1XjgmYYxbSVhQdBbFwE4pd4y4abSSGTSBVgUZYlIMojVVm4s0QwUYv2yOYIAYbSR/pRDOEFGtpuOlzFplJR2tE5sS2FgLexDRQEknzBSPZeMu+Ek0OIsZJKMvzRn1Fr1y2epp4WpdL4q9iwoBOCeBIcvqMDEoiyFaSWygNIdXfv0xB8S+h5zcJzwuFR6+ulc/kE+k8h2vviPOTkc1DRNuAXZnpH/oTRWlPwwSD1qD2aVT/n4OPiTO41iUA5UQulk0V9HVLDjlrK5sgoFRd8MQRVc7WKuLPptzkXk68g2DUAdbDj4DoFnZqOd4g7UkrQfAGkLIZwITrBADgoQDiyYdQgVCAMSqhIjvqqPj6Hy1cQQEomDArBkAuEc20DtVAwcmsGcBUZUN66kIRwyK65yCWlllWw80iMVahh4LkuwIgqCTOXtX2AIUaoYtVAvZPIdFUQe0xtt45QIWjBsk051sGi9hjB8cNQsEGh2sVDITEX4apqMVKmJov6CrAtj5BG8IbrHAQPT18gbbQdH8SBARFeNkTZXrf4vhEtIuvCeZwCJ9OBiDmiav37ixsrjUPzycQhGkXZyb8TBr1nG8MCB48OJCFVo90Jfk4lwON89MTUHZO7oitNnI3hSCDrSVrf2l2hZKnhKLocGolt6kuKALWSGnbSVjQrLVVuAAUpipbTWNgyg5Ydu1Pp2Dyk7G5KR/oQcBnipI2jWcJzPMa0BGo5uybUeTEgeK2dvb664l4OAuF00y60LX39w8/vjj78WW9ejoXqr2xhtvYsCZ6NxYAA+gKZglMLdAR1dcLzGxQMvMqrhdwgA0UF7mBDqOiT6KFuCoNrv+m0Ic8+D2BBQVUEIIE9vJhFf83AgDS+TZasoh9mZWwC4WjJk10BawF87K9Q8PhSNb+0aHB7ktPpUA+zZWcwuraxBo9pVyipAqo3HSAYkw01NYNfmpG7UFof5kmBgeI4RKeIYKgseihcSndUXo8St8+xlkb/3OEIuvhqVjJNNoNPhPSTU7Q9xX8Zj6qgDjGdRnAwUjyT1tlHjMyvlpCu7lUEVsyBvcHAdpYs+rbmcCBSTS6xArHQoZl/4EylkXc9XxksmsCRjZiBFo6CiPKZUjqkja9JFRVBEOjU5FJjul1YQFU+goDvV/czPEyr/oDXiqk0La2kfbCTpzYhpKzAdlopFm/QqxwNEi2w4xh4K23z0f97eKZpCRcQSSgNNWAWQe/nH4120TA9PlpOoCieUzB7hW8D/MAFS7umtM7sKVtxzYYMAIVoeoBrOEMoOKYMGqH86eagsiW4B5HIYQqAwEnjx6pUtJ7UkELr6rhf+sA2gjWN0hgByxpdb0v/W1lwMBEH56EHnJlcKTROTmMofS1f2gnoVpgizAnIPSa8gK2SAfFq5BAaawSYPCUTtyXFAYJfyBXQsXVAvIt6GTGDD9AwpAbMnZsExP/GQueYIqqADApNfUccxxGefst2xvaWlvDUXYA1LMYzlfC1qQMltpXF1Zg163xjhdi+CfRMUMNYGAc1ckKIYqojWeZDv50tJyV2dPurMnzyZ6rLmFuDoXPT7bezjlxZlWKU3JlSRVtrPkspSu48GVdU41RJu0y2cjhBmJMvZTIqEgF0uyiYaWIZroHRsLtzhhsN6FSbKJ2GJ2DaWTqG0I7U2CAwkswXITB+MGS5dLC3kasJ2bLRNNe3YP9XV153NrS3PjnEcDsxkgS5na3vbmYqU2O78AVS5XayvZGhLaBvaQ2GQlc2DKyoQ16L8IJQXQeBzvBi1pOacnsG7ig/CUrzAOVGc4xD1aCaJJ49PJIJJDFnRc2q8TbbW6yFK0Ecggu2oJaebMW1MTcyzQAlN33/v+93/8xz7AVe9cDIluhx2pfDp/8fIjDz5C74SlwFfjcHKMn7oLh0jvYZSmfYAHNtBwrQjtEY7abbobPVmcpxIOGwGAtKALeCWkIcumQI+tKmMDnFrByeFj4ViEhZqTZ9/m/FxmeeGDT7z3+N0nKPDM2XcuXr3eHGMVmuPcFCWlHuVqVwKNBsI6WkJHSoktXHbDw/w0rUIcCxBuqCn1H21J49NYhNqYht5+SlMnHbEHtAPdnmIjDa/OrxIN5x3mUzQQqudwhmaEq01MeeuS8EajKBZAUQ7aWDWqFG6MfVWTWbKlpQ7EQCfAk5m97RsRYK62xJdjtqslJfWJExHYSqwxS6CInTZ2WBpNIASVitbRArFtMYDNYrAoloWaiUbmFkJGM00GbIorYIWeBrHaSQH2bh6Ndt+5EO+7H4r2j0krGYg1Cnf4QkY4PAAKL5S8ySvFWmMxllS2OeCzuNupeOWLy96Pw6tqVWcALkK9wuIKfhIllPzrucbwRj+f3avBKRj8V/MoxItjvYHfQgyXJFnrq3PEd4661r0e/EQjotRy5oDTpG+aQwwAhamXhZByu9EMEb0v9CZ5uhdPjeP6y9pWuYviMGZIL9jU3nLW4LaZEr9anbLEI4TjYT5qFglO0XnqHpMmJP+YY+gquRygaHoKi4dduCMFgrMZssPpsGogFW1KRoLYhMaSM3QZ+2JNwQjJdMsJVneSyd5ECmttEnHMZhkmGAqFdcw9sDsf5AQjuRC4u3eQA17LMwvESsbbINu57FqcU1q1YkR6KqYTssmCygj5n9ZoRae8ucVaJTSTWqFGY+xEoiGWu2o12ZKEyVEXGh1IEf8TLS0opUkLSG2ldSYB8BQIIGudsZYObiRYmZ9fW8sHI5ivaWH+wc3shWIFszkYeOBWW3RT+WxuZnK9p0cW6+hNBh8EnqbB7DMNyoQGc16SE2VMQ1o+TYU5UG0wACKdAt0Vf5WkxaCD9Qo417P6aiISPaHxDgOgE00hYByDFTZWwjWdBzZmPFSQgc4KB6obiDgknmMTmWIGglOqVE+fuYIO7Xd++7f/8c8c/Mu//Munn/42UyX2EaEgUvJQmCUZriNGwcWsIhbDugaEg3FFi9JgvIkmCE2CbOHX9Wy59TzTDm5EBnAFiHCArcTyfuAMGVCj2bU8+3fYoNsSb0l1tndhXBRDGe2tq6uJwGZpdnHu+uT4++NPUGvmirLeUaEloyAlncFBVzYXwffoTWOB5KrBQhDkklGAnyd+3oTs9iSORpKQm5i3/gOk2/8R5M+wGUOG8N7TumNHiL5KfBIcIpH2pHeIyYhy8e25/VVxbau+xrxkNQ1NnOpif/kK+VAGSHTmCHYenvjpXyEATzFnsJxZqOEHT3Mc6REXIUzrOh59YFIAuVc5RiRlpJEAflL2EIsOZpUOvBIPYEyLO2pJWe1Jt1vVDBBhqEeB+OIUzoJKPE6NIwqy06HeZPKrSlg4kEM0NI0FUUgDoBrFQnkriWCL5wC1cNWZV2LyxYVYFLULHgg9Txfff/rhfhPwyZWiohqcy8TP1r363y0VD5dWpbhM8LgKE9MF8jSv8N/PzX3lk33dBnI7RGnUag4PNAnDa+iARR5aG0tnFCQtjOBWQ0m22elEhNUHejrn0Mql0VKcRoKajh4V8khI9/CMwaEAYAdfNA0Qj6a5aWvJaOw7Yt2PEa9yyVsAeFuA1I8CSWIZtcB6Dd8tGrQMLoJQg2kH7L+Hgxuc7mpv54qTVKm8sTg9m13hWvPWgcGhYCQ2PbeUzefRvIv6rBXQlLe0pWE9K5lVduOwq727d2B8ahaewT4gjjJBodBUtkYjtSIm30RHmXBTdSBn1YHJASI5X7kBAEpZLGGds8QUGR0Pl/MiioAPiHjgNw5gecXC2rmzp5cy8ywAMKKw18MOSGgNdeeigrXFJRYYYq1Ss1BSvpBnqoHtClYWOtq7Mfpw5u35WDSwa0/ygQcenBifCqzk0p1NC8tr9ClXFq/m2a0UoU9pWjemkWbVAWpMNSlQAAmDQHMvBLImzuKJHIAI8C6igmceBcNPmzOhM96sEQ7DkX6/lcVttjRR0ygzKjUkc4UQs6jZee7fmkEdxEUCs4uLa/ny8ED3tatTb55655d/+TNf/vuv54sbvR2JE3ffwy5S2B1brFB0MSeIxqLMgQCMReNyCdoANaJ7tREgyvkJUKApyGoBDc76eSGbA4dl66+ZVSXRBPrC5E4nuFBRYTjr62zDJVvyAbdYSmLLbTGz2NkOmmBZKMFlyIBNiwwODt+YnGOLoyR5ax/6WUXqBKJ4nyTUuqMTaUjeNI62A+XTJ4eS29HrMQCCBLc7MQ/NMG537xqdiKDRdnwGtmiuAWPZWyqRLwtU7sJXnHDCPbxhC7TO8RF6LVpNjW3EWUQqTTlCWhPJ0MxJ9ucoNsgjHQobKiQigFCiqUIPNZiou7VPkM4jRxfCDB0uwc+RR3ptE8rPlmPakg1IQlZq4aqlGkhiEfVSEwt9VUGRIaudNZWuM5dHzGKnE2MiRInlFEsTAXMOUMCXMwqlGOYUt57KpTUOtv2VQBfuornXxhDLQPFdhHq2+uvAINx9dTEbny6fxq+EuFfzNMaVv16u1ZGXemT3yQK0k7rxVclIKBhESGkRXhtLhLHpVd3nOXUEcYwB6JM5PLcwAEKsoz2AjcQLERjPAtQ6QlmzvKwdCEwZlatDLyCShKmNfAxSzQDYaWDb7qSvsFkaUY0fGAAmXGmkwmPYzKCKwN7R1Ac2EfVbIk2YwmdjI9UAU+FE2fz6/OJijL2Gfdiu751bWtb6aaXSNzDEfk2EU9V6K1ha536Wcit2AOz2XbbqQ246e3pRCnNkKY52IxYuNQfLzd6yFW3BaTTVY2MT65isADMcotwppkViBMkmyCKMLMb9vajn2WRHdQMYKWNBevXKlUtckYgWBUM2VBCJniXTFYwTTY+XsqsBLh7geHCwiQ1F7Eugmxh0qc4kywZY47p5s1TcCtx/oP2DH3g/myBZwMzm2blaK2LwgQNTrfFAcxkRC2rISNN2Rje9FeVnFKgPjPprYVf7uDWkNqUtoqNoZSGHIhHHXh0e4VUgghVfyKlSK6O4Zx8qCMZhCk4Lh9jbjeYmxg2Xo4uZFe6v3LVnFOpM86RYt25r/9rXnmpv7zxx4l7sYI+NjS4uZNqwS8E6eXGdJ2sA0BY0SzBd5mG2VCGepM0K2ieiw2CUvl4uMHuQwQ9tCQKSJpYVaVKxMqNuZAVGCFwDmL1YLO9wjSRzFozDcMFbe19PWzxdq6xl1zL7R0f2HTikM9odqQP3P/DW2Qtr7A5mzZzLA0DnIHdL0y50p6RaFGDkqjakBRlr5neDUKUBiiDQ07Wpg8ea00bczvi3hgvRf1RHWs32KBOaKDg8aBxM7inElFgoJa26kE61P5RBQhgraagbA52BBKoAs8Yvn6mB9vh4Aq7im9xJzXBgBY6+0M/RfG0Q1k2oTH21RcgaQO1DNyitdCwwEdg56wqVEJfNc4iQ3UeQf+lTa01liZ66KpB9QnBZlipstkcqQQr/IFAsGTBEL4DRmJfqRE8ojqLqYV750CJiyJA/FK54DcQLogADQOaijoooiqNs8OEU0uBUZD1Q+fxDjsi0DrGI3BjfxFynA1AWOz7B+W5xlKNGe3cHIurDjggCTPPQutuRv0NIq577rhoRV5oXD+kkfePIgsi0NhDenpVp9ZS2npUTE7wQmweATPSU48lWfz5ShKMrEiRVrB7brerK0Tin5UT0bTOidZg75UtjufgktMKVFsFQk2A6HHzQU2UgmGONE3xhiwK0GIVKWbuASgjvmZUVEiHIJ1MJArEqQ6BWgTZ1MYBGOiSTvZvBrbgMvUHwQ2gYiIZFMCkAsAjEMaVUAhkXTlAJQ+sqVheWSdRWIBVcBLDgEJwCJnkE4xBIOkg8Up+g0md1vaKRYwWh7ogHc0MD3RvBSGEj2N7REU91ZLN5lkAxqdYeb2lPp1nlZMGTXSgYn0Zn1BpPsNQ8PbHEgYBdQ9G7jx8Z2TWM4HPq9GkSoo1ZL7F5iTEcoiK0KowDzs8I58lPHSpqySgSFwZ4OIExA3UJyTQzkSqe6mrkA6qiWYvzCtYZ4vEuQkw4r2Eu543E6Gj22nNSQnvHapXllRmugO/rG7hw8RJ32jBR4D60c+cvkerQwYOQ7ocefuTa9RuJthTt29vbzaaDSIw1V6ziRuka1qjRIDFAueaXUkBJFm+BC2ZEiawPAxgeCqVVMeFPZeEWgMWgBkzA4xM4QVKqzHvPQH9loxZPJXibmJrkUEUmt9rblfzYBx/brBZQpkEipbMqFgMdPSfuufu7L7wMzjjVVkQXSFfCTMuiES6TZ9ejGkjIpqfIDSiLLrAe4ocLobSrx8nSYmNA4p7UyPc3hkMgyed2R3VuDyREl9BZuUJAacq2n8rHQoDNhSsHMqJlxDeIrJkVc320gpwfZO5VrbDxRntvqLh+sEQJb56jLkqswa1a62eEjuYwoi+9cRTxnzmaoQ2lUY5DONIYPCymS+XPzTwSZxDPgjEd0bV1ac01MTLPKqwYg3RBMrwhkAWGhH5qhHxnTcFTTMAccYCIp3MeObMXLP8JNS1q/btRHx2fMVjZs0Q7eegPBjGYgIzCxAj5LwUGrFGzZAtxTzEoNYealmoKRU3Z6PyE27EqqR/VCUJENQRR1W71riR0G6YfzWdJlJ5KKYW6gs6laQQHTriv0kA7pGYwVyItU3usXSuE//YEdv7RTaoA9aPteVp3eh5N4kTEebqceVKoGoMQ63tC8MtrHospOZ90Yn/KyLqObBVDw8SV1JAntVDT8NPmBS8fZeucK0KJvWm9YFGHKhH5KwE+cIXJLX+FI+o1Fh+lxIU6IGWgZK+wD1QaBhQsbdj3QTOeX57LZBaRj9nOg6EeUrHauVFFMK9WseScYAdPCIowu7y2xC52CPcG1wEUopxBbY1idwb0xNQAMiGjF0JL90NeyYSpw2a+xqYe9P5YJ4NhIBjXUASFA2xcpziwgXGCkMy+obVcsfvoaGdHx8r6bCdG88f2Ygnh0sWzS/MLZMa+ePqAE8vQXeYfNP3C/PzSYm6jHGhrCRw4Orif+wtjkcvXx9e4+XBxcdeukXii2pRZSzRHUP7Mzq6yg1INa/gNeMJy6dbUYaAP6AvwFuyEDyMT2vPD6rbQSU2JjARTUDohLk6LW+ofBgi0Shtbi9oApckT+BRjd29EfIKWzywvQtnXcqvjU3P33HvX4/v2fetb32a/jho4HEb8T6dTWDPq7uxgoz3sATOo5E9FmHJRHCsxlA9mQk+0ykjxaHggU+INMkgD88bEEuDoemS0QM0kaYGOgQZQfZSDiLSGIbRiYHpuFkm1b3BgcNcgdzi8ffbKtfHF1dXlvyms/PRPfJirAqgCO3OvX7q4XjrLpTmsEVfW2cnLpAAhollnqUWxQ2zogkQZzjnM07M+yg2VNZIAwcLV5I3kiGp5jraqe7f/OlWivfPVpfWejpJYbtvhlEsPMxhIQtPxpOXVSeZ3Hp6NgaJocoqvlSE0LzBU5qVm2oFzjpp12aZhmdBn/QN6zQ8qSLEqTZqdenEKYoYkJSKyv1aE1U2QHXWXNYMtzQGfIimVeB2ER7N/UJNpApSeLzVEPgEulk3TcYUdR9PUsIpNTJvnqFxii6pYZENfam96H4Y6+TvX2LJYeIW+3x6uZQpr4vrHOgEF18kSeG95SrVg4ZB+1YYBIIGDv7S+uoSh4brHdZXXXur+7Q6zwhrBq5dOzaxZed/pEZB+iLUqj+2qWno/f70RmXYSJqkDaFxpMTXZZ9Zu8LNToLF2ugXdWIXBqZFteW573KsXKCqgXt9ZB2g+Qeopkhu1QM6jK9XxWn3kM6H204BmiieCoiUyZUtCGD1gABm6FNDC9iGAC6AdMSAZxNJWPI+7id05xwDYYgNbYJPboZrZ3CFcaK40of7hx9ZmtnJuQj9q7FrPrnEBYU8viplm7GguLC0yCNj82RaPYMcNQJENIVjMGFE8QY96UtFEIlIoFpeqwYkCNrJCLPNm5mfjwa3ORKxps4xKCYYRjFSwqq/t9ZpMw/ZAqwjS6zzHCzbKPV2dSL5Y/mQbD+Z6qFhlazPWKm0JtLMt1cGhpoHBfevZTE/3YLKri3sArlw4Nzt5Y6NcGRkarq6X0BZ19e8C1LnFpZmFlWIp0NMaaO+JHjp0eKiv98bNm5fPXgS/h3pauJUXknr5ysSDj71ntbx54YVX5jYDHYkWxifTAlZ+aT6gpIEY0FEsWmKPCOuYVIFgiLdOeKBxwyhAkEMSiNNSGiAcidUyIJHsNKlnnDPnZ9ZMy8u8NGS4CAfleF0KTMuzHo1lulCwLZXGJnNzMJIvrA4PD5IhE5Tuvv7WZBu8eGEl85Wvf3n/2OjQcE+lWr5x8/Lhg/u5NAbhf3aGzVDLqLkYRKwHwEMJhO9qs1Nwi8sREi2tXMTDfQaZzAoku4Sui+380QB3t4H65WKRGmt+FcS6FBaQWILHi4DK2bHm2YWV575/8p5q6cR9D1SCodffvBApbqwu5U6+evrJJx9helWuFFvaEt/87lMTs5lYa89GIErVSyWEVrbPso13a40r49AYgNsi+u4pok9r0Iw83yVcouG7ONDThTpMrvsh1sJyowJQPXUO/cAT2Vj9x+BufDJ6ZAOckWcDX4Nfjldwxvl5+n4ylB03A4lwWfUxB5WH7uNYsaPnxQxs0qAhiSERFQmlFsAAgjyl7MXhaFlb0GK+rhYggpR/1IhZJcijceWqYpTB/ESCpYsWQEaZebDJDN6KDg+jfTBmyharYfBjBFLF+ZUQ0XdGJvw8+eb7AR7/7S7EjPL2UEIE5e1aF8JNKLo9CfFdeWwjdh4vjvEfCxHE/qcfBBBtdHvmhDTG9zPBIzLe4By6+MA0fNnhtdopxPfQHTtieC+wYsKta+uY6id5t/hUcLuhG3OE5LviSG4KYv4KcRmNIiHuzVBCPEAh4IyoCSKERHWxBb3ZyoPES7LjSaPbqi9sgOjkonGH3GMZgiZIE2Aho4l7RgBMmw6rOuKk6kI/ucYxzposcji5oP3livOlDIoGVmUpEZyPb7SEMA6dbEdvwWFXaCVCUEsTFxmiw5GCe255tca9MUEZcEYXw1piayDCLh0grmFXIBTB2KYOwkvLIpNG8BsbwLr1F50MhVIy5go4moBpCEAHMAaAoT7LH8HzFy53pxMj+8cYUWfeemN64npfdzvmfWBEkT72tTTn8vnp2bm1Qj7c0pzqiMWbm44fO4bYy43pa0sr5UKgvzM4evCObGH9wuWJvft2haKRS+fOZkubPR0JmBatw5YomoaiEZKErZqH6D4stSY0QFyLLqHt1Vvc7cGxKQEKpARi+sAc6i/ah4aUBTW7HhIGACNDHK/ZtWysObcnU2zOgQ2whtHR2cVurM1iCULAUWE21iwsZkgO0X7o/vv+h//+n1+68M7rr71ULuUH+3q5fAEjHKCE9m+h39msptOdXACAgC9F1tZGFDkupOt7QB34K/p53efTHMCUmzABVoQmKtTc0oZdIA5nsLlcsjuDmeug2b+B1p5NSW1tsdJa6eKFS7EWLinDRnd7ZmalFtvAQviVS5fH9u6iLJQ84n9S+eiok/gk7aBd6rY/DfQnfzXnj+qYQL1rVH+8Az4R3FMx2e8lB+XTk/9uxNUZhivae4rlQDDfjQFYQuiHc2SiH8Sfa4gMP6WWZEaqhtMmTJiEnnQ8+YHO4AgoCt3Hr1fVWQPcBB1GnUd5SWE7NsS0gImqkB99hEaUEBOZRcTxa5mOpw6bAAqlkQOti9+rOy1AQnQHRCOcpwgu2GtOiGvCsBpKawPKx38SGUMULv9bniHm+8D9ozuq9K6Rt3uogcobhIqOx6XyPX4H35obdXo358f3c3AepBmcHwgYzr1bHl4YEZyv0eP7GxPSzsalhU9+BOfxS2yMj19YUXeNvElMXSSb1NuO6A5+ghgIPJkc0qc2e9JcQcI3rEPHSWDHOioFhoFwxFUAn1GtGMtBcqEZJPErH4pyc1HQAjzQMpZ2N7DNEXu2ILKsyDXl2YVTKLBvBALBeOY8MHo/VIJI5axUMdq1ZsgtIHYfLze0QPDAKzoCXXRbIs5UOYehn5VlphhRSZ25aGU9lNJeTJnNsuOOgt2Qn4pDUW0keq1TKm+hymDjIAu2EE3aioqjKnVOalONjBqm84d6T3R1dUzMTmOBEkH4wP59qdbEWma5NRxFp55ZZKNLJhyodqAq6kyPDQ4hDl+8eHliPAtq9LQ3jx2+Y/8dd37zq18pVAMj+w9iBvT6+DywsOmllEGajkHeNSpgJowunAadnPym9GPaAlRGc9iJh+gshi3yL85ppwDsjjPFMRJAuTAFmAPbWNc3C3BNtDEMHOz+p+MdJC4UF6h7zLRtGCClwdnatLo2D3Hncs4DB/fDX5955tsLC3P7xkaO3XmUTU1jo6OnTr7F4ge32yMFon+PhGPc+Qgf5TpPMXCWI2vM5WR8grvgJfDpgLqcdLlmJRRgt9AwYQNaAqxkf13Lg7DJxAuVXiTC3Qhrudq1y5fvOHp4sLdncWKlWkQJUmMfE8yQaVBXVxezmdzliZamNowNmZUzNBYi+2SCFIqEDBbe7lzj3B6Onuz2QEJoez+8Ma0bL+6TG4M/aCQqE8WDtKoIormY7kmzWMCOB0TcGobIUFd5qQ/ChBE9ww0aA5UaTa1xzqhi7In6Q6XxUIrUf3SwLSmB8zrMpgii8hIhOBBDOgWqqYhQnxUBK/2ghGo9EN8ov8RtHCGiAm7ME4mpp5IriVUMcMFeIkLmiacUYhvkriHHEzLhcr79+cNnAMr/FvdDGIAgMOd7eKMh/RxceOPT/7Tt+aEMwM/Z96gtrHddDg5X/r/M/eeP5kuW34k93rv0pjKzfNWtuq773tu3u8dwDDlmh+QQ1JLaIbWQtNqFIIDQvyC90FtBAiEJWogQAS0gSsJyaXaanBmSwx7XM9O+r3flqzIrvXm8f/T5xnmeyF8+pu69Y0hGZcUTvxPenRNx4sSJ4Ig5T9m56PhgSNwvjkLD0nvWVWMd5jsv2KyuYMMqA/fGMBufJOKNUnDYx5ab9K2wv5s/stlKq2/ZU2vHOGJbEQYADCutLjRkHOnXwsBFZ/mgX4wGpxhMLDQgZEx9aAL/4R0yuhDgQDWm9Hc5vc1np8cI2ydi6fWtrUqtccoTYGcnDH1u/ILFCI40IS0tPmaon+e6VTrFdV2eF9fRH9Oh3eSmfDoeRfOMygWq4NSMDTOrTQm6MkBVFNY1ME7Bj9YwrU6oWq7q0D8njZIqNNWhFZgzjG8SgdcSjnJHAc7JkyeP5uZL165dyWfTe8920E5GZcqtLi/6Xr20wp3VdL5A3/batR9+/4eVSohnS8DCr73x5qsvv/xk7/Dx/tEbb71Gap/cf8DtrUI2xk0xDiFoA9oQficDw/qFVbaIgXoGFCntnizyKRvYWacV7P85ugB3OuU/rPkJQ9ujQZviM7HdcWuXRuPnw/1eAAEAAElEQVT6NBaRJbFzCsI/I/3lZSFQLt/88Ec/yhVL12/dAX3yliTnGaHQHliP58m4f/eHv//tZ0+e/sxP/fRcMVvI5be2NkDQnMQQgO0CrCiehNHxA2wZNDegpS+egBHEy5ZHh7zqdgonppRFVQnMPI5bwqjV4MQFHEQNWu063Q/Di0M76saQoIeoaSImgZZiNtPvVLkYyCuS87nM1fVEe7+9WMrfuHyFgxkoZahY4EmAP/jTd3jAmbUwWweGKaiRscF1SIdvhNS+uHkBPrFEaLQLqbHxGAE8EsDh3RcCa6S58mjRI8TqbSFKB3G4mKkiRMkIFTbX39DQ4M5FqorMp45fmQ/u+BBMzFhnkcXqit2hMDILA2F/eeCSsDhDWSfzUiPIQkLXxrTTlSFRs63MDjaEkymFIUval/qC12lctgCU2W0B2HdIIJRgpGIbDj5IRyEIOzKMW8LwFcxo5KlfmH+2pQoC5faIcsxD8nLTTDADy5JQOMB35vC2xfZh7DNgO+QV+DYnTW8OixiILjifBrFiBAszlpLVyweYdATDUxQd3zi8pKZ3g8lsG0z0phr83NZw8Sko5sio312XayHs+sM+NRVd+nySnUPobnyQsFpCxJ1G5PIhER1qZx6ygxTjSG2rEaLlBJTDxeVLs9HoIoiXe+WMH8YtbG0RgHAMIRtQLqifu1e85Q2C5uoWKIphVOLaby6HbCKyPcTRcq80D/MH/AvuIEvGOCWSILu4Uew92vlUjAcDkMjMpWILeTS+hdEID/qnbPCnqBrJEhYJASSOmSAMappBjBfXnyjir1ZRO9zjKhotgKGari7sDRAKRbgnVkUj6OOHnBNsbawW8+kT3YSqZudyiVAkFc4WEmvQJZ5C5BCbYvN4IvKii1dLA56iyRZvvfI6Gif+4Af/buXq9dWrN9754P1au5fOIazCSyktpC3Lp6cszUR6hce08IIqCH1D6dwssOW/dkhgf85ndZKlCrBe5g8a4zrJPXTs+ptE4B2gXI9gDAa0ucFfp4tYmB+fntAK7APmkZ9dXXvy9Fl+/mAJ3atxEQztSBq1RU5+8+lnz57cffnO1Ssb5ZNjLoK99cYbv/mbv8lG4drlK7zODVXa3NhCDyiXhGH4sG2kdxCZ3T/YQ/BfSkCTThWKNiLUBb0OetAKQakGFKEZSqTYc5BhCpxCRAg0Y6FVA2OF85lMtIiYbLNdq2ytXVt/46vv/dF3c5nE5c01qDt6mdh63Llz58atlz56eNhhO6SlKpc9NM7cMO7D/qJBvrhRk08z7FrGwDSmUL8L7mdZwDEWXJ/Cjg4dMhpZLWEz6EiXPGW7eecQq9ZSBhHSZRCcG6WggDJEJAURACFlDgAAuTNCLb6Ygo7cQBXIBMzP3g6GpxAFdICIrCp0Gc5pYVLphoYxj4s+wmE2jmH+OklSOd1yn0y0ThGlokBupc9MN0N4pUJmak8KIGMpO7gBptjapU4BuwJNhaMc2zXduKcV2qBqqpFxpdWHB3rHKMjY77D0Y1CL5eN6h0uZ7pOxKFbtsej+05p4LOQLojDbqK/wkjqCTrL2HQ4k19YX3BRDckTnDeDwvcvP0wDLziF0khZFd+GN3eT6lxQ0phgaGp/CTxoT6lLGH/mJMTRcaVnFOR+yOuGJ7zB7CAFvuUpWjLkKPBTv8QIE1wAwjEnu/aLnhddMua+UiM3n4ohVaolYb3DkxdUw7nlxZrWDeprdA9a7upyChPigw2oRGoAyRB6KQZdPrN2E1w1DpphJkFcLdkEPjJbqDuLQF57ZpcTshaFAuvbsygcNAmuwj8ZwUNnvNqkPjAyx05GbZnGrBRokAFZH7OnTx8VFPYcL/+dwd6deOb1z/docr2flsjy9SIhKo46M/O5hPdpvfvXVu9wg3jk4aQ8Sd175aiiVev+zh71Eeu3a9ffvPeJZ863N1bO93XozNL9QhHXeaaVBgmz0XbkohY5wKQWMLxVOva47Iq1ex/2hQU4yfYSA+4+BEsCZJxjCN+wVmE0MMAgAhq0AhqfMSCqxmqDJkKo6RtA2EiktLL72+le4QPfpvfsIthaKpYPDozYP4YTDMH9OTo5INY1IZa3+1ptv/tqv/MpHH38A+YDnUypmIQC1WovbA0+ePOOx+0tbl2FKwMyDupyWq2xS0M6DPuhquZlPx/K87YLW0larWYfKai0pTqD04KEQFZ1LwnasTvU3CHH2U8ikwr1W/SzUrZ7yEsza2mr81ct5NKfGwyUu/uWy/Wpl6fLlt7/xzfcffquj4xD1rZYF4mhD2lHN6VrNkG3AFspk8AYg5tbaYCpcz9UMw1+IK3RJaWUz+9wSmTF1DjH4yGYuqNYSrGH55P6ZewQx+NCXorsGGeHfAEoRZsWoviBzBicTkU/3h5vCSHJTqzzmGSt1rt3QGmwFRIVgwWqnQOWZhTozDtaIllN67CvBCGZr/6kw1J/Cq290JsAPc97hIuXoMBJJunbwtk0qBpLqIlQgh9zEnma4kJKZBp8BU8bTjc8Jb58ZDqpiEYLA6UkMww0x2VgY0p9MAZb0sKr4OUMsgwTLE0zKwycdwWDeTefQuJMEwEN80xsxoEhqdx9fg3T44QmAfRsxYaAwQoSxXdtSCSMGtgLS6BWml782fIw/PujUYRxS0oAkU93zUl6ugxRcaTJieNxKMjjIHUo4Ktrh0x2jIWzJ21cwtLlLVswXttbX0q1oP5PdPmposQ9rPMV7iyzPq3AwSA0IHHkERrl2uzg/X8jmurVT3g9rlU85DcimY4Uk94qhZgjy9FgZY9P1TGKKRcYgCVaYogEa2uKVYuFlDcUyp1JpZNJdDqSd+hTdZ9WtG6ZuJITIf3GxuL621OBId9C5df3K66+8tFqC3KBBos/K9wDGxxkzpVDU4UX62fPD+Gl0eXUzv7D0wacPPvns/vrq6oPdg/d/8qMM1DCWZN9bKMUWlpfQrAmdo45c1aWOpqORLmDDxI0tILiRjjfDxEWhNfoc2OxDpOgBYRbwP6erbG50XiA3BvXBIipuMQlHZiEagVnPgQFJHYHIy7xbn4KTc+XaVZbw7K54fROywYkLJ7Q72wc/+P73fvqbP8W26fbN66+++irp/N63/wBuj6gL6+tBGEnQP/3u9w4OjooLi0A4CKYioH/EP8WtgpnDuy4U1b1eiV4/hH9g/LMYRftFsYj+OHULrCyQtWFSupaX1+IoheZ6YCGHfsAQq4Djg+xC/q1X7zQrR712Pc/7kKxLUBbBvbZkwo2rWCeSZB3BSIMnCfOETrYTKZsLQZuhODZTzJeIbuQ7dM+I0CyQLczHEMZmsDsbgsGIdmjS4ENfR0gI5OKO2fSgIw1MIUrnbApJOm4r66aWJpQWXVpx0fPCIppowp78abI5Q7HkhREPHhQP+sefwnJqDJOHKSZUTQQ3sklPQvScAtDUI7aSMiYxy0DR+SNvRyJUSeY+REOjnn9qAZedvDXHlS7RSQNvcQX0JWxg02hoA8JDYQz1jwiAqxM+40ZyC+Mw9235TXq5AkyCh/n5WN5hBMB/eseUJAzkajbpO6yP64ZhQLWIzdlR37g2Ml8ffiwpDzeH/xwL5j+HwcjKIWw6g4HmbSFZDZxzW2dH2gHQHxrKDAo/NBl0RjYcL4/uZeyQvHaULjuFZyttbreuHO4krAw2XrQZdKd3Foz2dDxJDV9BVBgC4nATiebS6bJ2q4xPhhszuBvSTCYNngpDFoQ5VSzkLq2vxirds16y2zzu6lat9O+ArFhfQwIvra3s7h+CB6kVAkJLC4vwrE8qh01UL5TPCpks3Ik8MomDDlpM9LZ4MgHLG5EjCAQsQxBNLK5NDeeDcXSji7mvUc0ahj9NdPYBhOE1So4qQNFoLWYPgDio0zTJ472QHkYyGoEurSy9+frduVxmZaHUqVc5ujg92K+cnnS5EhwPZefyv/U7v4d0yqXrd3m46tMn2z96/wMYVN1w7NH9T+rV0E+9eb1Wr/K+LfiXkc9l2nypSGXr9SadCIalqTmzdce2DfqQtmRvoEc1o/hG40jJptMUnglJw8E5EWec/UAirhI6roXhfYCkj72z95wdAAQgm8vxh4ZVBOWRpHr85Nmtl+4cnVVpVdQu0Z6QOq6M5VJRLtZxP4DD3suXL6MV7ieR6KVLGzwitrS6ymqRTcOnn907OjmLJ5Mra6tnZ2VkS0+Oj6kC1/og28jlo051eXWtCfz0DIkdmjcp7K9Tg7n5xTpPZXKUoc0cg5kuYDQM8KQ1U9E+qvRK6cTe86eds5NsrL9WKtTjaI5qop6AE5vQ0jqauz+7/wC1dk2eQ4FWamUi5CdBBZQSuivNbnBesIxxcQHkPtxwJyIfF2wXHlxNF4xsBjALZYJKvIV/Qi1uHDHKtXUbS8GlycpIOFJZ2SQz2/yGbtpAdEJh3PSRpAPZay3FtNJcd/monchOhxbwA0Q8haCF9YFDFDTXsERQVBSej9IFiZjmOLwfhpdQpwrKaMKhrb1y1GaYKCqABHn4dR+EZ4yRvugNOctmqcg/2EDs5bhN7PIiKZvpwi2uMEPM41KloVwtSF7r0mFINdTIfa5NUIVxRVJD4D/iudvnyFbpRu4v9Kvqfykj1Dk9ihGPoK1eFaabYoJ1CXqzQAt+eveM+tL5Cq9mVgec2xoODgLVVn86WwsBjQMhd2titySXW13phhQDCPKAgJls0QRqSwCM6yrZcrOYdg6GuJEEJUFBiMK0FZLnv6u7Lk4BYiBZXOsfTWqlAMeRMuAJVmC3jhgmTCGRhGiSQ2DY96V4eqE0x3LwqLIPSmW5iN415ILg8nPMy4qWw0xuy8LTODk8mitkbt68iYwgXHvKVS9XlgspNELk0yni9ptVcGg6K9XHnH5WTmoso+FHRzJpxC65BMvMgVlE/7LYdG3CfliV197E8YIkaV5pRBZyucVFuEzsnMFmrIt5+5c0r125PF9EVj7HwQNM6yf3Pt3feU46qVQaGcjH2zsffXb/yubGS6++eX/n6JN7nz3Zrz7b3a1L03/opNrOJcO50sLDg4P5Qm5peZVrAbxl//DREx4UQ9u+rj2XqzQjpyAr6+t7uwdsAhCUgpMbT4bBtuB3br4muM+FnmS2PIkEXPVqnZtWvXy8iJof4rJbogXQowbzh40FSfH++x9+5w/QV4G43fzSEsfNf/iH33m9tJAvFLnOixB2GQLVbOoQ2PU84/ONt74KaQH7/6N/9I9QxfH3f+Pv8Sg8R8e03N7+3iefPTitlNlq0Cmc1vBWjs6lURcA2eTOXauVyubyc3lGRIXb2z3eddH4ZP6jxG/lEuo9DlrdFmMPOgHiEt+p19UpwaDLy6CRTjufiF1Z2epWjuvH+6FmbWV+JVyKnZ4d7e08Xbt+Q4udVJLDoXQ202xFa40OaI5LzDwpz9qFVz2hnTZux2yht2lm1ryzaX4ew1ACA5dppJEvn6BjiMHPIwxdTAPCTYBtvgzBLh2XItha4nL8Y8KA9sXqEQUydEgQLfeYfZqyWqGDvE3sXRNSp2raWQh/gc6F9EVWwPRa54kC8J9QYsU5hK45qjygon1eFNLSjn8OP9giEuQAN5E0OD4A9VMOikok3Iqq5GTzgw85EZwVsdanFEEYRxUUJlQNiY0Zt7VjHQZy/rPwpvOU5QijISkPe5HjyxEA1dGVeiJJh+BcRVwrBPxpginlmVWRLwuHAKjTaeOLtqPbgjNQvE0YN6DPy+Mro+WKM/QF4XUsCOYWT1YsIDNKR+Y8ugI5cjK8WQ2idENHoRiY6nlGwqhkGgTAZXmj4UEIlZ8iUBc27wjdc40khfJL6BYIi5UD979yiWQEbUAcig76LOEdl59onGl2mjym2OTIdG6JN1ZS0myMaqAzOM6txt0rN1nnsuTskDYXXYnMK+9o9WlynTWU0b47ynUjGoZcoDxUXCKiGrYUasguw5u60Az8IRbIYhaeBvrdQIvl8nG+kAbjIAyDdrLKWauWiedCuacH++lE5Pb1K+DZR8+2T6plSvzK3Tv54ur+yRnnv8dHT7/7/R8f10LXb91AmRqCO6y+FlfXHj98gCo1FvKczGVy+WfPtinOXJEXaNLMKnYDGETy0WdE16SYeDEE37lEh5wMrx7othctzhYJHjqUAOEc1nBgPRIB3Sc58NOj8A2mFV5CEJHI4vLyT957982vvcULCtl8IZnObD/fu5UvHh4cPtveYcCA5aEi7Jzy2VytqYpz+vIHf/AHP3n3/ZvXr3/w0cdcdIBohp7t7OztidWDGD4SULylNjgAP0hjDC+Pa6Yje8vWgzch04f7B1oVxBBCGUCr2KBBw9D1xAtuiVS8kOZCAucfrVa/wcoenYaQgVI+c7RX2X386Csv/dX0V195/913nj6498oW0rXIJc0h69Vt1nhDnBsctBXnm/F0qpTOdfp6fnLAPbhouN5uazDIMJEZxuc23T0GGfpKGeWFkEP4jPA2ukHLtvxiHa5ZwPgZQQxutgoyDTkIbIREITCjOcMUUZ/RwxO2RqfgDFra1WxgLjZQx+EXbRICZpq67nBLOwUmO5oCX7A/3kqIQsvmv5ucrFJcWrbaG9kUAzqkCawymq0YTCcjQKBjZafJZDMdJ5/iTxFVbcKOQTaZYYvYXLQ5xdOYdnk7WmEu10Aj54VfFfnLGBriywQn7PTwQQJAICpoyY7KPp6Jr9S4x4xvS3+apxrYtf8FWxfEXB74GglQuVkAXNw5KbIzvh3UNSMgwxcaoH6dMFZBotvN6mEHguoJ6fqXX5VK+wM3zTRm1DXBxFw+DD2UhwCHU8mNQhA7/IABqKrXr7NRFQrrNznXBZ92G7Xy8QGXQhEH4oCXMlA2NLQhYQiOg0+RzeRBVWgDbpePQSXI79+4fAkJovJZg6umsKhZ4VSdPk7uHiE0AjOo3+KBSZRLwmRAkRr7KfZKmg3gfvTdaehqxaJFku11qEOlzhW0Mlzv3GIx2apBeHLp3Onx8dHhs3wmupCJz6djPClcg81UPWLRzSppaX6hML8QiqfPUJ9+dvTJZ/d+9JN3KrXQwnyOt8ZgxiD+hHoiXon54Xf/VC8coA2i0szlsxRj/+AMFD8vNn2S+Qkzh2cP2BOAZHl4ElLY4uaUO0RHmhJ6LV0w3Gjr91j5wvyhQVAJABYU7ksmuR1NkeDq0LBMNtb4SP385N0HK2vPlpZXWC8WF+YfPHi0sbn1fP+gUkdNRoi7DpDhjFNnvbyytbC0UuJGQ2l+jTsNrQ5kgFn6fO/w+cHR7v4BT4KhGZTzFN4xI7rGjxACI4X1pgSQKAylRe1dJp2MJSWty5FvOp+nv3cPD3lnE8IMlSBfRJt6bd0ope8gCJlUshKpPH9W3n507/bNq6HWtSf3P3r46Yfxm5sLq4utWqXTqHPpt9toQo8ZD7VOg5cZECTjmAEVpxnuJLfqEEVSnkSgIJ7piHUS1TrIzPBu7lNbTXyn5NK7rRWCtkoyQ2oRHzd9NEW8g4nJnKZFDRa0tY0awpkXRKKajNghMtRVaCFhTULKg9E6XFjfpTfc+5MPqbiA7sel71KlmNosTBokdEVQVSTXwxp+cstyS0PZBDC3wwBuSanR4MSS3FNjytYRAaWhBeW5fWEHoLqPDMUcOS/8imf1ZYxHfF8wkiOVU8KOlcd/cgo3JTRNFqhLMMAseDCMdzuSOz19Ixg+Nb/R4RRONNYn4RxqcdeeOLwBwiAiC+UyYUh5VEfeotdAM6QJqrSwAG00DT8d4dEovWi0RAr1kBslQamCjCR4A4sBCZO91+IaKmg2jl5mbTVbLcT/kQEpzq8WueelBmQJE2+0Gsx2Phzqr52ccnrAueDBoN7aXF1NsfrnEi8KDMM9PQDTaXFMybMwvUE7nESkJFpucNFW6hC4VMbzgzAeKAplFAuTVnHzQaVjXKmWaiaYCP1mN1Wp8v44MuzsA1hTP31y//DgyWuv3Cxm8yVuJyBaw738RBJuPtJECPMjC7R7cHRU7T949PQPv/P9Ex6ALCZu3Lnzk3ffK83PQ6XQEQpzBuY3T95XGx10nW6kMotLq48f7R7CUo8nQYgwUhFxgoO7f3DITAIpwlEBp9XrPOtIndqIHlFYbdrZGrFV4iA6pscC6Q7ah1EBGWBFzNqaDQHXodMZlt5onA598OFH35xf7LZq2Xyx2R7sHSKzekSlicJRBKt+qkpc1v7Ly8uJVOpnf+6vNJqt3/v33xZiCfXLlWMUNKHaH7HyPho2HEOQZhTnVxRATQoBIEx4oHMFmhT6JRylew1hbv+xaTuqtgoITqFdoNNrQte5ntaFowObSJcWKNvmeu5ov/qH335voZD65tfezIRbB7tP5rJ6HDhBJ7L4ZZ/Vi0BHKefxkxOqCeGgDhza8+oN1z7YGVwcgMMv2mcqfBZwVnjjsRDLAswKNkqWde/YXBz6+IhjDr9TH6VwIfxkpqK/GBbb6iflZXPcCABudY32Bw6XnDeCm82C2cweng4OF3PnOyfmpVLQOlDG8YgkHQHSkM2kHHNrg+1gCqJBQbPL4XKWe+xPmq2UziisjSRBzsuqr5HRSvJLmfMEv1g0DtVcK4yHZtgDmkjNCd2Oh9X3RMhhoFnwaWk4mCjmtDFEQq7RgnnRUwCF4i6Odo+pJxtPXToy5y5XfhdYZACHsnLrHdoHvGnp40XUUeLng8/Sc4Vm/IgAcOGHFRgP24WYyI4A8DhgpKc3UoTJQFgIElZ48eWokMkUizkUPYD0QQvRRJr1HYUAzYFBOBnOwgrpd46PjrORHq/01k9OBs06yiF4RhXeD4L7sHq4q8XBaDsUrUkjMXo6EUFheYzAOW2pRqIomjGqAIKqGlMA2VrT94g/6V1y3r+t1KPR49WlgrTQNJpSTF2rcFyxvrKKMtHW6QmrZnYVSAHdf7pzUq6Afeu96N5J84++812EXm7eXE8VFmneEnfEEJ5JJtbXVsHS4EZWqSeVxuEpz8u0lubnw9u7PHDCqh8UjqhlOplGsqUGCuW9Pxb/PJuNfgUtroVfeZ8Adfy0P+3DVWnoPTr+0ciDmmsepUzztnoqRUOxD2Dtz1NgiNlzGpzNhE5O20+fPZtfWkZSM5vLgMc5gYBLQ3gF4D0DJGiR12nBuZfOsePTM4RGk+kcJJotAi1Uh7XGcwCDfqOHwA/iVIwKtDezjdKkdqeLWhki9QNtYknuuAp9BKoQRjytVdiXgBl4rx7GEBJHHS6J8UC81qo0vm6LQBqLHK/Hu48fND/58N3rWyvf+Nrruw+RDaXDm1wW1ohikRuJUtq33nrrqPP+3kmH8ouV5x72ET3jQGrafFFXfxkzNTzN7giAJooP4B3TkpeE0vhsvBjORzfHaE1/MdDoaxhmVBem3gsIAJHEqsHwjKQTCYNQaL3OcGcKOFuNovNDlhQGcQtmpqx81d6qANPdZaOkAE/YBiIBysNBBMTEpe+whIuu7YvSVFJjtnTJYlyaF5DmiJdnPue226d/ib70S+PzJF7gYuzMWEEEy+ML7FKCJk0pz8Uw51n6/j4HOdf08CLqTrZjLDSdOGo0fMxttjg2AimCLxfNztm9gX1Ec+hMaGTcYBl9uF8bacPuVwL0oFtDu5WzPkcMJSdfdJ4jXi446x+4w+hp0QlRhOU/p4dhWEDAYQ0n0WwFXoiDy5p1KRTrdZeX5nPFXJuV5KAHHyieynJQ7LY76K1ps7QHAVVq1Uq1nkRPXLeLNoh0qMddYfbaiA6BILifSpuB1qRflMNB6BZokkbSbIESMBA1QEFZYpipThrAaOVRL+q+MGNAqfE0ABrTSjkKCY1IcbrF4/TsJCSZitq3k+PtRw93t3e4t4xS+nSxmMxm0W334NEzxHFeeeXmIJlZ3br+W//2d9k+FfOL3UblytYGakRZnoOlTo/PYL6cVutz81nIXL3b45IXZeJqG6t5GC9cSmAHANKvV2qSY0IWSgyiEFXKpvKMRj1pj24cIXfdqqry5HwIRoqwOZ1CmZVRM9w76afS6IOO9evd+/fvL65e4srCxtYmUjpw9tsnpxyvM+ZBo1xmwCTT6U/v32NJ/c5P3kP3g3sv/gzOGXsgjnSR2tKxCQ9n6tJEEuzQqdZcA7LIhJUP8YTaQls5PkfhjzZd0WwMjhB0BUY92oFMysx4F1xm0DsMVLPdg6xni3mGwUKxsPxm9vGDo3/9rW/9vb/zN19/+SXESpss7RMxfDOnx91kdPvolK5Au1G0Ip4ZpA6VaKRJmSAPf3kEQKiUyaDdo0wQHftpZV7eZqh591SHRwjD1CYn4SjaWEjAQGD9yOHWM25lM5yDtlNxSF1zg+IZDXCsTonzgKcdK9eC0Gcs1aiaw9HeFnnWnkRrvhHCIYRK5DCMHCODv4NJFkBmREUUUSk7yIRN7ztEQYKjDMzh4Yp5wXxOgwbDMqMcLQvCXugWkhqWZzLceAldgR3vbKIx1D5TgKQ5quVk8tMgpOLOcCb96HtfHkvU2uUcqMwUj0bAaBtmbnOMwrlyDgedjWukxBTSBbNYF0Yec9qZ0SrEiYmNwgeZT64dNXzIAuQKrwxiBm6W/mCKBN+GdWu7enbWKsKjkbBBr1gqxIsLoVQGTZKMbD3GztVQ1u4okuS8kMVmNMpT6ohedpvdpUIWhBWqnknRJLefWg1KhiA/i3yuEsATIQpIkCxR3MbCFYNkEcOSRFhnMWXcyod6qKRQB5a61Bq+jhRXaJuC/GWLt7TQooAUqRShDcK8QsxWgKtJTR6EL/PSYXh9fWNhZT2STD5+vvf4/gMeKrl2/dbS+matM+ACAeG5tCDuUre9srQMCqZUEEfIRjSUYg0O3kfdRb9XoURcbmPdj2IGaa/glCANhpVgT73f4QAhHYdtFoKoFWCgWVElXCdFayBxypmP5SGvoH4MOJFKwdvpVwZLq4vUizmIuA6bA3B9vlCiZUDOwKGRAEXVajWA6KxmDfG73/59LnmxYzo6OW7U23oD56zMa2B0Ely7/FxpbeNSNpsj5va9h60qS3uOEMEzNKmWmBSJI24KQDvyq1fhUaAgpZ9xbv5CjFn1a0OJQyfZelqOAnLMXj2u0VJXr13uNs6ODrtPHz9cTG0trS9J9XAmTbLcBO7Ferxl/4N3n1ar4v3QnmwyuBIdDXESHpeiBhvxbpQGrOl4w8Z5INjQORreYz4XZqPNC7NnpQPyE9t8mrGITNKAQ8LK08Kew4aBaW5XRPH+wd00H13jNmO26ich4lhaeBFIB7NAqAGk0t0awSaMA5+nP+Zy4p6KAxwyYL5EGaJ0lwFNjiE/Fk6iNS6QNYhvFu+wFLzNDgC0QzlEmbyt0aEcBB+zFd4dO/gkXuQQ/bXyvChU0E8rGFcT29F4G3whbgZNyaSk/s4m5IubL5iyuWcRGOuMsfBuMA8bfcxLfeB6hZb1DsLYmQRtSfsNJ4JrAOtyF+M8JZJ2cdXyo3amxZSj0C6+LnHrPELioPy+VzToCBNoYUdOhumr/zQYRFS14nfEFYKvlQdw1lKxdLVfP2lwTxaNYKC06EI+O8il2/j2eJG9n5W2A65Oabwyz7XYi0RPKtWT/VopIal53japwgZx2JyjR5gjuVQaXjmqZMQUYEGO5Ckscp48dTcOcHPWpcyR8FTVyYjSukKyOeBZMuRtpKKYE2Op4OFNeW4a7O+d0hpgLlRDcG2K0CjI7OZzV9dWCAPHBCmg+/fuPdp5frx/tFRaa+qWTv+lGzf+D//H/zYZC928cuXp06esgbnrtLO9TanY6PQalRSX1ToNjkZhaPQQjWy1WInDMtIWJBkvw+0JswFKoEN5ICYWOkF0VbPTrA0F89yMo+P45LoYK3QOfqkg6YDHSZNmp7TcwuOtTeAs1hGfPT4+WVxY5qDhww8+hnmlNugPtPDnKa52h2ODbDq5deXKH/zeH3I77crlaw8ePklncwcnZ3Vd3KJooVQ2tbmx+sprd7koUD487p0cnIXap9UWo4LCMyKcQ2NAT4Elk9Lx2hbq5uyXBlcibhpBpfhgNqfjqRy5N6uxbCTDjoD3frqtr7/xOrcs4Pw8+Oze6vJCemmOK2QKzYs0mczuwf77H36UW72RzuRrSBNzzZDtHFkLr0FfhiPwi/zMQkxT42paaeLL06aDDzYrHcqiYjtjEc1NUQ0/k07AMVx4+WQnHWTkosiHBBnM5xPdVVzHtmArraDJQlkL6ZMdTvJSgWQL4jCZ5c7R02ReeDnWrYuCt4oKVmHJJKql8Jajs4dftBEznVD6J7yiRnN4wTDSmB0Tq1NlojD8umYEzwiNUQ2yAXrBZu8i4ISZ1QGumBOhVbNRqS96WngwL46g7Tgfw6DUwXx9VEstaHsvHEG477xgANxBwuDLRjNQW1po0vgw3kuDkw8XetjogcoPb6wFKm2e4umLZ4qH2frBWP/y42O4ThwidQIAN8iFhlSfD41zsShRsmbgD3AYwPLbLbojzXDisJtGE/NcJtk+q0kQMBWvJUNcLSqfHqVRFBuOlNFdcHDIQEfmD93RO0eHXPXKxELFXCLcQb9NOaM1b4cbpElOJtvds8NTsk9z5NvtI1qayUQaoWSbnQOMMXAhl4/Y4MDkR4iKCaLbBOpKBlkUVRHcExuEMxFUGAOFW8/YjaP1PjbgMABWe39lafX1V+BJ3C4W0qHyyfMH9+7ff7D7fH9n9/Dp8/1yk/f2YqXF6J3XvzaIJv7P/9f/FmUOm8tzvXI1LR7R/OMHjw92drlh1WuWo+2zVLeVK6LcBomdYu2IW809eEGNZoej+Vavy2uZsJ3a8Ey0L4jAceFeP4ccYDpeMtZpaCIFqkditVSYYw/APuf46HR9bQNZUbhDDBt6DtYX2ixY3SPFj35+VLYhN8WFA6rNWYRQQGiABCr3Z5Gy5ViVQ28I1b/4p/+UE4VkKrNzeFRtd/dOnnNDLILkZb2GBO/la+u3bl66wm0t5LlqnZ//xqsfvff+ux9WGXxwyqADyGdCLLTY59gfZXp0N9iIJkV4dNDNpQqcJbApSIQHqTiCW7AHW2nuOPcHyX4zn4zUK43koDGfzYVbvbs3b5LLZ58+SO5lLt26nVpeCaeycJayuQLa91DL1otQcfh/GG6uJKGQLbE0bQiPBqL7vTBKRz5ubEsoZYqZEYG6DKfEaGLYr81Hm93BOa6KazbJFnn0RudNbsk8Smfko8L7FLxj5Ot+h1niZrfG04ysnxxOP68JlBDEodUNKVBk6JbYOQx4SSUJg7N58okrSICuBOAIYWjjaxkSwYrB6LKU7TMQnhMaISBfQDe9XCgHIqRiOvyps0pWXQ7xUZwhjpCv81BIQ/RBmyYTj34KSrQOcFldsGiI6WZqBztcYOF9HfjErfI5j6AtAJTBNYv5j0K5oBZ+lJF5+cY6D+Fcw5a5GNgVftjoU8OPAfkUYiOGiLAr9yiEa+fRx+jXGmfKdHH1HYW68Kt1gwOY7f0mK44X6dshM+xsdvmQGhVMGs4ZVCAEEFymHg43+lwPZonKOgVR7zoYCm5vaT6nZ9x1VMiDXXBc2o2u9I6JieT0y8OQBlHyOFKaLQDC51IvGUtyxYs9CjzrXoMLBpw4d1BA1NIlNLYDoHsNNHH8ZZiQzBsKBVBDkP2Flh4qhxbxOPqxXHLuqHFYedS4dW3xxo3bd+/eZV27ff+zZ599vP/0yfbDh6eniIGGlkvZ2ytrpZWt0vqt5iDxz/7Fb4YboeVEaC4DhYttl082Ll05OzyGFZZOwRZp8bdUDIHupcVM56haV7rr0pqx0vjPKbkYZ0wCLeYgUdxzgDHEXgj03lVTokRbY4OltOrhasa6cvSpdEAAlJYa53m9K7TLxQY2B3DbpLD5+Jj+QRg/pQOC9MrSwtrKKiJF7/7knTNx1ZLsg6oVvfquTZKybcOEuX5l88a1K2jFyPDowKC3kM/cvHu7drT/0UeP2wwMt4ikbSmwLpS6RR3TWINRh4xU0PCRhhANDULSzQxeGA130QKU5Y1oNvipENctssnVzMri4f7Ola2rvFs5SEV1Lbxev764nri8dfX6tfh3PhigGw5uHg2kPQCcOzUbFfZjMuiYOv41hrUlDAYcul2TToG/GERTE9FsC2kMVVCaEqQZ8J0+oV+c8HRfCu5KP8wxkC/MVm0arRbYIwf8M6LQDXQOE4AuUf8AoY+mwFUXym7cI7WTpUM/B/IaAimiKid+lOvzi7alzyighcgRGwjDWofAxMQec8yosQWb1mPTI3xpqBVjMtosuJrQiuMqYp1LYGspOVxa3kFVJxMHoimM8b7WLG5aO49xy9Ifg7rFgzpzipkKdOGG5R+LMyP8n2H0Uh7hq5Ex6k2DsPQiNfAGutyoOeiXNd1ZrbK7sxfp9HkbEs4xV01hlPNUJFfBYDOn9XIUyisQIxwgR8hdYda4MKs6khDUTTAhIWzuF6TT8FMgAPUOw1cP2OqYgfwck5pf3LShg6hkDEY30rU2omwUl8HMJAJj8sLM/EIW1vnz5885Gg03NxK9Oux1QiGQPj+/mElnSwvLaP5JZOd5EfKDn/zwo/celgqh5UuX1jYvf/jZA1BUPps83n+OJFI2meXMot9u8cLis50yeJwrtGyTbNvhqBJXNamBmynGi9MyaUimYXDREizfqAllo+TQA9gsdCItCUMfA2eFPx3Y9rQSR5kE2wVqBNMMJdngSpg/TFT4Wki4ik+TgK2i63Xo8kRvtBaqvRCC/LyIqWbiDEW7pdDVy1dfufPS5UvLC3O5ZGwQ63dLlzavXbvx48V32a6zYRLXEGrR54HlBDQUhKGhZQ2txqbIcGnQWab7F9SaLQQSXaAq2A/cAs5k0qhXSsZ6bFmQR7p+7crO02e8DXf56vXS1jqhn3NWUa8lT0+puIR/kJeNohuPvED+Io90HblOHc906mgAXviFVl34Hn3QSiPnhV83NC5Apn4QzFVYxyzBAIpOyzDeZKlBZJlbTtdizvFFLK2nLhboPN+L2N8Kg633vBkpWh86Gq1tCYUYQibgJO+ourpxWErv8CX0ibvohL+QmqU5TJkOcls0mseY/2jTUkNTbjMqomsys30eQwfUXruPQIONhxj//hJBXVRk7caTcN/Ty6MetOYbNpAF821kDoC+Xt5rai5jQM3qGRXwGGE8CtNgWpSp+dpUIQsNh2BHOd7hGMTCsAAfrhaMpo9srcJGbq0lRm7W/W4x7YY6AkTqXvxQQ+QW4ODvATru+0zlMG547pU6iGcFFZX5UrXW2Nk/4ryUk1Jxbljh89wVe0y46KBQnggPd1nw0WOsa1EL09T4Bg1F4fAQUosdPVLbR2kB3CHtXRjNmu8kERZ6HI1qlUlLHZbhkAGMLVEQsYhmEul6BZ3H0ofNMwTw2VlHR9t9blcl5+fQTIuuiiSajcOx41pt59mTdz5+/Ed//OHVjXQinVvmWcj15R/84Hs3eOeWF2wbFa12Qz3YGp02rJtsqcB2RkovkvAuRHGkfMkWixSCgmJTHd1ec3iKVmWBj2nzqgIMFtjovLDmFvXWvzCFOAxgTmGgBLDtuUrM2e9ZpUZfI0/FcS5UAV8SR+9zMZ+lS5C2QhIfKVwoHGqBKrR4o8pVaqEGjSWYyeGNG7fu3L67cWmDlzg5a4n0USORWllcODk+c6Ko4Ub1fNjBYKLgmhrCx6ZwRA1P77B7AwIN5/iX03vIuZ4siHHDoZnJJnLJaC4dOT053N7evnnjKpeo33vvw/sP7y31Gluv3F27ciVUKKFJmzahvlRET2qz5yMvbnzQkDxYRvIOq1LuoJk6/gmgC5V/0cbnhSNIeAxOxwp+3loXCABl0frc9T7BzDGrgFRUBHqEDy19AuMwt3cYkK6kXxwmt1rbGNMR7ww4EnQXCIAlq0I6udJgwSgqvu6K31TMQS7aS1J1VwzqT2EGuu1pqeAgCUsFO5h00O0IwEzfYMhhspOgIWRGImKITzVTwxt+Po8yqs15Cq5Gmskjr6np+PDyVWAD0DGsS6cZkNU0MDBHkib8AuMt4OcwNROGaozbDMtpcDvRsjkWtJlJVtALNqt88AAGhE+1QHHUTVNOKxcJUIHFQtz1RV6QZ73SvCvZbLQR2uEeLNdNt/d4WfYUTZJdbhMl0CGhhS2Lf+7FtlAEFu9zQMx0AZs5Dj+jj2EcAyXzFhY4BkFSUuYCFTKlEq6EFPGMJNPDzUDGG4PYZP/dcINwUlSH/1U6/adViMKEJIE6jxbqOq7uo/FqyqVLmxGE0yWbJArEOSoioU+29/eePU/HQm+/9vJJpQZLvXl2vJhLX760igI1qQKVbjwOJ3QGDQ5dWZyv1Nq8YcAzZqg2i3KXDa6TFMKA6jmhQIeSZiBiU5SL5nKzDjklxJN4+VysH+Y6pcJI6CbS5yoAJyUIj/LX02Ew+DHVbfd3UMwQjuzsPod9QlEhJ6TPyTAOjn/n5+fyhezRAbQDHRKJ07MqD1hyKo+opR5tTmQ4Rn7zjbe3NtcLGU616VOOJJCI5VQ6ub29k8pmF5YWj6oHqOFRC4KQ6CcmukN+cLBoNP6rRZn+0nUjURc2PaTAUwVw7ZKwfvodNgQQO7oetvPR8d7jp09ef/31N99668n2M9ztROzSnbvpkvSPUjISQgMRtzxQ8UfzQM3pT5HP2RNG43DC2PCcAA8p7iT8cyEUTFV1WFilUdVlPFyIgAAjdICXC+7CyNLhJ7aFl/0C42aTEQBCatC6iDiMxnsIcNwKwyiz8SU/GoxVkDa9ZrvbAEG4WDY+zWBBgGOseEEHbtUALI9j3KZwrj1EFjW3sGOi4q5wSs9lZvasmiMrFyyHd1ss/+kdL2w/H+rcQbnOPz7fRbbn4WeVmWTU9K52s5L0tVaKnxeYRKyDJ1Mb23JOBghChGaYloCm2NYZ4752kGV1DtqGU1xKykFpCpuy1lb/4mTNPlxLUHhmrMsVtg9Hg7zuxMu/kWRaWLvVzSMXmS1I5IYTWLhDIKpUDD3SoF5QGhe7op0Qp6Ms4UmEF7DhIzPkQJTQDLSLo3gAelKtNLitVK630cVJIiz5bX1BUWBSUhgWx+4EmOKBi4wm0Pe0PQFFJJwJQzzQ3JBKh+Gb/+hHh6Vc+NJSfnNpfi4eBblXnNag05Oznb3Dh0+f7R1UiPnarVW0xSXiOeRc3/v0s83l+dbZUaTbzOfm6Fx4F/12g60DZ9TI6iBElImjw0gq51iNUnLQOlgJ4gjGZyhIG6BDCfQ4hoJh97hFF3UrYJ0BcPuNAw6uQkcb9Rb4XQHQeMrheJetVbjeaB+flGH1NBsd5IIkG4ryL/eIIxuRRBz9nWFOWTh5h861edXrrNwUt4w244m1zJXrN27evg0fhrczYbhw1is8TW/0+0e83xgKzy8soeMz/OiA9sRQWFVEuKYPV87Wt2AaYXw3zNS62pnoeBtV1twER2cErzrTvRxJoO8jm4v3+s39o31Q//Lyyo1bN1e5JhGL1pr1cLUaTi7wIBwX4rgpqBNQdZ6mjFtg6pxTm0W3sgnaTvxMCI8x4234ji9GsDYIvrhNISywd4x9AreRNRYgmAVJEMaHdKTAQQwesPHy2H8sI+bjZBY0ldvwsNElExv1NvPlBjIJdzzJKZUifSL4LM4dbmLj46bQuU06FNxsxTPJVT0P4p6hIC3mBsYcwaRxB402lNOM36pM85wCs7wmPVi3TAKBzAovanex1/2njzLpmMzCwgRtC2PLgVnhJ+FO6mYSPBMyHI8T/r7MYz5OdGQMpk+w9CRUOEBdCqoWXtASVpiW5S8YgPBifoOsEB3hVlg4kQUtgOMhAKwF0TKM4Hk8zRMh8VSryxO+3JGCe8EdJ3qIjSlYiEHO3SIIAAgUxIrQoQ4S0K7cG5zU6qfNbgX1njwdKxTBTJFMuiaG0KtjQHliL0Sg/QhrV5VSve2GAWe26QxKOWGecCt3fi539erV69evFxOD46cPzg4ODnd29/f3n+/s7h6cVpssaUNLi/M8Y9JoVmCst+tnkTbKzvpoRZ7PUSkeB0vOL86hgwHd0Qv5XLPbSYUHaYlCRllaUzQeveHVGhClNMCJVcMSzNA/azpIHrsNmFeE1Nuw4Hcal1MB1vpUgCpwiRd+GXMBX05QWt0uV3UR4Rc5USOEuN/LVV+CFvJZ4krbdlTSolwFeP58G+F9zh86uraB3FWiML906fLll+68unn5MvSDIiEcy7KfV4ZR6IG4JecEqPBjGySBKfA7Iv9k1NOTbVBrep7tjsMFLDvpbNEApgv/8GIEsBJFSzenOihtSkVjbKwWF9bRb9RstkD6LITOKuXdvf07r742v7kamiuFYskem4V4HI0aKK6ISw2tMJlqrs0cbYBQLDkySoR/LtjsPsYgDq25ca5mHDOkOQaxz5nzYhTeRzSH4Vfiejil1KfKOTSqQ8AMSRTj1ZErDcgA0Qq6iSSOl4vu0x/m63ApbvtU9s7l+oGvYX7eYd/+c+SgYW0BJ3+XwNA2fGsQ74VD23p177gJxjU/V8CQxJb5plmtZYOO8TTct9swTPH5iyIAs9Kx4k3L2Hhb8qGSVk8fzMeadPgw5rAAk8FmEYCpCJekgh0WzGKsYN6LWTHV+JKM+epa1TTDenMSrCnn9thgL80EN6CZpezVQWuMLNAbaziOD3m9hfe70BYHdwPtNVSDk0AQHkqMEeyA1w+/hfSRmeEEFdKBAAgrxwTslCQqP0M6PJTe5ygHpOV6i4u65S4P9vK8LGcDLIIhF5xNajSjrRL8AwoVLqXLtOzR8INGwSQZkgEtVbRUY48KakRUkaU6kqDgHTYnnEifPt8b1Ks8rgLTHHN0KP73rVub19FX3BmwiTk8BXeVdw+PuMrw9MkB6g/m82l0O+cSuZW54rMH91Kx0FwerZy7iARxoJqM9MiF6YxQBPQMAgBG1zTFZgQgP+XUuUAo3bkFNIXb/UgPEQRNzGKFUAVQMLsB6J/ceGD6Us5zdsq+hJajthH0pBr+5fIUFEVSVN0Ed4OPT46r1Saqrk+rjQE7Kc4nFpeu3rx9/catfGG+3tXja9AZPUY2QHK1geY+Dg5InBtyZ7X6GZeyRCwTaOtQk5KZNnycZFMpAFSBxtSaE6TPN2DRA+1vpI4QKk7NuMmxurRIYogB37j5VVQnPX66feXadQjZwwf3169eTV7a7LSauolX0dtw3AxpN514O/wjHoWm9cQQVDuCE+m+oG2LD0OpQVtarKcZKMo0sIbKVLjNL7MJ4B1GAPyn+tQZxqI5VBhzBWwnriBZNWAWwcJM2lpQBbI7z2gEBGJmlLxL0xdj5DBfQo451FdaHl2IRRgGF/Z4eIag+naYiCVltrWnDw/QWlJXzO2Db2+AWFAgPiiOMbdBzLaQQUjQ7X29YyyWhwfzJYyHe4QbrAMYLLjVwsv7+ojBYuC2rdMY0GfkY3mHhfSf3sEJ32SsyWRfDAEr+76ylH36Vs4xIKnBWfD5Bh2S7gg0l7lFAJj34T7aCViBsl4D00oyXM/zwu2At95nzYYm8ibYmf1gIl3KFXiMEP36aD5I8yoUx5fwcHiuJQTGzLcblVaFO7ShYioqfaFgr0iokEnnMyibDPFSeb3dqyMnQ4I8QY7SsV641UZsxnGLRNs5Hoij1KDGEedo3mlPgbIFHm2BTvCoDMWFGEAiOEtgPd7toL4Y6WmeRH+y3fjggw/W59OX5rPMCTjR165de+WVV0A2ZAHnhC1BHcX/zQ76i2oobajXzmonuRRl51JbrJCZrzUboU4zDemayyMIxAJ5Ic8jKIiE5rnx0Gx1uSzWqnEKEi5DCLNRMa+6vWymiE6gRquVTfPOpdhZdFu5qicKWJjTQiAxCsM5APqWY1DCdBr9edo76MXKNnenGXc2Y4nImSsKI5h36H/LF0Gz3B9GP1uSo9izWm1+fSs/v7iyfmlxZTVXmGNjVYPPHo3yUAOTslmtwLrh/B6R3NMaujkpThv9oNzxRgy0x53hBHfuQMQa6DrJEHEVsmfLIhoAmm/3svC7qAHIbBDKphOoeE1Geyj6wcF26pVXX4IX9P/5//2zf/AP/td3vvL60e4eGwdO47UgODrOrG2mB8kH9z6+9+ln9XAhnIIdlIQ2Q2tghNW77WREV6AvrP2NGOgWnUOWF23eWhahmDCz5ulEwCFg2LwT3tqMBIzPytFBYTnz/1y8YQF8MO+Afkw1s8JzMEZ/+OjeMTURGlKdpG3cECH7ZM1h+OEcaIJ9Iu5DM5a+//QO7QA8lsHh3T4EKXmgd4/SP/+1MOffF13e1zvM3396RzCeAc22nUrQ19x+BWEF9sWemiBRZg2sYF4EG4vuP73DKKr/nHRMFnUqBBE8hpAns7jdAY07VQvArUD4wv3V0phJ41ZYFtqvtsbgrMaE81mQclcTJ2s+TgUiUl0A4geM6CZcfFi5dZZuyAPxbEgshmqbtN4vZDHbaqIKtKuXI1PJbL/TReSF+Z2LhThQTcd4kz1cSKcyiLJzfkohpEkTLWRcDQp3K7wV0m31w43uoMWRKNgQfTribWj5Dw6lLvxhGN3MIrs2Sfe5owGhKwy1Q/YIkVN247lcYf3S/MblK/OLi7Cl2q1k4dIG+oke3X/ArdRKvZECk8KeEDMM4cZBn3cey20QfioXKs3NlXLp3YPD9Uub3Wb9YPf09u2NdDK522psbK5xcguWznIYKuqKKtMEj6SEOQPhPhWHHAMxtehuykOx3bmAiqkqSPRRBh2YUiLh8N6gM6j10KShdRWB90+q1BDknstlGtBHmP5J3DlaGJxFOhyHsH7W0XEolF9Y+PrP/gyqOLgFhp5utmlcOuAeBmGoFE1Gf0LT6U4JBnFfWg9wiv/D+weSv0cQ3y0MWfg7tH+OWokLxANxQCQERJRrAB8vurRQqpwdhAZr7Khu372TyKb+4f/l//G/+q//y4UbN9pHh093t3nQOMOzO4urqWycJ+SkGTy73BxkYHDByOJByVwSmsN9ZvRBnSMg18Oul+E7ThqtbWkklWTM9iN5DD4Z0iC09WRIMtSAGhlCemMEQD3mjA/mHT7kpMOHwTGLABArGMwnQnFUUGd8AO874VD7TBKAiWDKS6mx0VSNhu0vyMhoNo2KFITH6tWa+WF7hw+KIwhUasacleuCsWAXQO7D4Z9hhX0YHBQi+GkRBR8lYb4+zHTEHR5oEzoywYr5iCPP4e/0dEbVJJCP6B0W0396hw88CRlmFvgJhvFgjYSWpjKrI29rTwqcpQvoz7nNF7dbwQsNBSEWxh+yWSyz9UqI4wLA4AFB65J+OIrcBjKAMLspBtwc9CHEum29fgLzexAFmRd0Nyl6jMq32lm9WesOEJMJI36COGikza3R0GImUkjG84lwBsyT0u1WRBIlechJc5fn0bW6bA+0bWh0WJVCV0CQYDMQAyF09utoAF2tvhNzGPaJZjyLWHTJQKXgVDgoZ7bwoLotGgppeRhBLLRBx2dA6s1TFu27e08ePmJxsLa6ygO5LR5/7EaePd19/PgZjwEgp760lMgVSql0dm9nh2du01cu85Y6TA9Okff2D9m7bK4tPX78hHfpSxnEdVDzwAI5U+doW8+8o8GI+7+9VpT7rSoquF42pQH1Y7uiOkogHXJqTwx0g30Dd8bAh1K8TFJhEObcfBE0yWMBaN6HxhBQOD3GGwnsnKqn1VqukL9+++761mZDdwi4Zud2HyhEgrnuUiN9+pq82QE4MsA1i067U2HxnsqgTTrVrDbZxjF2OASGP8XeTx9mKKxzs1mRrJZD0uBk1gIkxfUOrv7x+Mx3vvOjf/C//a84Zpibm//5X/iZP/qjP3rl9PT6N75+/cbV8qOHp+1uLJ3hr3J8eu+jT6LFeqqwHkU2Fw0ig369WmHBkEEKwM/hUeYv/J2CuNW0EyThxZAvQgCCdMkKSS9StiDeCO4kgvAg3vBw75hVQR8g4FDYwOfnNJYI5FCO40JEj09wkJqZEQE4DwlcH4wcm++jTw+PsbOztIK2xQnm4SFuJWFfF2wf+AKUhcZIjhW4D+MdFth/ymHjdCKwVcCH9KmJc+H4jkxNOliLRYdXGOUGGbORfBiDWPhgrGDcYAmDuY+Vx3sZPJjmi93qCbfmZ9D7VQ8QG9BBiJsAXGmiB9RGdKztFTSvkUZ3TWdus/FlchsBEJ6X7A15RFE+ycMAKO2U9CbbAG7/ohu4P0ggqClED/8HCZ92rXKK1h+424lsOgK7JRKud3k2vp/jem06WWQZG+vnuRcWRk1kDCUHfTRBxlCc02E9eIowTKeDAGit1YcM0OAJLeYlZ6PrUSxrHJpybYunRietZMtBxAutDZ0vscSQJwg4EQbLweHx0XJuLgk3vbm/u1s+PFpYmHvp7ssLS8uwgD755OHO4729Pa6vhXK50OrqIqgfNW37e8/395trlwpV3jY8OLy6MYfinb3t53deuZWIDtJoteAec4jLrhXaKJ1PDKp1ygOXD53LUEZqRJHAqvD8JWEj+Uq2JgThPUS7SkmTwxZn1+QOjuHtO4lV9GwmeGYA2iDdYAN4PvDN2DAgNQQZ46EbSAGiVlQKUVueq9y8crXSaMLxh3Ek3T90HkcF4hgMaY8IwGgfQPt02ZTRKe78GpaZzR52WWwGbO/n2pBudZTWGlRDigbX0T2pcWrMJ0/37G5v37l59ZVXrv+Tf/JP/t5/+T9jqzS3tIyQEJqo2XFsXtsqrK6mu6Em7wYnl77x9tt/e7vxo093n+5V2XIlk3FeEhp0mrlsCj2y5GOLki9iu4HsSvbns4w2vzgNOswbao0xAoDDI0RPADzEfF13KwrGe3mHwafaPow5Rhj4CyYC+tfCYtJ4hGNeJD5MX4tHkQTgDjZ0+PKbl/lix5Ba4yeYnLl9hKCvvL7kDoD5QgpmLOVgXlPgZOGMD2YOK/dYCkxEE20kDhVVTBdiWGkHMbi3KY93+1hBiE/B0Kvac1p5bMCNFZKA4nROy9dSm8wRxjhZUKbgyl2ZgkmmwWGUB+G4/W7A3KQDxFIbynvDK7AdgE4BdEsLfjtPmVAFTjwhAIj+QACYDFK5Aw8njKp6ND6foFg+mYym8hkuijUqzXC3jfRkPh4T9o8MsgjPoGafR0/cyQSnpi3W5Y0WZ5In1SaXt9BjgwgQ45c+QpxfRwDQHsTm/QGcaylKi4HN7O4BqK19q1JCXh/j9hUvTYI0Dw4OdnfnWtdXiksrSK+urq5ura7lUkkeBuNs4ON79x89qu1sIwgUunptmZtiRNk/OkRhEYIOmxulfKFwdHDAjohbrw/v38um46uLi8f7ezpk5lCVGwAQgUgoxyI3UuE0XEx3N4lA1ryyyIygPMbvZsBAShlK1IvisuyHwCHDA2KXcBT/AbE04bqAxErRlNqsRstMBXhlmE67FedKXSJOc/HIF1I8ycLc/PIqj863G+0WBEKvMOsQAQIkkS3mM8TbBrkWhO6D7z4nKT1eYGDHIcKKAjgoZk9rIJsabh9FOO0pWUmShDgxOuXmZTi3VIJ7hUQsxxbJ6N7O81t3b20/3/k3v/Pv/vbf/c+RYnr9K2989tH7ZycnlffL1/r90vplGFMn+wfvvP90mSfYMmeh3mmjUu40OEqsQkpRBsulD7KbHOezxr87ptAiYMx4PDUGn/XpEfdYAM32kTGkb1/0A1kYxOeFI+gmpH1i25gc83VJneO3UT4Xfn0KBtXix5kx+IU4gY9ZBCCInwlOamaEDwKfAO1zVvn1ykcgu3Onz8Bimi3vL0kA6Hgf1zssG//pHS59DXSMAb0XDnNfcDhWpgK7CeLXy5of03iCWgETdtoG04cfrqvdgCUk7cfkmSyPQCPjC8Zos9JbeYL2rHwV18UnIz9JgpUPwuWGWLjyW2hfI79jAE5eZiMCxEqVGrPO06qQjFj78/Q3BwmsS9k9wYJg14RcfJKBo3ciuSSFXl8kAjkuRP9YoVSK5rJn1dZJ7YybU5lYGOZPBnX/0X4ygvDMIMlFrV6vXC9XGzz9OCi3B1ytqjY7tUYfJcW860KZ9QYVWvI15cJCbBQauLWU62gKpqbjv/xgFUG/xF4nGHrswddosmwg3NNuc0O1fHY9duUS16TAtaCb5yenH378ycefPi+7gXzn5TwyNDyLu88TkgeHqHLO5SJrawgQLaBg+ei4kc/Hnj054gWYX/mVtzhuPtp7jj6JEM+ih+Ooi+jUEHSM5VDx7zS+UQCH99XTEDCYQjSiTSqB3EzDhpmvZ2zc8h/NDhRYXmjzYYWtrQA35jg9Qcq/CbMMjQvYUAlu/MKG4qHgVLH00t27lza2OJkp15CfgjEDkaQtYNSjZEIsH8MbjmOh1T0pO+TVhuPUiUUID/OMXR76nyUChJY2NaxRAnU7zaqO1o+4ihzWJKJceXNosz+gd27evFmvnpwcHv36r//6v/3d3/2tf/07f/VXf5mtz6VLl3jXZufg+f1PP1tqdbe+sdkpN/7dv/2db//gwSC7Fksv0S7wqzhF6Lbrz59t8wYOOVO8MePxyUW4uH42vy7Ch5h3DPiCz1kEABLqY7kWG34Z2jaIx5I+JA7Dp76v7dMCBIGjJWgw6gV3MDAeYwQAiA9wIdroAwLg0MPw27u1nHJGnTsyAjhxNf3CPGIIjQiAC+v8L1KgGHoHJ/08xPLzuaqrvjwBMCLsE/EOy8V/4nDrlCGxxdd74WaM2if2uWF+soxlSzuxgmY9S2pCKRftz4UP186jlbWq7AyZBh1+QI/BbVM5mS8DcawkFkZ9NyJLQSIhZcgBRC/k7YgcuDwI93GDBIA16JAAMMy5IcyKT2+KizUMSwjmdC8a57CO1WMnxqUuFq6NWEvK+iMdniaHRLBz6MPcX4yV0MJTH8R29484K8qi1CyTzCY5IGBLgSSJThB6bdavvWqtfVZt1zuhSjcCIxqR/PpQRb3WvKBjUDhHAYj0MCg5IwCB0W6joSiOBDifrhxRLiEsLWnBUHriDmoFsULGEm0KZZOaR80m6skOeBDm5BTh+lIptrCCQojU0uK157vHT589rVRaMKVKcylQP8o4d5/vHBw0bNaQ79JCaGVp6Uc//h4bAtTDgT4Tqezy0lKleSCxH54cIzLHGgx3tmiOBc+UGwjfsmwU1xFDFWhYji7E5AnxQqWoBZx9YFwSoGOJQqW43Etv0g9ozON5dRTAscpn540eZWgCJxvc89q6fBUJqFPUQZyeqmXcLHNLeXpSF4ahMTYMsRk5GBYnHLg0u/VsCpKpPR9AFRVf17LqfPCT9ilQV3yjDEFalQq4crIdo3XFBkEmtZTPVstHXLN48ujp/+Tv/N1/8+9/99133udhgKXLG6FqmTbhoOVgb7/w+EmqsPGzP/XT/+rb76aSYN1eDa0VnTa6AONUFbHXpsSFJ42fJmNeOjX6izCzCIAWQxfNEPW76aw55UehnQe44AbENkMC3mHuQJKWXgDgnG54W5edZ6FEaO5RjpOO8VQC39aAvhk5DAt4nhePLlAuE8ZHJBae3tbLf8GEvIcFMq9g3owdYtNKY7ZDUONwolNfohvy8giOQQ3C8kgtCGemK5Z1j7OtDNyRNLhSc4ZPiCCHn6ROmUCvIFmPvsl3KsL1rJUxX+A+rkfWQGD7Ti0nO3yPfM/LT7M4YQcrT9D2h7Rj+RohoUK+1lZfm0aT8GHdHREwwsFaGnShZhPahFdNWsNdgFb1yPBp36/zAJ3/gc7EBUJ9Gci4F0YdDJ6tOnL9vPYV5flGJHjQDBwNcRTMm7jRfO7wrNGtHA/aSCQOCskwbB94ROAkkZlQqIrAIxqEkPXkyHcQqiEK2QrxTpSKA9kGLyL1yBbAXbDS3ViGnxavGgHuJFLdTbkZTrSMwO64GFElUJ4uDGsXEeLIgovG0WgzGi8OopwAwBnXK++8uBvp59GYz3tdPJiyvXv6/R/8SE94hWAEFXhcFwFLHtp69mznyZPTYj5UKhVa7eaVy4uo5j87Pf3so6O3vrZaSGdb9TNoW7uYffT4WahRzkZ59ZHm0gjTVTdxY4SGYXK0eUdRjCI7mNXwcPhfMrX0vTYr3KswyVaqF4nA92eKcTwAYc2gxiifZyNzVq5ASiCMCPuv8jw82D8SQ+2GtEQ4/RBizEk4SCcK0sE0XO6d4xpyw6CPg/txfc5i0L7H2ywqgjwYeATVOIAmubN3oJonMKSkuRo3l7jEu6MzdLMhLClP2FyPHz196xtvffjRx7/6S7/8k/c/eHj/wWI+G15bvh4dtD77tO4U2CFi++TxTiE/d8LFiupuJJmBfvMYaDfCaUqSfY4VYGycz5qPVJC2VFW+qK2KT5ogvgr6ajZcNG6Ckt8Q7rGhNSlhNeXBovhrT3XuNgg2IYGrw+Ue7sgN7m3DCZZOILzDzi7liXQstZm26z/rRdl+gejTEUZ1zFhqhLGSM4NwAzc8g8M+vQNlI+c7AKDe+AgeMnQgaaRJOr6yngohSlxvgAwbS6d/o+bzTWMQq57cgQ4LupGZsAIApGxmM6A5xwRuneERMekYgh510nmzEsY6L2gTPhg3GGusnFbaF4Q3Mc1gCi92j+b2sHX9T7DuAK3bSEqLStehYxMGNGEQEdvRYOmz5NMlH7gqYGAoAYM1zjEAK3xuA0hgBY5Pt5lj9kUHlW7n7kKae1SJQZt7A0vZ7GKm0AxFDg/3QvuDpVBonstTqdBCIV5wbCLQWrsV5oGoei981GrtV0K8ssjj8Z1oKENrtrleS3eiEY5rZJolPCjTkJylU55OjVhBSxUBq2MdWLZ6SLvrbXHdUWC1z60kmCedXhZR+h7qiBBzQcoz3ezn+tH5/Pxm66DJWjuXSyH5zu3ag8PK9l6ZRwHY0GbSUQ4AOGKlDfePjg/3Dspl3sINoTKBbQ1HAutL6c3V9Q/ff3exELq2vomys1Q+u7LIVYCjxUw4l4uf9AalZGS7EYpl4m10RLThzDcjdRRfxykl6IoG4NozaBSxTsSoUpGwWGfJNAOD5TCjvJjP0QlUguMAaohc58LcHAU+LZ+dVNgmsa+JL11a39y6li+WaJbGUYXrCxqcespLQxqaDaJgoDOUaQ6t7EQhhyPB8Bo5UIIWG64uVDnCooEQHGlonIja8+de2mTiEZNyw+Ljkl+HpyvZktig5zZymw1HMsNpefXo9ISrALdu3fjs049fe/n286fbP/njH331618JLaavXd34k/c/anGCPYg/2WbT1UFxRCTOCr4G6id59AW26i00l4r0DJHj+bybBXEDm+gU/IJti9RJOBlNNY6QCHuYIQwObCUaQCke7hPxCBHkBBBSjU2FoIvepuEhYDp6GT1LZThQu66LZ3XAbfkodqDDk7as9ItLsiMVwyrYhqYZNrPwjLUbXcpQYMnFYkCLO1ijjTqbOyDYlE5dqzGiaaUMfMqqp2sHekQSRTKCOUPLmAzDCBD4DYYLgJWRykSqX8AmItt+i+4TNIeQuCuJ2ao/4Wh3SfWM95l8nBye9aUnABpooBY3/sZiKaTV9KINzfAlUetrXqgm8EdxTxo1vavpmM2acAyi+APdxVd3fmEza+s6NmotPaqL+MrUtAnvo5gDmyGIPKaGjhS/g0wYMBwHcBVAPc8uADw0aNdYqfa4DcvtrXwskudGjy5ppXjghdlQrfAOCe9/cR6QTYfRoCBeNyt5dRNNBgGGodFuIlqU7KVSaoF+OwSrnB2qCqANIy3FvV+WzEJsYCE3XFnB61aqFqOunIxjIFwV4At0xWtVLjgnxtwkltZKxhGXy+4/2f32H3y3Vz342u1l0oEccu0MptD2s+d7R5JyWlribhUaQ7PoMXr27NnhYZeSzC8mlxYW0HLDEzJLC8UbN27c/+wT3m/55te/igq5hWLptF7mJYSttaXnT5+FO42FwiIP3nDjAYVBfa5E8Cx8j7fVO5Kaj8CVJx/+JNhDeWlPRiB8cDZMuNzghNQ6Atvvo9IfYlAsFoCguaGGQBEStOni8sZGslBI5XIcnqNru1av9ZogUm1htbV0xg9U/+khtCQtxc1b1E1wt4vdCao4WmcVcAO9QgNqJ6oWhQag5lW7F0sExEE2Qv4EJYB48O4oIMybylyDi/MCEPcQXvu5n/vkT//4cPegcVj+wR/88dXXthaubt599RXkVhHz3d49QmKAgwYsBGWVCDmSKg/EsLOZNpNoFgpgPhfs4by7AFPIGXDhnWkGxCcwFbY/c2MTHIgztJgDKAUNzGEWPi85DJfI4aLYJzZxvI2Ph+tcxWVBtymMrUUdRC1OcXDz63xxG8vLssY2oxAYl8uk7dKwjYajE2LpqZqk5tgfw1xcnuB+VVJt4ZA97tFocllMWDMJwETIIWDUaLP8x+HUEJDZUx3jEVxgH977GoXnk4pjjAbQBqywNIod3Ns4bMDhGDcBAoCXz2g4gMZDE2ACZIDRqAp6C+G+uL2DoV/opo5T/RlJU+FBoI+r8jDOwQIcJcEM0PkqCxQkQRGrjzU7dRQ59lt1xgyYtx0J8fpWNO/0CBAJYZVm6+TkFBXHuWwok0fXDy+H89II+i+xtEIF3yHKwh1ZEHEJ/kYyWWl3T6p1WDZgSy4cI9VP5tAb2tkxyjUV3DESPcifuomMQKBSFqHGU0i6E1szKxyp93vZWJpbVtAdBJRqjdrHn97LRxtzyeY8l9V4Svf0hBeIOSJCtX5hHqqgw9VnO7torYcdHUNolQcNl5bg07O2pZxcHkaa6LPPdtZWuU4sLjYsGvZHHBW0Gl32V6yN05ksovro4uyxxkLBUSacgdD1o1yZBtei1YJiw1zS+lrMmaF6ZOdmd0AFUZ7qjqx4EJ5T0SQytLyl3Kjx6mQiuThXyszNbVy7xiFxkxvLtRrKP9liwL1xzDrV3Hoz6KCR7NNsPgkDkkchAycKyUiMi1mNRJnrzRYXf5qX6nD+zLkOZzA2I3S8z3th4u7RM9ol0CN0Dbp9+r0mlwk4Db7/4DMYhrdffTWTuFdLnVarp3t7+61ULL9xOZEtxuOrrCS02OQ2GkYrCnUZezcmEUPDUJ4Vw9u+Lh7yYsfM8FNTpw8cAbBmwTZDFsKSo6lkDrM9PvEZDRv2xcWa5juWvgWx1rY0sb3Dpq/1MLZzqGd9ImM5uG6Xr0vjfGAAwRDYbHNYLrhFnyA2bh6JdmHU01PMTAJgFZiMQVkmgUB83mO+RirNFztY3GAsH93n66NYMB/R0g8mBcS3xVgwCxy0fUYG9OF9vsHAFF57KTeMRHTpsJEtAjtye7ibdUSw1UMwpT+j2xdPZbCWd+WZTC5YL3NbeAa6Kyf7MAmPaMAh+8KsgBmMqjLRB+0dYVtoO6vbvzrgxXCah/APS1MWpXA73BISjgMXl/ptHc+KnwTKE69aN10TyVyuH0/WexXyZclJMXUmSpuBQ6O6VwzGUFNiNClJkPMICAhoRCWFHOAjfjQEgEYHlais2iKgoQh9EsgggaS4koyiB9j9xbmljcXk6fPoyeEJGCiTy9bBhE10V9Sf79WOKjp+WFoKwQpC5IYDTARAUb5/aWPt6OTkwb1HqWzoyrXLKL1ZXFi4//DT6y/dQqj0g/c+5IQ2ncl0Bx3EYWGgw4YHuXFumw0nUyE9EZaMRxpO6wZ1l7AnhvryXiTn1G4W8Dom0pyspiktNASl/3vPuYVwwJFGOl+A4VNcmM8WS2xtKFW5Av5voIIbBEZNaQm6gCRdM53PKZeNgN5Bk2EYg6zem40WokXwcLiGDUOIXqYroXzMbYiV+gBKOoAgi9a6XRdBoMxcmI7H0TPBgOh3Y3EIZ6U0l8/OFTK53O/8zu/8xt//Ly5tbrYypdOz4/v792rxyM3VKzz0g8KMSxuXB+/uiE4jgQFFpw1YlUL41Nl0rhX/gu0rdQE6+2N2+GHjjEUlPLUz27wsBc1R54UvcG+bw4f3DotrSVl4S8fDcRjEUtA4tok5Stxi+fSDlCaYlCXoU5vq5cJcqBfBMCQeNJbUCO4Qk0/dkiDKRYj/YqoOeeseZA4yGIPY53CPNOE3GrTjHrp2pSYzuDpj6HLp25cDKjscWtE7B14OjkWF6TmLJ3v0SdIObbghpxZh6OEemfMIAZdLczgOAmDhxuDn0O1QPG5mFJkFbXIagwx9p1KSKUkPQVaeWf5Wa9XM1RpbbTHNjNp16OeSVa+rTeyfKg0+pdjYIBymPVLqrHhpcR0H0MxgUi4/cWkL3s/pKQ/DoM6SHomjcQbONqcMUqgPsu7B1Ze2SVgiKMJEARy3ClAvUe+gSAztbS1kjqAQFMnS55IaWM0NBFc8NFAoW+WM6I/jAom/TZmF92VwuN53ikt57EWiSv1+Chki8ut1n2zvvvfRZ/NfezmWzHLdrHICpeKZrSZ5V1G2Fg6tL4S4nwrq5yChdlam+OweWOND4N5798lcIfTqq3fhmSzOFU8PD7imC/bf3XteqZ5BIc5OmojKoOogET0ZtFu8ZsYJM9sC9KXq7ROuvkm/NQRVKuEwYsJK9Eb7coIhnoEmDa5Hx92OCeXP+4eHPK2ztLK8tLKGnrcYm4tUGvF/VLk1OFHVzWk1PXNDQjnIPfm+HDnoR7UIhpDDHtaAYMiytmeL1ktxVY+TCHYfbD/wsUD4O7avgzKE6TEGANn0tUHjaF4nROp/9zA91IIHPj985x1kUp/v7fx3/91/95VXvvLq1TtrW1dP++X4Ak9E5I6Oz/6H3/njd9//GHliskYFthucriA6d9DI0o3uSTNtek2GOoe8KPyU9KmXVRrb/iwpNmhWQgFl7HPURI5mENLnxubOo4hZDsK7NJXDLAJgcbEJaW6FltCKe4LFjXa3HhPyIkAwjIV0NsWh4FBrCs5MEUMPEo7bHCLnGgVCX8qHtNxtFdz8MQO1lFKVCUKjEZHAgTHEKoB1SiC/cycj+/wj4JpR0OEWLBBw6DQCYB8W12zbL3uIdxAStxlfBj6DKQyT1g9BoMBaqNMS4BOHpMXAw0118RmzWe94SNAt0euJ8GQAc8Cysx9vUyTvJoB3s3qdTOcFkGAZgqUd22FQL3W0VhvqzEnjmwgv3D4YY8CGPuOaQjoeIYOHYpqouF68QtRF+IXRgCwJ0o+dMG/RnqHkrN7rx5Li8HLAB6NAc5txBFYGTzEcxQlxet5Af+F6q11utMH+HAAgwiosrhUovaJX56ArYHXyFwEC5bBE5bhcEo5CP5SWMmMIKZF2GKVqRw1ojjN5ggo9yJAGbkdxGsrS/sl+/5/+y+8XM7HXb27k51eqlTavVOYLiBt0c4XMgAe+xPWIoEgHDEuS9CEHAx98/AjFcJlsaG19rjhXaLDi7ba5/fTmm19lN/Tu+x9uXtpYXyv96IcfwL9Zni/lUtsnKFgG14u53eMhHDZTeAFh8U4FKSSV4jyYhTSSppBUNSZctU73qLwHZ4nqHOwf8Z786tql9Y2tTLGI4Ay68Lh9VdNTCzy6rCalRVnMS0ETs9WhA+tfNYAzOPy6woAaBxiNzygkhBaLxZPsRFxi7NIo7RAP8gga5BhBIhRPQMvbES7WSdMURIC2p/3pDLgFMKg4GuFNnWSaF2mOv/rmG6e1yjvvvds8qf+VX/mlO6+8vlevIFFQKC3fu//b7773YWbxKqNR20ZnSEKXN7QPkEZqAwZtV9ggYOieBZ8SFJBrLH6m+w5RvDXMEEc7hC9I0CglN49oTO+wNIMQ74XDmh3bjE/B94uHmIPhYQ7CWzp8GsSnZp8WwMK7IBcsFxdrirHoF+3zcQKc4UTxmHIKYz+4LhrppboIGX4ReSqc4k6FzwqPOLeF9xHNYQ2H2wxhcGBz6xKb1PjENod5YdMMlpq1h8i+qJ7hX+0GSMMNaLlht03aIpNu3yBfLX0UniJSHtlAAraVSqNuwkyDURrWyC41cnel+lx7KB5KeIh3wFbxQaAiYO5mL26HKMjixca31TCYKz1lEr/XaBYiKGBmroChGFQNyh+EpQuGgP2RK4Rr5YOTcqXZAB+FwHRN1vvoMpCUPhgriq4vkCIHBeLfwOmhfHG0dYbAaJy76sjfKSoDOUJYtL/khUg2Cl0u1opbTGwqpaW/DNmDNrTmwgilCvsrX/qdhFxY8DjyQkLo6EfQ05UMklCo3g1Vu4Pi8vp1sulHTg+O4jwDP6jH0/OnlQ5HA1Sf8wmW42xVSBtsf3gUSq+Gbt3eSMXCh4cHg057d/vZSmGuVCz+6KN32PRcvrwJAZsr5duh+ByPNyY54KZcSHWiuI2NThdShtw9PHeonBh9OgPhYITFPn+ofJAqCKQeGvXK6elxq+nGyCCEPBIHD7m5IsJMNdTrdfpcAaBJQZVapDCENYppR4ps1FoRyRgINm7XQzgdxOazAvNJO8bh09FkaGSKQ60VEeV9et/GMZU01mkyxH11GQOCHYs1aT/tyCAAUEZS1a6L/VCpVDw5yy4uLz/f3V1ZW/2bf/tv/+G/+/b7f/pONpd781d+etDgDD6ezczl5xZLc0stdSVDUgwrN6coD58qlkPT+g2aGfiHIC5KMKhzTw/vGmYi7AUA5eFb43q2wRfj2lPBgg6GmcWzdMzXbJ+yd1hIs0lwzEEwCzkBBzBePDe/LWDQVjFdbVRgmzByubyCtlJ0NdKUcrsGMrDc4VtqVBFg1KYOJTgIOxJeo5bzCxs3M6eEngXnxNC3wpjDPrG9IV2rBhAS9AY4boA4sH3Nwd1uGAK40DqWiJqABC/aysIlREvx621RAPzcKPY2Dlakgn4xQ8uqHAR22PyL2FozusTHbJbcSkb9eW6sI19MA6gUZlhe2srViuZB4B90A9oSzgEp8C4u23dHYZQPSjzR6JbmNajoSYeLXbxJBTMhjIgQx5NsXMEXkAr+kTjLVW22YBtHoxAISCeiKOVmu4r8D6XmDhfrT10+U6/QxNztkAIIGnPYISB0iiBZFILQP9jWv2a7O62G7GhH5BZVHcTD2HewYcom0pFOg7wePTt4snOURhECvCgoB5m0W/vH270Q17h4yQb59EgN5c7o+mz3j5uhn/76RrPBor+DFubjo/1Oi8d7B1euXOEk4P79Z2//1Kvrl1Z/8uN311YWdo5qvJDF2pndBm3On0rI6Tdaejo1sbzoHr2jkk6mUpl8Do4/Z7HNZr0HKwo1bu06okIcpdC1XPy6ffPWxsbGcaN+UqmyKYD8sS+RhgjW+1QV4qmNEnQeEsxOhlPcCzjI9yZBvFtjY4QFQN/q55hUsSJ3SyOLeLLe1xm13n2E1YPGCvLgAReCSEJUnQFiYJfmBAa7nVwmjR7Qy5cvV6qVhaX5eqt5enT0sz/3c9zn/u6PfvDSN15bXdtop/Lf+ZPv/fBH71Xr7Wheywkn/gPPyo0qclVPqrGGwy/wQ88Gvj7fGaxpIPTnJzLWShTGJ2UtZql54JgjGCaQ79AZTNxCWr083Dt8ssS0kEBwqP+HGEhpAsQMU5/24+JiyeBvDrPt09ukI7hO5s9DWZKssMZogMGxY4xdgtu3d/DJqPKBgg5xED/P+CqpTML/qqF+RoZPJqd90YIY3NjAUSxlbgpgxnxxG9w+XVyNYW5s2nSxSltG2P7T3NjmILqvZtBB+hZmzPZhxuAUYAxin0Kp08ys8NNDk4KRaZtOznYhVS1HGsbz8Om7zlRYIIwG0ApuiBLMdq2oHUYTjm43EVAhHECxHliRpjKo8YkmV3rhGNs2ZEFrnYFjUIeajQFnoKg10AmjugkWJNdBpJmeO0QIMtY7HR1kQimQTBygxF/7sgzvsMS5n1Xn8q4UFZO5aBda47hyxsmTFvsMAxgHZtj86fF5GYIpaeEqYRcNFYNCA2pgcHBrKPRb//7+fDHza7/wM4lM/vjssxBL1B7vWyUyxXkW/qD1w4PjRkvLVHJbXU1yQJDL8tJBeH9v9+SwDMt7c4Uz2vx3//RPVlbRdbaKelFU/iyWFo7PGlxoyCVig5Nug6ONGNL/7UGDV1minCuQIteoaVh2z6W5hWhCN2Jh+NTLZ7WzSoYXcpJIQakaqXDojddfX1q/RHlCDS5H62qbYUJqpD0ZFFIv80AENAUwqqYQuOu+kS2g61caRiEEd8SU05pwrzg/d3hynEkub2xtnhzstrot7mFgpCmdR8qaXPTtplHbnYizRQHRtzOdepWL3L31y4UQui86vcWlBbLe3Fx3WmCP2NLoNgPb4Xjs5/7Gf5Yt5f7gO3/82s/+lfRK4bTSOjwpQ1joYei6CuyQBw4JIOob2ugqryLIWMltfWOQoA3l85+K7arsbe/lHW782yDxsHOHJoej1iRjDmvMIVgDaxjkPM6wRQEod4lMOGOFEdQ6hYyJGvAy+Gj9Jo9g+Q2/+fAutizxN9V3MviSov6Aj6JbFCDyFYOY7TozQAtL8tJ8cRtnpYWhzEpH6zLHjUNIj9SoO0AJ37FsgsKTFwkw/IjAXFLKCqS2iHE1Uek4E3QYK8bgQZstbvDTu60hrFYAvWOSAJgv1SCMGeYExtzki4NPJpUZ85KUhYMr6Cgw45wxToJDNo4xc8jd1QSbAAwWBplscxur5yJcIYNw83V1Y39rqNh9nVvBjvdQGzzneY3SEUTdPipDED4t3/PwrjMpv9UFW93m85tw0ETA1LtMSBnhFSBYotxChroqyh/8X1dlLR6dQE+M+YxeGrRRRmAWxBMsnSkGBoQFJpFAvth54D2p9iEu/CApf9CCQ+9nKRtheDhpyoUAsEcoAe8mqkfB2OoN7UJdIUnbFdAV0opttrY+IEVDky5/jVN3SEzyJIHh/DmdD3/9qy8trl1+tL3HJi2VTp+c1NBolJ1f4GLT9tPHuwd9Lj2tXuId3SjazBABQuUDzJtGtcEDkGurxbm54vri8uH+QbvZfuPum7xn/PTp42w616zX1teW2DKUMulOt6I2hDHJ/ker9U6t3kV8HyXV8KVgm6RzWVjwBwd76ETj9CRFwVuhRqvL1mE5F7p56+rtmze68cxJWw++s4FwBI4WjwxQNOo4XCRPpXQUwAjRzQ1r9fNOpL7WMq7q53BrRrpVzDb2ajxvySvHhXzlGKlcPc3YQblTIpTPcBN7gHK/TjOcgFhF3f28hGgr2ps5OIZMO91BmlbLK+todv3s0YM33nyTyyBHR/sLyxtv/cLPP332qFJtxhfDbA3LlUYqXeL6KEORAtsEZEzaykdjjr8JE6xC0NPDzeE/g2GCboaGm0ZBmNwWUbk7Y2MLp0Hs09s+vM8u4FD8wKfG9STEB2CYBwN4OLjLYgExILk7l7syIaTi5iOYiUEt4smE1AiQW5NFtltN6hwYowk1MvZJ+jgs92FedIggWOfGWKwEAElqto+imCPGIB4DWbrAfdJBxywCYJW0kN6NQ0oeHXLA9g7LAttQuUfoBKDhsDUYRzQABxBWWAYngPMUUNk5mTzhaKFJDUpRTRoB/5EbuPbYzhe4d1tIi8s8IryF8TbJ02rK5Qsbpu9kOi+AqJMn8gUSLD/ltNphD2s9UR6De19zMIh4Y5ew3MclSekRxS0gLwHAwwGJa/RxSsmopP7VVouXCdGgH8/lWkfHNCqRGcnIFMLUUXO7iwQoZcDZ5kXANlwkITCWfITETRiyBokn4cLE44i6g5hY/uulRZ6+YZ+BQfqI7EWe7frX+VJAWQwN88panhki0kHCoi/64/YRl5CSmeJCbnEll0GWNdQpn8T77Vg4UW2GP/5kp1INXdmIs7s9OjmNppNvvnGHGVWtnLaaDS7B5nMZytBnj9PrczWM4rL8f7L7eP9g5xtvvV3pVjLpbLOf2FhejH9WYanLeQM7IlZLyBRREirI2j+eyibTGdYlaO9ByzQKPxH65BCWKjBzwP6v39l4/Stfya6sPz2r750cg22F3HV1lLIM6aHeUHRRaA0EXRmj8MZ0EcMZ5+Ncaolh26hnXcPgS3/qKkOojRxqo9XIFgql+bmT40OtBkEwuqoRZvMR7bNBY183SBQh3ZoIkEa2YMjN5ouJYj4NYkEp5Icffri+sTb/1luRJw+297Z5kuxHP/lxuv/Oy6++tnn1SidZCJeWj0/fQT8FcsAokAP7q9t5gYH8KIsrIExLjYMJE+jZC35jQSmwDV2PlC6EZkzMSkgrX9UamxLI4WLa/HVlUsUBGtyQh9IbYieFdvNDDtIwuD6c8Z9jjlH0QO8EouBrAUYwpSyZC4YyMawornBgeX07ZO9wGZ+MNZil1EBHu05qbrgJIBEgvmBkAbZzK318KLlagCCS/CUYaymtgFUSpaXpKW9rq5g2p84IZB7u02dgvgGbxc0UYxTPPMjDOyAA3o3De3mgCjRa0QM0t6H4IK5nZ+CBBicixmnmcvWxFEc2gXFapYKOkf/QywcgKe8VdICg+VRXXLRV0IsQCwOODkb37lnt6QvgQ5pDVXM9wicO7x4L5j/VFqMqeAdI2xMA2L42AfiFAEgGCO38jlWR5hQXVNwf8DBAtdm+VCgW5uaiO8fwfyAMbQiA+AkUg6V5nOuuZArPiI5lLMOCA8vDQeKTwFBnyQdJeR8vBUY58YRy8ymEz56P7QFlcoY0dAg5GsfqXNcDDttDGoQZ3SxRuUUthBwFsirvnzb/7bf/aLGYfekXv8nx8kkyAVI+Ozr9+KPDfDp0+VKBw13Gie7VDnroBa2cnVBUtBglYsm5YimViMC0Pzw4qJ62tq6vcDUMhdJXrq4jw7O2unR8VFueK1zdWI+GHqIWiepDKDkhaTVqKaSAxDoPo0OUC3EPHz/lIgI0lTAIUVK6Qih0fS16+/L6rcsba6VcjePeeh1pJNqPucZWgi2RpPNdstBTN1/pbPZMIm4EQ7zSetD3o1VZzXixizVA6GFIYjzWRClFJI8wEsHYaKS0SWMbPWjWG0kOM6KhXCaRT2c406eQHAkouz4XvFO8lgbpIhHWdj/4wffeiAzuvHz3uz/8AXoqfvEXf/H3f/t3/vi7f/yV2M8sXy++/+HHv/+d76AYKZ5JsYEBmcBYBJHg0B/dq1Nt+ktTwBfV3L6j+QwapeIqNeaYEV6TeqqxCWL21AAG9HmRvnfjsIjQVOY7I4bAVp4h3EGC4X0ADduLneJzDxbG3NhcliNpt9KnA5gU6j1GO0qksG3Vb5DRzkDBKS2zyQxu0sGQEVlr4oy2y0KHbn5YAN+GKqGrI45hzBFuHB4CW3JmWwV8or4+5qA0DhmOgfkcEoax5qBywaDeF6C5yQiHubHHWD2qnAvApSV8mdIYA2IHUza3pYPb+/pKeYeFHKuyjxhMk10tjQ6ESgvfBWxboQchQ7f2xcE0hu6x3H2IWXAfAEcwzFh7+mBWfl8Lc1ASu5jPDmBEAECzEbA/uIrDQaTqSSEVT/YSHUTsoQgsOZK5QmF+IZ3f7lW4NaociKPXq2AqI9M56PFOpPZLEQ5sYqlMAeGWTojXAsQTJiRZSz4IjrOeK4SXrONfDZoLzcJqV5cQNUbBKOdDwE08sqS5RXbV9LBVWOQzXVwysuEyIWzJba8/+e6Pbl9Zv7WUW1hcfrq/c3JULxVC0K9CociWutHlllOXl4qPD2tgwPWri6lktFGvUdNcvtSuNZ4+esqS9+7tlz747BOuU92+ffPTTz/+qdfebqW6sWjm0srypWLoKWotGPQgvUyGAqdRccENuHgM0nZyVjk+OATDJxLcERYPJBcKbS1EXrt25calxbl0NFI7G8SSvI2G+BBPziCjg0grDLYk6rSbPSgp58xUEDqrBaDkm3jlURhIFedjhFmmuvElHIiYfkkm4rD+CabXJNl4Sff0APVHLFsaDWRoQ6Uip9EJJJS4gcH7MegLQi6I4woe8yrksqi/htvz8ut3tvd3/uS7f/yzf+PXoKYohf7rf/Ov/+Kv/vJ7774rzR+gnSi1hiUtPbWIn6IHAiDTg50l2ItvMBVrBBT5uaINMTtukJXDG6rUhJGvC4/PsOIOuU2Z3QqhSk/xMmTnIvp03ICzUTfMng6kxUmEgtNdw+zOHRp15DCCBxwen4z52ucYkBKQ0ai0/CpRQeCYOXTilola1ThkrpaNxxllxBpCiEEa2Bp6DooHBnTEpxnSxFAwUCIQHGBEIUvoCwsWFhN8il/qqILbVdocdPNK9AUjFpB+nSEVfs1WYlOMde1UL+sbxaFYFhXH5yIsVcIZiwjfwD5dfYYWkOAnFbYwZvu8gg5ffqsOXi9wWMSpNmKaU+F0xiSc9qWkk3AgPvepvpPAWeFf3J6kQ5tYamo0x5/hc0gAQMKOhhGiQwUSMbT90FDpRAop9G6jlQuhDTSKugIIAIoqW539aKfFY7NuXLgqONWXbcfUT6akj5OXGjkAQLrQsbLI0mF/ZIqiCZAF14lZcIIn1B22N3LsTishdcRQGOtcCk7bMQQdEMyoyoieoqhCewCdowC19iXrSL/9zqcH/+yf/4//m9/49YXlpWcfwZQPrV261Gjy8jaMihA8n4ODdjoVunZ1gWdetNjudXPpFPI/H3/0vNls4d7a2irmC5wYb26ucSfmBz/45Palq/n8Yr85mCsWbl1bf/r+TjSpsscTYpbGo10u+aKTi5cJeHgM7A8QrXjsowvJ0EYxfevSwtbiXAHM2KjR8MnCYiYWzyYTtQ5q8HrgZ+SaMvF0P9qCQsa1H0INHlcvUDak4cwRM6RaFXXmxQ4OXnlxh11ZIsL9hD7bl1Q8vba2tv/kCQc4Qtpx9H44bp9OhKXbAzWo2UyU83y6Fd2oJgQoEpJC5VHzjTfe2D3YffD++6+++ur/+K9/67vf+c7br7927drVwyb7wMHNWy995StvfLL9/Ua3l8zybA5dwiW/cAINGrFUrAMm0R5A0gau/Nje4eej1cvbPgAQc3uvqQ4Q4HBlcNF76nwkCMWbalt5fI7DYqgMbqExo/3HwvsikIt5eccwwVE6VgwLj9uZIT/HcLqx4qkFBl8LSSKgmWFooxXOBoKXGZChRbGVMXw/4ECooNkWFLfCj2gtKYAcsOl6bV4xfAQd/tOAI3smAQh2MBkR3mw7GuJzLEEfXsVyxrKgoDjwNYMPjqBt2B+ghXfXi8w5zJHAlgK2z3SWw8OHSUz80P4TMAGsnJNetKKWERPGSjUBngmYWjCQpW/PsZiWvs9l2AieAHBQCAZ2WEWDAA4+EoGppB5oRAY8nlQrJzP5UJMXDFnjZXL5+cWF05MyymrSEtcBAxJE5/AQX7qIPx43Z+VLdCXitkqIG2oLwELRSYi2UX/Talo52Rv4dZtbKEJXqaJaijTVxUMe8li18ObCgRgl2sEIpxFR9YBVNZcFZ3U+vnf07nsfvLq5mE4n19aWeGGxVJxHwcL9h7uNemh9NTk3t4CEfrvVKJdPOZVeWVqE13F62ipkw6+/9lqkyVHn0fx86dq1yw8e3meBxjkx+JtZWMilX7p169+/u8MxMpremClgWFbN7EVI/+jomHe7qKwUJHV4UjjJkn+xkFsulrIo2qufcQstGY5HMj3OZnloE6wLspQmIdQIIZgDE707kMymCECnE0Y4SuOc5KEK1izWFtaVZo9B2Mnx5mYCthS6pbNJcD2XErauXD492O03kDhV8ESCSU4rsgVJp+dySDHRUI1KHUSaZU/T75UrZ/ON9N27dx89fbB57QpPAnznh99bv7L1G7/xG9Xy6f7hARFQYtp59my7csAVAXY/84V5FDNxcwTdghCBBMq6kZCKp6BBPK3TQxOs61bKbMXGZmdvhR+zXRA3LkcYw+KOBfOfbsHgvz7fYcu04Gzyo84i+xKOPoczbAxOLIMQzDt89h7iHaPUVDXimmH1osvkblEP3teIcgZkAnsQmy9sjKWDjZu4FxJxCTLvADJxLABhcPBJtxLLjBM5k6SehZTtPH1qOLj8c+EMwPywSQJ70jAblc6EIXuDWUQf3ZChLTyDNmwFSgNkzAYvAMGX0kuISYhDIZHHxw5CLLVhQVh4uFN1bzsuGzFsq6dUjbPm+WtuC3juaxy3SXvY+m7hHCz/LDc9ONE2AvgGmeo7CbR8x+AkIr2a08xYs9undiRu3c0goIHAoWZ0CIwq6FRal8G60qRG8/QjXcR7molOJRxJJ+K5bJE53eLxgKSQCXiXDkGSiERYTSIviIYgcEGNx3/hfevZEx2XOAIAA4j3BtH/jIJLnUSKW0TWUAkGs4avW8drK6DFBwx1/rQ4kSGkSINzEFRsN/PAzzlt+IWR5EGu8fpacb0YOzveP810YbmHWp3dg+qHHz/Y3mnn86G1a3M048nJEcI/lOPy1ir4j8OARr06V4xyElCrlWGHdZtnlzc350sLf/Sdd167c3muVGIUQcwy8ejVS8u6XMstaAgA0vThxHwudXjwvHx4inoJlY5x2utnUvESi3wEI9tcBahzGo2CTxhlLcSO8r1WOIWoDS8n59zTCLyJRrukUokYpFSLfQ4q2NejUoIq9tPsADTQ1VVm4/DuMTj9yw6fF7uYHblkmhtoXH0rrqywnNSpDMwBNHnoJSXJBKGEYusSii6OedGhoUfDdE2BzqtWT+bnC/EkmormP/3s/lfffuP11776u7/77V/+1V/N5Yu5XIEjhdTccmrl2m//v/71u+9+OOjNSQsE2jEYi2wYkQkFcUlbBr3IU0PQL00BiuoNn4awVJOLBpxlAALjMDvouBicANMngE9nLO7YbPTTyjt8eLKmKHDolaMGoRYlY3YQjptxQjMShrMDwzw+PFr4vFvcPYl6IH0CmwyUreWjEQCmnkf6BuTTymatZ5+UScOQgjk/czMdXVk50UHpg9zaLA+bkRmJslZGN7tnq6IUQzAFNaMIy6RkNiIIghYvVXiY8rnD94Tz9BZVpcaOj+Xoko/oCYAPikMt5CiVZUqjKltnM21cMawwAVsMZw0EOP1uZagpQlWDdhA+Gj90NN13wXZjZQhxVJeWJSqpK6TQkAuvY3kOJDmEmUgBiAumplfTfZ4drPuYOzjggl6z4LMmDBzWYPQxt+81c6iu6DSjzdWm6noztLx7EVhHl1YAjc4sAbqnUWTeQ5cT0flitQAB4B5sjGdH1FQ93kNEJBR9aOgWQNFCv8ftX8TMRRUk/KFn1KOgM96XzSQavc5xs1al21BGGYf7LH1niP9D1ZkH7oUYIjEW0BjabYKftQPgGAmUCrZQYfVfHyxfSYRrDPJww1v30pCfycZCMFvevrv11vW1myu5UHn/4b37z5494XLWrVt5BuTJyRksIHgdy4vZlZUlLvOWK6cIlOXyyQLKM3MZbk1Vmw0uqb208soH7723mFt65dZrXFN48uTR8tpWbFCFwLxxPf1HnzXyxV4yHK2VK3t7z/sdqKQQDpx0bs+x8s5Jw0uDl7mkBqKFdrcMhKDfDGfm89VYGjmkDspXu51kn2KHMrCS0K/BRovlnUMbHHKwrtITNBDpHirn1G/Wg75DgRgQiAGxnZgPMqkppDzz+SLMoHhoUMhkC8W5vZMyp/CNVm8+A0YhaJdHgJ9v3+s06muLxcV87MnTcvnsaPXGtXL16KNPPn3rm1/nftzh8SHnJlxvuHb11j/8h/+3/+Z/+b8oLa/D44e5s7e9//Ldr65892n7aACvrJ9sS6YkjAwpOE04xOnJ7kbDqSR831H5vcPvAHzh8dKwog0Ci1YLTxiPT4LhfWp+1uBrBi8zfOIwGwcjLAj3Xj598/U2CM65WTIxCoU9DLWy8bXyXoSjHJ3gFobA57E8PvGYBzyDmxW6yIAzfgdAdWwHQKnMWHmoBVFUF5CilgmurdyyWKLbQuNSzggDkZnEDUdWFGisIjyD0/FN3KLCETNdxCQtR9KMjNlS2GmPcqic+lmzmkM4d9IoS/YkQy/fDd4xFkOox+0MfAC3BFSfsKMeC2yfxmdQzY1ppeorO6PwuHE4mLc02iaNxTKb3K0A2JaO//QRrZz+c+SAAFBYTcgvaHS7fpqxkkzzmQ5jaTDVg8e4gIMpDK2P2bZqMbRiYaAXU0tv7WBZWGvgZpnbiaWb8AWYx2kOCHPVeKROltAAt24QL55ZwXaBxW6o22S2DHSbDLxPJAYGMwD8To5I/4PhWAziq6EqjM4A1JUC/ThDJ9OfXC6gFq6QGhfmpQjO8M3Yx6k4YIqhFSrkMqUCODwNJkXwcbd/1jvdBftvbm4+fna4t3ckBJ0ILy3FIEdw7befPplH50M+G41lEXhCwSdIolI5vf94/+VX7uzs7Dy893BtaZFFE28PU8K5+VwvnslFMi/f2PruZ5+EW83j58+1VmjUpQaD41boJMsndEfHUK3cj9MiesELNRmZBgry2ixfmOzxTjLbiacGHR4wjqGVQviFNmSl5iYz9aUJqB711ZCHEmiGiNjRJsE1KGc/cHetZ4HjxmYJR3fEY6lunPRR7cY9X7TCJSAGR5Fkgj2J3mvkiBBhrwE3IGKD9s2rl4+P9rgSsb4mkVC4YRwD7Ow2Hz58/PY3397Z3/vJO+++9ct/7erV/tfeePN//7/7v/83v/HLL738SvzqZrtSfvLsOVf8FheXeXMHnpU732M0Qo7RJoBsE2KHkFTol+YAHaredT2KTfGg3mNwQRAOHqFsHN7NfDS3un6Ei7xDY4FOGhk+Md436BgjAN7Lj3mLa7YnRe7TCqCx54rvRqhyuUDehJSnFc8DiUxe3rDDhUdA7WgQIwC4MdqFOzaO+nG0tiYR5gokhx/zJTUn1Mm3JoRycY2LgzN50JtmG7G0vVbDSs+6DEJGolIu1hDiisRmPoCwLGOzg3CXhLMYlJqDw7agZkAtvLnPQ45ccD19mGFI50UDjIJc/HVpU3SgY7b/9MRAEC2qppgggsObrM0ECYDBLfKM+n45AsD8/LIEYKycvibTy0PTS36TqRXYM024R6sWelzBRr3l05bD50uzmAcOIWowDZeUYpFEoYRsTexot9usgJmEQvAV9SdZsDbHrEgbopoN6QU3KFwqDF8rualCE8zRbGzLxfkjNqlasMshMUpiPWsBXmy7Ya9RWOMR+mKBR7gS6Vwyk8sUOVwdFObP7j0+RKVlOiO9nCnJwUgvRaVaXlych6ClEFrtIokj1ke9XuOCGLQNmSHeiz897d28mqMunO4iYwQabQx4+TJ896Xbkd/6hKrXa2V0P1BoBpyUg8L61wyGY9Pn2hXDmbekenEuTAxqHH202qzMUZ3ThdREEwjZRrroRGLbSzuIAGiN5kY4bQHdtIUnuFMCgeq3YR/6aQCEfA3uJwYCHiZdChnljhfYH2XUqWR6cXnp4/fehS1HZ6FAqZDiArMwSAbNj+E+BxioJ6KC3VabqxKFYv7h42N7i/j111+///BBY3c3vbL09ttvswLYfryztLGxmrxeWJjr9J6g/yOVy7dYsSZRutfW9Q64/n2S7TkCgHrQhGQp3Zi0OuCmdiBi7ClwONfUyjUFw8CPBErr3ZMOwlsARRgNrakOLUCcMd/JMEPv0Q8BrDwApgYeS2csfR+LWWAhKSdAbCBUHwJgbmaKN0DQWoUNRMFcFBddXBBQO26LpaS4eRlYBGup77bSHMhoQrGTJjBrrlEYolgsbCuSA6hIOIbvAdiHwjmohZhmQ53Y8xDKdVogvIeMxTJ04FOeFczHsq3TZDCPsKiDVcPZjmXsIwccLtSo863EJBoYVT4Lc/jPQBpy0pTnBG/Mb9onwYdNc9F3VvpWl4th9TULLs6eUIbQ8aQdRP3my8CZTByIb89g9UkTnMdylvV8JJPNLa7Gdp610bvDrIDdQDStT032WynYGKORfIHpbgyozfRlip4E8sLNECdH6x276ueZA1TaNbWtuQg7NI6EORYTtXYwpmiLh4ibrdOKHgA4zcVPazGUkW4fnfLqVjqdRb5FKL7aoBjkiGTkyvIispF16sI7lqE+D4CVy+2Tk9DP/dxdpF+4pruxUdzY2iLwvQf3b9y4Rj7tZrM66N+6dvXqcujhEawbpGababg9dI5qoTsG3HNj0c/VKNhXLHfDCZBdGJWfkAEeyMktLrYTcHkTYpK7x+VhzNOIJK6JCt106EYHMK5e7ABikFTHVlCYAGqzRnOhBDcviAezH51EtJuWkJEBJ4koKFpaWaUYyG6yqiQZ6BRvJ7Pw5GyAExHuPPOG+/5BI5+JowQCuaD3P3r/6OiAFkP6M18qPnn29PaNa9C6N95684NI4rhSLuwfFNdvFBcW09kMr+eookmejNYWBzZYGG3UOg/gTWL2Lil2AL6c5gjaVnIg5mC0mCNovyA8wYJTiU8zPgqf5jaH+sgZ+/S+PnzQwbgigA/jHYTxbnP4T5/+WBgGkkH8/MIhA35Qk6GYSWfoZrOVo/uwgbCEZA1GSUhZRs0jyR6QLsSBynDUK0F4x5MSeQBCKFtPk7ye46YfxDLyBJiRpsuTjgCbrYmsmKzPRzsAymZtYQ6ytc8xm7lrI3gsvP8cC29TVr7D9Ia5GNYYD6ydCwHON0E+WVdeBR8vmLaVU4wFM9sSwcYAwbYI3sFn0B1MzhGAIOBz3H5FMBZuZvrqhylm1hkAC0RDIbNs22ifb7dHlR3LgyFkEF8wHNpdcBYyiLY5Q0SkfH4xUSp1Dp+3UDgM94a201gTjmOAwn+gsgxGIuIDKgOzMZzsE8zrBqcywc/nxZBTUJc52j9BOkiiKq6oiHWl1cxiTNgaf+QHgQqdlMsPnuzEes1kuJNBuH6QiGdKr7y6WatW0QJ0fHzYagxSKQ4zOO7Nwx1iIoEKOTJlS41+OHJbWAAnJuD/IPXKawEwQ2gWiAGiMoiKMhdZyl7ZWP+5n/76x//8u8j/8G4OL9OrPlRIeyI1AM9BMrbFixGDC8nafg3xo2h0OVeIFYoUSmsasK/UM7AEtsikoTaEDBCRIaBJSxOokaEMah2Xh6rvHfq4+MnEJkkQCS1CWdmP6IHlWHxuabFYmh/UG+AMd0DoboRxzS8V4YJbNrVIHSn1ysoK/QXS/8Y3vvGtb33nv/j7EZ6GR7vf7v5e/sc/Xv+Zb/YePLh2++b9p092DveXiqv1dieWSkeSWRgYoQT6QFmM6A5cJJriPvAgwpPI3ApOMX7Gihqsgnebg6KPBR6v42jwWHhsH8VCAsFYIsG4Q+CXIQDDBIclOm95l8MwC0vW5yixrkCneHgwCgEoM4apYxNEfFC6BgoKyw+3Rg/MJJzGIcUhbM0Y0bygxkwRTSy3+HPzD0uonI4nFi7iMRrcmNLY4gMPPdKjSSWbYmruDm1C4Ma+sAMgOQK82Khorj7etvCz4gZTtDBme8JzMTu3U7wIGvsajziDAFgs6w+f71ghPXwsi+DnlyUAouHTjB8ZY5501RjEPserOQqkdwNnG3IxbzaNFsoj+rFIvikuNAJnrdqExputZjPai88vZJdWYtvP2rWTYa3gGjOOpM6Ak3minosbw5fmm8jCz1LdIeVBMgwq54A6WF4SnAAHO9FACABpUVkX2IZrcMj4UuMF5h9uAYT4eoOTeq/z7DDUaaSjIV76ffnK1trqpfrx/uN7n1ZrZTpuaTkneZhOd3d3B5SXRggfRRAo9x+wPM9dulQA6T969IDZcWlzA0rQ7rTQlwla5JDz4cOHxeXVZGGZu2Nf+8rL//iffzfS6WVSrLB06gfLxc0pHbIh7ZFwN4H12n0fRf8tdhm5+Xmu5XY5743xjDJEG4rFilm7ISpO+eHxu54aMn80GwGLRUDzEYZWU2tAtMANNoWxPdxDhDpoWeYx6ybRZCZorDS/sLyy9viTD8RwSPBgALfCXKiIdFNzSQIp2Hwhurq2Al3M5TLf+Mbb3/ven/7Ov/mtv/Yrv8Q1Avh7v/mv/tVfbTdu/JWfTx+dXE2lqpHQUaXyZGeHo4u0FMiLtwxagtpEkVzlDwVwEbSy8pd21VPHUaPz/hstOIJwApCMhQkGDoYJusfCmJcBg17ejcNPr7FgNhQt66BNMCFWt8MOrqC90Ir5mk1ESyeYo08tmCPBLKT6V2hc63x6yg0CnSPQsPQQ2yjZQudi7FAK/dc6Qf3LBNPQ0/wSJcEpcT5mI3B1Biwmh/jJWJEZqGSiUWS29DRySOMgGn/KGy6hM1ZoK6LVylfJ18cc7CQINuxYFUjmHGLfAXsUdNhSFhpbc2Ca8WVQGGeCoSwjC2O2H23BYLgVUn7nJQSC8cG82zu8V9Dh6xoEznKTOnNwqu+s9nQzeUqM2aXyyjXGY7n6CugduKX2YZoJpn/ulsC7zja529vsx+bmFourW6nC/ejpqQak+ozpweNhiJ8LEQor859f6Ayt7VZbpMYXnBEGidrfjVcCMbQxlM12BjjY5RhTnOHuymhNRzyN2hFECHfScHOSu7i1fujJXq1R+RTJThJ87foWh68Ip5bmS8whJhbPAJwdV5qt0OXNeTAd6fDyCUqveSU4X8iqDIP+1ctbcIco8trqSqte29y8xOxB2ieJIvz51Ub17O7Nqz/18vx3PzhGqxrCFBSOOsL+QMCOE3AeUItxLAyK7w5QfcEJQyMcZkcBI4Yngdl0QFCZeo6/77i3YvjosGhUKSEbSmL9NGwvTTDXfiLoanaz3XgeukdwcSk5sgGtu/W/Jj6qsDeuXr7/yfvc86Y1UAIKyU65Z8o63Hhu1rint7ayzAMCP/joHvp3N69c+vVf/xv//T//l2994+21K1tL17YOz46+9a1v/Xyjyc2v7NoqUkuNKiqAusirS4QLQp+EWPVjumQG2wsCwCe4CAKAXMnwWI5KWR1xUI3g56juDtG5UOeD0PkReGp4DyS8CzIlmA9DSuet7ArjvbzDl8QcwG3wqZdHbr+fJjVzm00UN/DPq+kTgQVkWfiMhhXUuok/mByI04B+h25Gq8aBuwWofQDN5Sqol5Hofa3/SYn+18KLsmmn7qTlzNfNM0cN3EDCYmi72qs2xDW3h1u+FP/CDoBkx7rB6hO0LYAP5h3BMEG3DzAW0bdLMDBu7S41xRwWc5UeC+DTMcdojI2FUkUwPhf7xLZwk47x+KPvUYzR9+f9mqjGZCif45jXrPL7kgfDi2ng/gWBY24f0Ryz8jW49zUHY06pxZApibUgHZl0Zm4+nZuLx3YH7Sa8D7oGXlAb/f5dhN6ZDAxIDXQMKzxWKxh9GF2w4eRG37A/pAoFBiahtIyY2J3AWyK+zVkCMcQV1AxjmD+SFghFVzCOlL7Ek55XQ7EHO9evX799Pc5zJaFek9stx4eHTx49OdwPzRVD16/zKDzntAi9YEdZ43Pd6aR8/P677125vHXr9s0//pM/QS3u+vr6J598xAVgyAmnozCCUOxcr1WvXr3zV3/m7e9/8Nv9JjI3jtuj01cWv9y21+sHKmEfvaeDcAuK0g3lcun5lczSSiid01INDM08d5VjLhKDYrt5qnjUlkqp3m4oOCrrgPgJwpLeVqJqfQUTSBMatzNCFJI/lc2R8IBr2tFk6sqNm99P5xJIrHLYy5E07/jQ8HpAuE4REIrlaIL7cc93Q6Wnj3784/yrr7/2S7/089yIju3tLS4v/PLf+Tu3Pvzgw48+WVvfm49He5lMisuBPGdfaaIPT6ffHDdLxpwTYM6BEROlem3WlyiV0pZFywH1l62UzS0SdxGu8rtaG9eb8UPjmM1iQg3lbCA2rTzEc8kNPubrw5P8cIRfzJeS+BW9L5tGlyuhtTh9BISAslUl1zNOxQIQba1ceG37AjX19aWm5vYQUqA8jED6zi1OiEg9SF02SQpdwQZyJIFvPLCEyV0Gagw1Dx0NTYDvJ/6OGhieKhMR4SuCwzy3gaTpRQBZIh7OtgS08Hc7jKEYKIsyyvPFDTzcC4FVG5lhQ9vHdFv1p2IWkjadZsAJwzlP2QmgbnBBbXq4KMN08LQA09Iho2HJRtlZLGbLdIdPxAK4lBXyyxobFpOxGIGTQLpEZ3NTzbTwBIUZzyiYNL7YarKhcf0Oh2W20eC62CDJWBzZ/jSc7mS61m+nSgu8Zfj8/r0ut8Ekyi8WlFQjM+iYdmI0Co8zSuk36g7LJZRI8XIsZBwN9Ge8ItUboJgNyZxmvS5F8Xorhoigb1ZRqgr5qxiaH1yBwkPjXcPSbX9dM2hW8N9NCJpRUwQtZnB1OoMueszQqHNUDn3//U/mC7mv31pJ5XLN3b17j560aqEbt4rFQq5RrUEADvb24O1885tfp+Cf3fvk6dOnGxuXXn/91Y8++ggE+o1vvl2tV+AIXf25n2WXsLy0yOXhyhnSMfW51c2f+/pb/99/+tvPT6X3lPu/3GdIpWLcpwWlFbOFVq1MFSh3gzfUOqFStrBx6878xpVHh8d9np/X/Kb0qpRQldhkI0SgSamBQWyCMU+lXBsUb6hQDaVWdejHu9UOoAvCkDusY9Z6kguNRUD9bDdSyVi52SzMzS+trT1/8NnRaeVyKbown8xlOPqFZdct5FII0aIAjuP3jY3Q66+/lkin/sW/+Of/8//6v/rs3j1EZikCxIGncjY2Lz/f24N6RHNZlH7oxBK6kUYGlBsHVIKxyxVCCACXSeEdpnjgBvyg29qu/B59K0FqKuylLsfXUDYVAFFiqWddTb1NncTNGsFBbOb2iNt8Dc5BhIdbCk62SsmrXxzvm2mgUaq21BpCXTANzsp8KtxiWQpj6VjKxFJPuDTHUvDhKQ9y+iqVi0OdaSfFo2yqn1oDiBsNIhzAGPag+KEPreGWPdAM9KwoHSBEB6eL92eVJTwdoC/RYo0u8yE43YCbqsgGE+O4iM0JMzKGF0Zfn/87M7ybweY7M8x58tbOQ6Q/GX4ynckw54k512QUwD6Wd1gs/+kdY6n9JXwOqzyW8tQCMCQQVFfHfTFDQI2qacYTfp8RDi1AJMInDMuBcC+MZgHUPYDJ0+16DXFydCIzgRm9/NGK7kkTdgBgRUag/kjELTSlZZTr/9yH1NEk74c4TpTDgLg0/jR43QAmLk53tuoGvUtZljNkxATG6VAKmWu80w41yuNWMq3eAOkTnoiJZ+YW1zav3roe75Sfbu+g7//a65vckHp0/8FCodBu1jnt/MpXXnv06BFIHU736tIyou77+zs8FPNXf+HnC8Xij3/84yvXriJXj6AkWo4W5ovtVv30aO90//na0tL/9G/9/P/pH/8eM4j7X2ok1BMivBHisWJNSngf4fig2Q9lF4q3X39z7tJmmfd+UxlI2rAm2rG7igyrI7BBfAChSP5cVQHyOWkDE1zEkx93Du8IPSHpNfAFR9KsBtO5fCZfYGzRsGp2mG0s3QeRlaWFcvmEE/LLl7fQA/rmm68ucOVhrvj4yRPUQd+4df3k5OTS6nKzfJba2oydVdgtoTCS05b2oMm6P4aqiiSLf/iE6J6DanMLTMr69NyIZFg41Ib3oXKL5zOSQhdzyBZ0DBJXfbMJ5qgZv8NmUkznFvYbuQ3yYrgW0JPhhR/V5iBWoUS/fneNLGQ4CdfifAqckNY1tiew1ARRjwmF07hKzWyXgoX3+eJLpTS5KBKtYw6hY7mHNgFczc0GDm13iwSRVDWos0VMeeTIkVO3/KcUjrSSiquuS+2iZe1wEcbXkAU0AadaVqZxHzfzx4F828tTkx5QZgFdapRtVrKjiBooU8MPyz+ZzoxyjhIcZj1MdgT1JfEO8/Gf3jGK8UV/GQrTzXQ4/aYhMRnFI+igF01DA2rwfEEDwdBy80XG9wgOTVIXhWW+pFskYciiOZ3LZGtnJygsg9lBeSkuSxgtJ9B1Iw0kSh9EA34QrlEY1QguDa/Qsmbk02Q9O229K0kOzDC3BhHlwFBGyAQ4yj0cqQGgFNQy+qcfR3EcUJ5ME80r1xIkp3tOvKsF22oQPqs1uuWTfGnx8jUeOueRrgpFPTgoL86nr125fHZyihZoxNuxb924eXR42KxXb92+hvwPTH80SF/Z3NjZftrhVmWnlc2mOqeVeKjbqp7OLS//53/9l/+Hf/Z726da96L1gC0FWoDAeYgxAQK70iSN3mBlYfH63ZeTxdJ+rT2IJ1UlyqsK0SbgPd/XqiZwZxk5dABCmo99Tdre1zmGRMURZjWF8BevO4QT8GwKeb0CLEEgzq61NufmF88SJOLRTDrFW2hIKwFCS8Ta2srNW9f393fnVxa4Id06O0uiQq/RQF9oIqsL4rwdA78olUrySBoSi2wA0DGgI19uNekWM8iIftVjESKD6i/XgyN7VDFVFj8awSohh7kmqsnGcgImwCw4iU4Nb6pVGSnydq1Phg4VCzIJh45MhRvhIq7Ka73oiBifmmAmYAN+pkbMHWef5xiASBJMSSgNHJaSvkepkoGALoyGvclHKI7T6aCtFCSEPSjSdJIhI2fHNLUSWEJTpnwwIxdoaM0kAMFAQbfHF0HgC9wWPmi/ILBrXoaSOFgEm8xrFvyFaV7wDKbp3d5hQf2nd1xI4oUfw457YZiAJ8tnbeUmzawOm1WkLxve5+gTxMHYYyqjs8zp0ZeKf7Q6I1aPnhmt/R3OZt5ohgiLcwtKj7EQD4aERNrcNRbcogR6QUUhHYUYcvZYpegKu8Y4NhUXJXCUA5YCS2mUiGldq38Y8QykF8cmi7KVU1nzm06l9MIW90/18juMiNbBcfn9jz+N1vZurM+vblypVGrvv/tBq9rIOWVXS1xqi0QePHjA8S8azx494fGv9NOnjxaXClsbl97/8IME96dWViv12tnZGWUGEfS7bcgMmj2zqUj1eH9x/eqv/bW3/vE//QGveuFJ40isJxpuddt6xzQyqKM4by61dvV6qjRf70cgBvFU3C2AKO90w2w2DE4bWg+qE6aZMV8fzKFStkTCC/whEMJeRJKq0SibAJxo2rA1A5fgwN9008bmJpfU4Opzil6vVFObm1T3K1/96nsffrC7u3u9cJNLfMlSoVetROfmHP0No7go2U+UCoVQqAnB4I4d+Wq/KNzDfQhlLRRJq7GGcNW1Gvlyik84rWquU6dU2NXrS8AZgFNCA3KrKyz1lyF+1tQOzQtyEa7ij0qp0QuOdraCO7eyEHam8rLNl0Ac8rj1uQCkiYflNbTVIIKL0QnnSb7E0GWboY0sGPfmGezSDwKTH5EC+SoL5UI4bRahANi4nQQZIdl+0eay1QOybUdIeZzcWcCmj/g3CZ/JAlJVpxnGyjTwTFgwvOoyDa1fjExrDbOgUj58cKAE4X3Hf7iYwpQv9Z/L3ScYdFiEyQCCO/JqAf589lQs4GbFqGBfJH2G0XQzAz5rYjAhSWesyrR7pN9JRnTFkxMnxis4PRVPoOisLMlNQ8zD/EErLCrF43cLFp8U2J9NQ6oqDr3lYpMfAkFMt+6xFNS50JBEKpFEaQE7Bk5RjbGhYNRnuFZicPOpTLTRdhiJwqBcSHdeONdkX4IITP/o5OTpzv4rWwvXb905PTzcPzyLJ1O1s8ZZJfTKrTXG4bMnT9dWVsUHHvRXlpaq5fLNGze6vTpYj1sL8wtLh4eHjG4K342G8nl495zvNjh1SUbDPPjePTv8tV/6hW/9mx88KTPZxPDgOAYiQC15F6HRafIO5M2X7t56/dV+PFHv9BLZovhC4qlxV0K4xeRCiEPKQB1tkzCHjW2GApXUbdFpRgd/GifyvegQ+rUk4ZpDB2hhzmSQ/YOpRfchaEv7szLnXjRqTakgRwFcB6tUT9bWN2DpIxz14N6nN9746ssv33m2h7rPncs3rtXLp5nlJRb+OrPhuCCXKUSz3KaOhvdRncR7MmLDgeoZRewAqYqK5QqnjrOOxjGkaq5CmtTqRRkPF950kHHLpTgO5HsWfGoyytJNLmKREe1GqcHE2EDMDsJdcPUOxg04ua13PP4ZOtyYNN9hatoVu0ZQvRVLITVeOdfRzHHfTCm9puD4YRRH3tjqMbXoyB7BtR4C36uhLcmR7dIkHUtfGbkxoLoyCLBFiqlZwFZGFyHOd+YOYNRV1OmCIZkL36OPzw3vI3rHKOr0Xx/MOyyc/zSHEYPpSbjWnR5rVAuf2tRgDji9vjNznOUxHU7+4rpMms9tz8koUyFjFfRhhq13sR2QGwCjw80BYaDKh/EI/wBGR1JqLFHw2eHKKUwcxEBB1Cw+MD0QJKI1tgTqitWTQF4kl+vsHJEXAcBBbd6F6XQYyfyDUcSwFStTU0MHBKxFM5k0J886x3JNwaDXXQGbsW50UxJ7ZUSTy4XiJQOUMaCygSw4pSQeuh9yheKtO6+y9D46q8ChgIOVziZ4IR2adHp0urhQzHARIIX6ZFRz6mQC7n8iGa7VuDycPCmfrKysgf3vf/rJ6hIyozneS6icnp3V6slsITu31KyWr21e+tpXXzv4/XfdInKAMoxwItKLhXl3ptLqLa4u3Hz55bWtq8c8lsnMjacQKkVlENOXyQ8FMkLINKQ6GIdFxRSyvjDHLAKgCNPGs3CGWoQM1C5kBIFBWJXtGAq9ebu4dyKN3GySePwArc2chXDCUWPlX63C32cfwCkPr2V+8uMf3/7pn1qEru7tsk+6evMGhxxKjgeX6eQkd8y4bLFIV6GtTovA8wWEKiNk5CpFDNft+jHXmGMMqKaZZr4sfFoa2mNC+UjK8gD/8c+1EhhzOtxR0CmFD/aRpQeEWrtTWVV/9M/yOIeoDQ0ny8WWUcxLjCJ7mxCgATAyZySEETtHwfjV8b6QOsk6gLOZPGy2tZ8RHFqvVYO8HUFQYaioO807t0lsDOLCzCQAVmFX1AuWqn0BMPyYGp4yqV1GxsJMDTkKcuF3Vvgg3F2ouBBr7MNnZ47RYHDTxgX1ASyi/xw5zss/lvLUzy8X2koxwsLBBEe5B2HO7baRE1BWolruTBoh2tnG52IOEDNvV5ES943ZqYKzmOtgShgHSZ4Ei+t1XL07xdKb0Ye6gzCPAku9saIwnlgsttupSCSTQUpchptWxfn5o8OTRqNqEGiK89E8YczD+WG3UCjmuhwwD9vhfKnrQgrZaA5j3CjXoEJvPngVQuVmEWMABW08bxDV5YDO6Vkvk+Um7NKzBw84g2CFu7e7X0wn9fDL6SmSP6hP5KXKUDx5cLy3sFyEjhwcHfIMzvLyMkqBuDqwdWkVNkiqn0J7aDyROTvaR6Ecah64/fvXfvEX/uSHnx7x9DD8FtSsMZ+hcL1uKhd/6bVXLl27wqpfJxJRHhAWLWXZBSFiTmuDziEpE1PTXHt9qx3t4OYt84Q5rm2Atc9Ue9RE56PXRaP3hT1cY9BaUEvckVJpHqEsTsjpR6RauQIW6ddS2RjIfHN97fGzp9AA9EBUq2VUX3zrt38rW8qtbW4h/PP9n/yIxq4eH+d4YDKVaJ2cVpq1SDGaz15Cn1KrzhiRtk7H1NBSQKciVMJVVSwt0TfNg1GPqSp+XgDE7bwEFB72fhfqPB0aSOlCaEvwAsh9iBwKScoEHYYkJ+E6pZ4aXp3m0lCZA+VXn1kyI9s+NVpdsFFgauuGssOItBZIXXtsdTj/gArlM2RcyTRO5LSi6AyBTB1EcEccZJs7aDMHLf9xezQ6xuBWq1HRA78MtUnjclagsVSAUBHMpE3NVDmKr1IrHJZ1+aQ9rK+aWIaQZiuiMw4cgMPVktEQn2qzyjM452AWxiXDNCMRtwil8WQMT07CKcGLUaiL/eewrEbMITkCNtwVFfiizW1/V4svYc0q2tQkaCTahYNNJCt7cZQX6y8eHYD6UCqcAuzeZmTEs/7rcdu3z8vwsAlCTSnF4bQUWfBustctRPtzmdByMc0zW+tbm+gRg2usXnIdrMW9GhyUxUsioXQcTTUIc7qxo95gSqgY9gdlcV0EuhlFIzJHjeid73UabR6naiKSCBMGlM3rJT/84KPLt1+++fIrqNfK5ApMqO3tQxQcFOcWnj7bjSezO7sHH3x8n8uWn957uLV17ey0enSIWNDplc2t58+e/ua//FYpl+WIuHxS7tY67Ubv0vJqu9E829/nynG/Wf7Gm3fn87qrAnef6nArABJJ3Vc2rt756ltzq5d4Q4ddD9wnJi3HDOpVajP6s+6mfiMjaicegP2NoJBGgb+ATfJaNjqtcOzRcNJMCFp1em1OIKSHguV/NFTIpNGFiiYfXg2uNJrsT5rN9vaz5zTlpx98AslKx1Pf/jf/Ljq3EMtmXnvl5dOToxA6AXlwDM0ZbBd2ntURou1383EeAgDFwyRTP1ERVqfojmXLSGljuu9FedycEjGjcG76OLfqqFqd2+rn86aQ5xczLgUwmszQ1uAYzeKAW04COci440vBlRVl19nQuaH8ga48h3uXhbe5BtBXVuMB4xLz6FGxQFfqQ2VkvrZVxR5zWJreBtGZ8ZAv6OAuskbMFzSu1JqJzElNWEe56HjVwagYXX8RDmVWhEB4wuofISdtJ8MgeYoJo+kwxYgNqUGm9CkBP8qNlLU1U5mGvhoc8u3DBmUgiLC6UrkwFnJaeGoDk1Zl/aJmZlgVa9KIuyfjxhG5USxGAeV0y6gJuHAfFZtiGDJToC7FqXC/YtK4dEbjD05xNM4iuoGyTwQ9Bi1efYpE2qF2PU3zcKsUvoDkzrR6Z673Qp2aJCC5CMRGgXPCfrTRyzbqSwvZnXwkvrxw9c279XD63U/v9Tp9HmNBBAUOdLuLOjYWMl1QyeX1pfn5ORA38m7w1FUQvZlB4qoOijbJTZKkaKjrImCuAzQE3l15aTIes1ThW5xmhkLZTvPg7Cy9sPTs5GxjofSVt9/ee/ygcrjTaoWubazUG91YPHd42oAPw1y6/2Q/GUu/98E9HmJ6vvvs9kvXTw+PfvD9P72+scjrLu/9+CdbG1tc+8omkfHvLmRLiAZF+9qjcFb867/2tX/0//x9TqxLVIMtUD+cLpTe+ubPp+ZW24lMOBtp1Ns88siDaa1WDVFRoQlqxgAeLX4ptLEOKDxu1UFGv8we2Trou2g7rZljcMnWSjUU+zakrygIFvJIrM/Rzdlv9+opFPulQr1q68bmpUeP7iczkUu3r33yvT/tR5JXb9z9kz/8o4XSEte5Pnv/s5e2btROy//+n/y/f/E3/m6W54OTpXgmEWpVQt14qlMvVWsHR/dK0c2r88Xt48NklociyLePAuguuqOQ9uoNUjwMOQg1oQeUklpQNv2qq/2Mc7NScBljWIyGnw1IPywlRmCh/FLafSpBJuRoDrjwfEAGXIpKOvhHWDHZBLI4CqZSuXRcGQ0+SnH0SxZEEs4ww8Zm6HIpqEbWYVqcD32CP0yRC+FdYAJaYCXuYnmHNYMvpIdb8up3zWWRU9qFwjPdGSGGJ4Do5oELo6seHn5+aIxMtiRebfyIzTVyf+lDYENwaj7Xu1b3IXDY3659Xe0FJySBNAbkUPhR2zu3QUY2KbBAmNqiwdY9d2v0Y1Qz/QSW8IKQ34Rt1GW0MLFYoxQmw8t/qrFKTHpZg0zCh1076QGE3lB7WntoDSX8SvtOwqdGfyFwVjl9JB8AhwyLOIYV458/ca070X4rwcZewn7hGNwNpgKoDGoglo/amD/UusPOQRQTpQjsAJL9zpt3b4ZW1qLF7P5emXfBCANfnEqB/TnsQn0mmprXlkpb68tcuK3z9uBJjcxY9ggtqPpOMZ1sjWyVyyFQEKTDG2IKkblwqptqfOiRK45keRKjMBdNpWuQBUqSSofTFd6JTC/mUR53elYlF54FgPWBRtFWo1arlola2j1eXVu4duVat9t58NmDB/f3Xrr5yuNnO61aq1hcYG+x8/RZu1nbjMdzqfzm2tx8JnSEwjdepmw0UsWFqy+9vLR5NZEvckUM2VlE9KQjTM9wckbqpPfoX2fcxKa9xEIxyJgN9jaIjegX2+zELDDyI3qLnfbgYRAaBVWmvXYux1Mx8XIntFBM1Hj95Qy6uEb1M9n8yVl5HgZRMv3eO++VCsV5bgQU85cvbewfH3zw7W+//PU3wt1W5bCcL+ZD+7u8rRyq1KR5del40ILnBdWT+mvdcWbicaop2RMugHERecAzaUzCyXnnsJNhYzdPFcIKP70dxprFf2rVqTE3bqsIVF4maDNyHAGg3T0uJz6pBD594n8Gh3iA06LNSt8YXt7XOygSyfhP76D0Sp7VwDSbuWFw6mNhSAfIJBzxO0sHVoNSUh8pzZlnAC74FMtqa8UdJhQINQl3TAWFmPQKxBs5KdWXQf9qGJe0s6xo5xmNEv1Cv75446Fd+48DA9UZ8xoWYgz6BT59AbzDIvlPc/jPsSS/LNyPMB8RB/gDVD1A3QF3AMTlQL1jWw9gRQY884WAaKLZiff1cJfIBAyhAS/NShUVC3ZLh2SVcn/wyp270fWtJ+3EyeHjFhLloGlHL6Aabg7384XU3ZdfunX92sHREbvXNmr7QU6uRyF8TqJCGtc0IjS3SV400gwbA/Akezomn/UPNtcIOGo+ODo9Oj7Nc5mHd8qzhbPwLlsWmB6t57wCDy+nq6cdm902WqQbkJ16Nh1aXirx+HEodspF4nLt6Pnzw2gyclJu3H+0DVVZXD1r1Cv7h6cw+tvRVLEbX5lfXFoKHT+W8udBN7K6ufXKm19ZWlttxaNN5FKd+mVXWs6l9UgHdaBNBHHG3P5zrB8d9h6Dzf5kDmsDDnXWjh/ch6U/bkZ0u5xj89TBSS/EI8ln1Qqvt0HBs6lMNpn65KNPlgqlS2tr773zUbGQPzg4ePXVlw+O9q9cvowa1Xf/6E8uXVlfuHVz/8P30QTSbXRbre7ewWnz4LgfQ1NetoP0F0+0sQvk9U/GjKTFXEmwVKQpk8D17XlFAg0yxMU0SACo/uaTCBPw8WNzwhByFkE1ekAAM5YgNuUBMiX9ERYey5eQU4070JniY4lPehgBAO4D+GJY4DH4kABMJjSCjIWn2FPTAei9gu4/FwEIpmi5GiQI1/AHOTD/RXCE3UXCRxCDe5tEdKA9Zfyct5dlNLKhazB5hhF8vji8exRy+Ovbaww+K7xQ0DQzKzw1mxZcA24qPAj0aXqH+fpPHN4djIj7y8Ipj49y7uDKLj3FbOYY2D15GOk0w606139S+SSPfSe12UcFGHc/kcFB+h75HzFudPkTpOyMLp2yzExlc8XSo93K4f5Bv9GkfBAAMCGCO+1um43nla1LX339tXw2/ez5s3q9zmqceBxCUxgSYxDQXlr+u3MR3w6iNUOcz4KfUSG8w8oTvRTc3arUGs929z57+IQX2AulxeVLlz57/716JRQrDQ6PahxDxBIpDmkPzmoUZoAa/16omMwn0iUWtEenCIw2uCKLrru1lUvvffzg4KgMCn30bLdSBovGO/3Y/YdPc/X+rVeLS0vzD54ed6Kh0tLyK197Y+3KlVAyyeYGjctww/UeLKXnict4vE0ejPkROrOeYhD6Ng/2I0NnxvAJhjp3kwjhXSx+Nbc4ZtYSz3mwEynkS2BjLnN0u710Nn98Wt7f3us2KGn32ZPtpfkFLoLFE0nEqP74T777yqsvsQH79NOPB+35Vql49sEniX708PlhMpKoVpq7u4eNxaPO8rIef1fx4fzTQWJa64TSTuN0+qC8z4s4chmCtooHqw+rU/Q+gIsthlIZNZp34GXUxcLzOekYZTj81fLBJc436XhfpT4tfWvMyfL4iGMOsVLOUz339Jmeg5zLCAC+wdzx4RN7DC5caHvAsVRGn2PhZ6UzCq5fy8hDZrKAZlFUyuSNpTWWos8j6KuVmhaYmhfsmTS33fZ1zHZxffIXHLMaVFGEFGTcXHAuGk65TTFSWPiXaSZb43Nz81G8w6L4T+8APqtfZuUSjBsM49PxAeTgXgo7ehSphFoodUzDD2rXB81KJtpLJcL1KMq/OIMQCfcnESIGpKvbAPjo3qvOh3s9jlVD5Vr56KR6ciZRQkVyF0YlR9ov5eN379y6ce3K7u7zo6MjxFH0cqErn7C/ZokGGinzlsr5tIW66siKHDQKRXnYjrD2lGQpZY9wXRU+OMQpkkqnuQhVnG9yo3cQqqEOk7dSI6l6p1/m/msD1Bwq5JO5XPIMVRKH1WIxR5XKp0fNVgsO+N5pff/5ERuQTD6FBNPZyVm+kOEWM+IwrdDB2frhXKEYih8jDnv91vWX336jnUzxjmaLfQtLcTjhIDWeUuaKjt5Ahu65FhJFGNGuEeoJ9oi5fb9Mek2BaLmtliKWw0OKLQg666A96O/j1m+C8/lBNJMq5vPPnt6vHMP8KWyubjzZflYuVzv9QaM74GnN73z3HTZhS0sLc7lSj7P14/rx0z3e19zfPkomUqen5b29k856JZpHtXSClkekkNrQN9A3MhTfkNGibhEXb9IM56PrXJEsIuvSBw3iEN+oYRgkFteGpf/0DmpnxiMEc/jPoffoR4eAbiyp8UdkBk8rj0/WOyx5/+kdo/Qu/Kr8dO+0+o7qcSG8Plxgw1QWb1gqF3ASPhH/AsBPXiU8onO4J+F+XAWDEXLmDiCYRDBP13cC+ADeYcH8pzmsQXFbRJvNBpy0gxmNuUcJjIH5VMLe1zsmwxnkcwOMRfyy4cei+88Xp+N9vWOstGNwn+yf0+GTNQebAmmnQzUabKBBP8uTALyZ3uIsEWH3LlgN0XDOW8HnEk9mqQzXmcdOmMT6YwAC0B9I4Oz4tBJ9vL1z2qjXBbCJHuKhmR5PF16/dvn2zauIaO3tP4fnUOPSmKF/MKObI3AOhR7YAYjXpLSxGUPOLTCbDPIjBBOcILDAOUvQa+hLK2ubl0uLK/0zJDvTsIHS+Vq13uNRsGq7U2122I0QnA1MvRdulNvZePz49DBzVmEbgabkfC6aCme298vNBvULlTrhzqBX70Z6lWYZZXag934YksZ1ASqen89feeml0vrqTqXWEdMJnhgX9N1FCVFTaBT0iLXOhUXo2Awc60FDAWPAWZ/QQ8leuvEPFiYuTeIOZjg3j8G6aTRQ4KNzRM5w2PrsH3QbqQoaepbXVo+PoYXlQil7wu4Lflky8a3f+vCrX1n82ldff/boYZkWqFWfNp4en5zyhg48tDavACMILF1v0DWWXLwAo7uq/HFeSw/RU3YKQVdNFngMAVkjkIoYgiPMFXSIok2DS63FNDjjYTJTIJRPPeKMBtDIzEzfBrILNpnRKPbwFww2A/1fQMfBWFYYS9kNZg1sApg9Ba5hNNNMCe9Sm4SThAd6N44/OwEgcrDofHpzAU6Nh5Nf/uc94ENfdMwiuZbmxbD2Nd67waacDO/PJMa8Zg6gGSW21hxLhM8vX/5hGr6C3mEe/tM7JjP9i4IIZaHykZVrt5/odTPRfqwNV6OWhB8kHT8s8QkhHE+fstDjm8U3jBubknhqO88QDIfr1dp+GS76aZ2buHq4QgOTk2DmzNpK8Suvv4zy/ee72/fv3+dwklNWpeAiSs6JtaRYP2wVDe8z55W7DhvFLgCdQYvEg45p/R/mwbJoPJwrlFY3NkFS1VbvrN5CMCldmItlssgmdtpnZfYC3VCjQ/GJlWxHYtU6Ckq78zlpoDiusk/goflQNp6rdqInVURpRGOgHMhD8dh7u9OnjAul2KDTrZUrXI7L5EJXX//K1u0bZ80md9LQnwGy4V4yJI7FeBzpKXSmclEAXZna/Q6HEcPG3B4y1nfg0jHIiz4v7gDcTmC4AyAWwqjHJ2fUC7Z/o9U4rpapfjYdOUZHa5QahngmoVfv1/r1RJ3WTPXi7XsPDxuV79++crVR7n720QOnNLscijelTSKZzhZKLZRAtJGMSw768PHoEXaAkS7XW+kLdw7BxYupVTOgnzUBB6PG4/Rzh2uw889ReJKRoXa+Jc1hwMm20m5MBp9haoGQU9J3q9Ip8MmUDeLfvxwLYFmOAfkcwcezGA2QCTh72xeaUYIX8HsgI5/jMBUL72PNZAG9MNMh6idMoDUVw3+eO9T0572lj78Ec57dqCH/EjL5S0xyVvlnwf+iisI48FmQpuQI6Syn4SHV62V7nXC7ySvqLDN5/FXaHsFPjuPGworDVBjOXYQ3wXTgOGEuIUGpKkc0vt19vnu08+wY9MhxspCDxHkUaGV5nrNf1A5/+O72s2fPpNVZShUw4uMYAqRUcIpg+eh3ZNwXM0TfbkazcIU1z/ExQQeoLFpaXj04K3/y4DF4+s76UnFxYcBLKZF2Kpvt9LiuANbqVnnrvdGKJ3tRZOSTiQfH7bUsGBvdbqEYB56h5OHRWflskEtG0rF0vRs+PSwjrjpXine6HerSrNbatUY8Cbkp3Hn91aVL6/dOzhJzC7wEKW4Pb2e2oT2o3UHLmvTEiR46HreviM09vyIeVW70O5ICGn1/oV8qYPTYLbbUllAvrvhyqQ0ams4Wywfl7b0TdgMn5X461Q8lO6n8wuPto7PdxvJaa3V1mVX9g53yy1dCn90vlw/ee+XWra3N2w/uP0R6ZBCph3kLLZpnO1WHzwaN4/BffLcuI0IrAfWuRHfFhmPnw+CYYawRbNRZO3B6xBZmEm6QWfDJ5C3kJJzFJxlZXmb7NAns3TiGvi6JSfhkygZhrLuhO+5vqY1DaSEbvhMOy5HwYwGG82EyoRFkPPxovkzCgxDvHhIAn7132IrYf3qH5Uv8McjYp8/gC8JH1Zn56xMcCzHk5TmkgNeoeXGeI45AFJ1UBj7PnWPlPPdwLu/rHbPKMwvuI85K2eA++lh4Dx+L7j/Hwnv4LMcMBASGbEUanXkewD1qhlrlfKTf6HaKhSy61dAQGU/V4w09/xGCu4yqS16/AsdFw13uSIXavBWLyugGC2Z3HszrIo16E0oBUcHAzAfJLi2mOftdW19FHT+K+E9PymgA4g1dkAaoSr3muhD1OfDSdcd9oCdccPXRrqwXTVCn2OO8AFUOnCYBR8NNr1cjx3yx9Mbbb3M+mwVbhXst9gLJ7K27L3/4g+9z9osedl6Mh1Rk86laq1tudMMtzg8i1OV5rc9Nt+XFVDsU29k/Br1lculOq7eKANDh3v5paKWo8wYuwXU6aMdpn50cleOtN7721s27d3ebzVShUGZ3gDiMO/UFMyIUD7MsOpAu7TZyQkasaAIm52hUzupQtcE0M71/3Q4AoozuDuRw2aax3TYmSafdImskYYu5Ak85ts5OpAEjHj/d4zZ3qLJf7sKOi0eTxd7+af/J3u6dW0sv3Sk9f3J6dS2zs1vvND+5ffV6pxM7eF5JFdSF8eXlRCbLfQtemxnEeQWMLYTjv+nygU4AGFFwbZxUzEwCMKy1YVtsoX5HOGzejuCuqaY3BGQWX6XjMJ13WPv4VvUO3cKewKpADL/hGDNQUIxF94kAmRqe8ts88iG9w5L1n5MOC+BtCyD7Yr00MaaVx9d3zDH2SYIGIREclot3ABwSAB/OO6xk/jPoMK8x22czBlcfj7DzmNd/nE/kStyh3JfKPVj9WTX9Ugn+JxuYu6MoZg43avnwoMAr6s1mVueIUS7Wohc+WxgU+7VBHf0PPD2l014ucGmT6tjcHV0HkKYgXibhFLSHMgRhdEaeVNfCTCfg5cubC0uLnPo+ePBo/+CIIwEdJUYRAGKistqEnUQHoY1U2wFxE/x8cNNA+NEFaXVh68PgyTIz+4N6vlBY39xaWFwOpbOg6m6/ya2DTCJZKM0lUulmuQpG5oH46CDa7AzqSGtSqn6I5xtB/ZSKRw6hOPUmNwe0yRlEE4k0kqBQvWYyHkrRBPA6oh2Ojjs8r9vtxbKJ+cVl8cXYBTHFUJSkirq7E2IykbrWwzqA/Msf/MIQzqgfqI7jQqYTyRBr9T5XghHC6jabrV6zz+1pHlBrcyTeVWdAUtFZhAY+Ovj53hl3m0uL2e4glp/P7O7W85mjlGg8ClIhtY04akXdm7+S5YJDZ2xANjcORXECQtdQV012CjFh6Mcpk8jhu0k4kIkEhoAXINyp6UzN14eczMVL8fkyeMdkYEGm1ssF9bl4x/QUHDQ4zgGcZ+oE/YMQ7+WTDTosC5+aVd+A2JNwZqba2ofzjllwijaZis9g0kE6Uztz2iBR7FnwyZT/w0BmtsNfcvYzmm3YhX9JmQvnRvpc+wo3qvOxaK7ZQzAGFWJwcFj3oQYoEkf7DWI87R4MdZa9Th6HNQpjggJzKIxSf2mORxpeb5CIAOgQFxY5b+WGQMGRtUvrnKBuP9v5+ONPDk9OSKaFJIoOjkmBzlf/g4J58A6kzP4ayuAN7H5hezLTqrHHFmRubqHebJSrtbWNzes3b/MeZJ3Jw0sG/TDHlqivKM7Nsww/5QoA8qwsUrkp1mmCocGV4CywIfmlOAFNJylyC6Z4iNvFSdb7PGp8uH+CZNJihlVeuNtpIxsl/kaHy9Dw/GOrq6vQLhWJI+UIL8ZLFpZDAHHQ3JAHUYok2GyZ6LCpk4JQOtKdZqYmQ0PQVgSXr0vRgmHHY/H2KU9BdiLNdrXGEUC/hVxvgnsbsRakGDXadEoIOqmtSzyVKFfbg1Zo9YbUJd3a3Dre++Tp3snmSolkq1VyGeR6XfpXQl403JA3B2EXwrcvMmWxRwurUFPNaAXq6w6PT5rxRnAfSSnNMKMd/zANP01wTE2HtNU2QyQ0jOWSn54F7el2bGSvIc2PRZ3K16KzJBDlkpsswAz4izkQw0xHudOY2sGYGZVHpWIiTK3vKKyqbAXwEJ9IEC4C4BPyDoLOgnsK6VPxjrGc7BPxQByMCOodtKnWGGQ0aoadNDW1PzeQXifbL5PFjPaZWZIvk/bMRP4jeXB1nGnO2jHZbxW54YN8/vFRjibjECAab/TqPLdSQ+19SzpAjffpp5HbCPQ5S2102wTJp7NgSW6kMpSd6J5oRZbbX6nMWbn67PGT57v7ohf9bo13dOkSyfKIkjDvQLjwfhBwQWIYfXQiI/qvMelYQKIXNDOqLgulYqwJvh7cuHl7Y2uT6+4cxtJjIOZqq1FIhNGGxvhEFhQ1lpVyvd1s6nYZZYIA8Jw576fHktlMBgZRs1XjmBi5eNGjRqsNYemFqDuvoOsIOD5IZtCJycmHolOSbD5X5uoyBx5MIInA0EaSAZIiU52ZSIjJTQ18FeULGt+eY+GnzrIhnoTkaHK54wa1pQyfJ2XuKTcidFcrzkZLRJkn7GPxHpexaWck+EV1QTBRhKWSqfBptVVBMOikkbiVWt9a2n58cFqt8sRnuQ660ZYGiRdoBrUSyhAmZq9BT6nuqiqGHzXtrEoolCEWSohDbemaZwyuCswwymS2mUzHws+Cj6XkWsPVwBVvMtZYeENZWre48N4OBqOaQbh9BgOY28ppjWNhhiUX1pTxXj4kwBeU0Lxc1AvWGFwsoMkyBfMIxja42cC9Y2oiPiINJEGRMZt8xyBunpzTOx//cxwjwvE5wcxbeOTLmlnt82XT+U8/PB0S7tWRcCwlEQppts+O2+VKj5dDuv3d4/LT/ZP9I3QCQA6iaG/jDBC8AJrjT13JOHId2uyEas1GIbKABs3YUZ2eH567RMPFuVIskdzbO3r8aLtab/PKSLsOx4glZFxvDQtrgfxRRYpICdxJHUDqqVu9EzCcRWL40I6gL5TTpVIcxebnIovLK7fu3C3OL1Tq9V46A3qKJBKdRoN37RFPAcMgDT+Xz1fAcA11AmwfUQGUHKPkDuwf554UFwBarPdZwzd7zU5T7Jt8JLQ0l8rxAGK3QXXzuVQ6jka8SDOcQLKVW8dQI25FgzW4BSEt7zoPdRbIn2q4gTlrPBsrQ6UZN24ajAOnTNJRkOH6m4wxTEkwJE7aBz4bR/GQR6ltpTy6qsF+C/6Xrvqh44+bClzNSMYiuSSP2/fbcd42LnfbaH/YXl1e2Nk54IB9uZSmNyM5+GA8+cvjMlSVu388SUJT6dlxSLXLk57TGYBrg5lTEn+Vb4TO5NCXdnlGNbwD6DRDjgKDpBUy4HBnD66VRunTFgpw8dOlfw5XWkGDz8VDeKIPM3LpBMOa2y+I1fNUx7ohEG4MPhnAwvrquEQEM8gYMfXl8awwX0FzBFMz94vhQxYQQX3S5hhmPwm3VC/aRLGJeRHsvrRtDrTNyA3WmAJXDCcsMiWhWSA38Gd5jsMJbH/jHjO/3TjDd6x9Zoef6fOfvkdkgOa1PhrfCvFQY/+w/Hw7gv6Ddvu00f7gswePT0P7cAPioRwiLjqMEyedC2IdEAHcIFqI2dALtbqhap1z1g6C+clY8oxluRaQaF9O5IqFeCL1fOfZweFRm2U1z2mxmYAFj1ym2yqARZDNQYDGqbQiIvghwdAC1TIgGTtCYtAfbhDAoSoUOE4oFovJTHpra0v6QRtNlqTcUODu66ClMck8YSOSy6GhrtqoaRWcSQnv40BFfjSeJgsq2GyxadFcA6WLuYVvKDQ3n50vZtF3BxHhEXVUlqaTkUI6Xw/H29HYabkSK63rrRcKrSeaxA7nQIBdFM1iRJGq6VR02qqDWkwdD9OhU4NqTKrM5GtGDkFotDCML8RcaQHNTV3AjqPqn4KohVj1o8XUSd/kEiz+E7l4rN6sp+OcmoRK6dD2zuHiXDaXC+XyKR7GaUH/FvOxYh6BHeqHkDBnPCSLUZ3ZGwjzU2MVR/nrb7ohCh70JA71J8TDhR+HT4+tqNomTjOWwmQ6L4ZPpuQKGCghlRmVeTIwEEPEOFSdkR0MOQa3z2AAcweDkSOfw3xpYTCib7FReSyWL5tFGUt2KpAwQfiXPgPQCHfG8jZ7LOPgJ4PEEfkgTO6pY8RG8HjQ/6jf1jG+yYKOv9RyWb6TWXxug09G+RKQMHr2B4N2PdRu7T56ePro0VIqKmXAh6dHlVCthbQlJ6xO0HvAQhB+QqiLKrc2eFrIRY+G9DkDCNUa7UqtCo6GBISQEHKrdlASZ7Zn1Rq6emoo52l3m/CbhByhMtjMbW6ggdwRN2UvwCmzeOxoZ4Pn3uXpFYaMOELgnyj4HVn+5eVV8D5K/BNp5Dyz7Q6nAvFeXBKocDuYNMQQqYiGcunMg2fbbCwWi6F0Jt8Bk+lpW7YdoaNjXULm3IJh7QRGiBlCTrKUicwVC1JMqn1AqZAGzXWS8SjSq8lkvtmPIeO0pPe2uk4JMmhJ5+BQQBE7sWSYskK+zprSA7P6ceq8mBLfgYSaRpjCJai5iYOq01DsadTwaKOjYSFiLQT4OV0JpXjJXkpxdUih94ETsTRbrlS8U2muLM5dWlt65yefttuN1bX5LAf/yej8IJ9aWUa1UEt8rT7dg0o/chkaN5XlFjqnHdgFTcfRY0OaGBy10GJT4CMkM1lxRoABfSxzKLWLsQziBMmGKEtrP2EeQ6+TaZuvgwdCWjhHqCaiuD4eBnAFUDNcJANWjABc+U8kpFI5oK+Fc5C+4OZ1AXFbssF0JiE0iOUbDIY7CBcLKAgK+k2Fm8S2qqCu02KDQeVtgwRtzYUvZbhfyO75C9pMWlZblOWL2cOCjA7WL5brRQX1zeIdF+P+B/3Sqsm1/AWbfp0KnwxpkGnhqQaIowMHvNXa2Xle2TuY31xBCuTouMIlKeT+0mgD5UiY010UbSaRC8+edrkIxCXRNh0RRbjEHYtpE1BrhhIFVt/AtchnsCQSoURy/+D4GFYMGwW40ogNKcdYp8/pKwSFhT8IW3McPCOlxuwd+tysEgeREcdrYuB1npkH+4P0Wf5zo5VnrYgAsoNpH+WCbijKW8E8Z8bpMckJL/cjjmiFFhYjC8UltiI1Lu6GuP7VQkuoXj7rSr0d5US3NC+aQwZi8dDaYm4xG+s1Krxpvw4nKN5r1c54FT2aCCdzsUInWm1WknDBuSYRc9ene/CruHTUYWWtCcG8gL1CoVVw/v6yDDeTNQFpZB2gOJpJk9JeCO1wv4IO4WKfdkGDRCSUDMPJYdOGFidudHOcjbaPXj4SYZM1X8pWjirLpcyNq+v7Ow9isfbifGnQ5tp0P5GNc3bTSLLV4+kz7n6zmYB69N2puPLUYYDQn1Cz8MEM45HgucNNXPcJ9eRSsGazw1qyp81pjU9LnpkYdPiJOek4z26EnQ0ytZjmpd4TU5MZZfb0WaSb0CPsPJmvL97FArgYE3PV8Ki6cJSjmF3s5lRLEvCEYVjqsey0/5I42jCYObAJTchhHJdQMCLwGBqx+HFBh1kFx6tLSNG9w7ZgtvdT7V0eBCCyiz9uw3lU/GEW5+HFQpiAA2KPTxL0P00UtPFilDnPgI3TDRUlZsIXzD/XWZIecc0XtCkFJbB8x+1hcS6AGQUquHm5iKrv2KeL4dtBEi3TTKAXLniD0S58f96HcKKb4WM2V3IEmTJppGBY8Is21RqDEIZCojdmKTf/6N6DH/zo47lWY2tFaHR5ObOUSDXa4XqlXz5rlCstNB8ks6l4oYSSNVAJTBUwPctoRE2oD3e/KnUQY6jHJVkJhjIIBqnifDucqp4eHByeoU+iLbXx8KYR2US8kMPXQSwmLT5wl8CkToMaL62HEOeUnGIYpWUxZFp4C77ErSvITza7ceUqz7iDsJEyolWajUYunOnWmrl4UiqRY2xZ2rl4YmNx7f0ffm9uLjlXLPKA7+7DZ9fXFuH3n8APj/WgSrTOykosnUocH9Q314snh2fsFa4upxu1o1hisDCXLyYQfA8XkyWeP+uF68sLy9FK7zBUn4t1nwz6MNoThYV+o832h5c0OfcWl0JKI2gVFtosljUkbB4GZ+PUrqYLxB2dYqZAaSquSBCWxXwbASyXEZ+JUDgdTbZrrTjv/0YQ4ymHE/2r6wtnx0eZaHgxn+61Ggzk5aU0JyW8Erm+gpbrZKgd23u+/Su/9PWTW5fqtbPFUuzwqB5Jp9GZtLiQ5jbE/QGPRPRPkeeKZ6HfThS0JbJNKXQIgroliN/0CWa7wGC1LKBDfBYPCqqpJgQp5pKja2OIctSMPp1gewZbmMTN+JDCHy660p9t3PhV9ym1kc3s0VG3DsA1k7xNQtSLMsr4VMcawM1vl5pC6Gxr2pJ1SPBGOUIOXS4wFYfpkswwI5ebZBisNYaYZfjj+S2+NWgHQlr7G3AY0aXzpXcALtaQTFuL0ltK0XlM2hbe25TACuQh5rgI15aCtvpitiuF61WFV7e58sgaNpk1nNkIbFiOX8Q2lBoMebGcmtVWHe8IBv4Ld1MFGw+Tttglev9BPRG0hXvciPsitu3fYc5Xq82Tci3OI1/9MMI2URhB7Apq9d5ZM1wLlVBzXMz1EsmaWNwoDRItIVdpPQDnDVueoSVRUNF0oLEER5EHJyd9tBI33OmxVIcJ0VNCFv8I4tMxml6qpGmGpi66TMuiXBcL2h32B7l8kSyr5dpLr7xcmp9jZYtsIittMV+4miwWhJZujU4HnMTd4FS3zfKf49tMMntydFDe6b16pbiUTg6iycPdMkgvmwpdR9qxUNzd3lm/nEslYyvJAsQANkejUc8WostzaQSR3OPpudagmcjHH9z76JU7b7TK/b0nD+e2XjvupXSfACqkC9EsY6FnLCATTnMFIpPgC61k1DSfZ75QoAuJsH5Qc6O5Ahqgq1kszHWJAkVG3bniPIqcBlz85f2zULhVq2aTbHQGaL0Od2PVw+PkoL1xaZ7StXutbDzz099487//Z9/97LMPfvVXf/Hdn3wvx6lvqJHnIclolB0Amh9olKR2aDHIYJL7X/AD3fIRGiBywOtxdm4vBDdups56AlHU0ZS1Da0W1WoteahqF+zxVL/0N8X4vL7w+EEONiUuvAEn7YtI+YsWZzIdINR5Ej6e4tTyq53cqlehZ4yhYPtTI/858wzAcvb5eccsuE/RAkzaPlfvsDD+0zsm434RiI/uHV8k1hcJMxyH9PWQ1MkhdKvxMe4YriC+SLovDPO57TkWm1qPQezTFXmqz3Qgp60dXnlstVB7AF8fDJ5wh64gFKTAhehDoWQqni3mG7EocvMwWvoDsfAxbAJA5aAfHYnCSsIgcahxjYZO+EadarmMep16o87zYYTHywoNpx40BMeeWshw2VeYhT/tEhwyIPEYr9rCuOfBMjj+r776Ktx/CAAlZXVDdrhJEwdoiPIj/cIFYLYWEBM4RuXGWbvZKxVQRLHQP6s0W81SLpJbKOai4dtXN9BcdBhuXb68dXJ0nM2lc5lUs1kvtcJzc/lkKtLtdwpzBR5NOTo9hJuO9FEqgeyM1D8nYhFuybXULg6zCNOKmwGF9ls7KqTWobIjh33+hdvCHy4rLLg/lzY3eMeZhpTIZyzUaLUWixlu+XHoPZfLzG8lBk0OMs64IJxBHWgmxVn43/pbX33nvZ9cu7px586deq28ur5S44AnwtuWidMoGqHcCQ10FgrgFugXqzAF718MMOXry47zKUmMQJqMAdQ2lrL5EtY7RvGm//pg3jE93H8oqIrhevfPVh5i+ZIGUxAB8N/eYUH9p3e8GO4zmHSQAkDfPTgwQCbhk3E/DzI9HUt/Slw3Q6bAZ4As+NRy+mbxDtKYme+s9P9M5ZmR2BSwDZopHtNABJa8DQq90PTAghos0m03al3uCLXaTbivmQzKQgeJZCqRiMHp4O5XvV7lWpH4KDAC4ijncX+JDOj4pF5taVUqWXkSYhfKKOBAl5xB2WpS8nPDQIxd8fJg5GBBaLQD0C7YHWDCVWPtD8efF072jw6TqdRrX3n92o3r+XxeVIJDAvYgzpA4rClGFRslNhdt/FrtCvJGg36tVkvFQnevb7TrFdRKtFv1a/9/9v4DWrIkPczE0nufL5/375W3XV3tHaZ7BuMADAhDB4ngcqUVSIo80tHRcike7mqXS3O4kkgR5FIkwIMliV2AwGDgBsA4jOnpmZ72rrx73qf3PvX9EZlRWfneq67qaWDJc/bWq5tx40bEDfv/f/wuFqcbyHXxEdQqF3O7fhxZdKp2a2UoHkX8m811IpFJkFa5kvMFveFIwOW2ch5uoVw4f/58IV1xWu3xWGQjn8H2WJRhaBGjr9ukSDnZicngCjeLS7e0PyCx914kl/bfG3mfJ9L2OKx3U6meEBXdqemZmYXF9J3rET+iDXYIyFSEhM/m0l5bKJaIcMBbpcihn8DNFni01m5wlPGRI4vo1m7tbo2PJkR+AMpwcIwMwm2Pswxyh+8tw6G+R8MU0UqzVRvVXudgNCDDffDVo6t6sJtGkfhhukHKPTCL+aguzaQx8QfVSOr54OkPK+ph639QTSROl7+/Pg8+SXTJuhzuAxVThNi+Kdf/1f6a3T++P+VAmK+avDqgExwWP5D9Qx8/rnIO+9CB5RM5kL6/aQOv/ld77PGFBytw4IKEfwYYx5UZHnbE74EcLNUBD3QaQPyGpeN2YwHgcvtCHbcL/wrpTKZSqgC9g16B+/AXoDRdeE7wB+ptRzmTA9iLiif9hKJPux30B9qFCrOaP9R5gM+qVgARkfyz7sQDJ0qforJOHsVw7bR9Xj8aRHB3isUSTOaZmdmnn34mGo0B0cSTBFAHFofAYCrKPkLsnag8m44KXCM2LU4nGwS0dyyVUqeBbUAjGglE43j+9CxvbobCfoetFvBahqLxUi43Oz3CMQXwV+12dhqNDU4F6DSn4kgacImQj4/Eius4hcbZp9XjdmZRLHXWsRNDkIGPZdpCtbv7xe5vt9fNVDGBweH4YZ6FxYTeBF/vwgsKwytdIhK68MRjX751lWi0cgM+ewk3dnjyxPF1tZjcq45EgsdPHMXL3/beLjKAodGx23eW1zfXxiaHjh6Zp11Q/8FgCOmL3WuPtN2+JqpEDfrQ7vCJthOXdHdPaCG6Gz9MM37YvAbCUBBh/agLJax73gQO+5gePvJ3R8oEDs1w2IuPM95U2wQ+cum6BFPOoXYA5gMmqQnoV+bRBEyWgQAJiKFDTWDgsT9+IO8DPN4ttr+cQ1faQ85RgUMH1d9UjLf9c+vQ75oM9wb2IZF7X+97Oqz6upL7kndpmf3xB8ZQeVRGcGXsgNYFsAK/Ifxgc7idvMjlSlj6ctSXPxzO1Vu5Ym57DxVPjnm3eeGIwL+x4pbZ4eUg2kCAtDhDprb8NVp1gHI0HBxJxJuFMjxlESKp+aB6T+rSRQZQqsB/JUgXMhMPPO0WNrfwiNLZLPfFo0cef+rJuYV56ghQE9IT2wO1cdCFgEjAIHKAJYLORhPL49BQPLnmtJYRMlvK2dTCkUU0/9nhLO9uofwzMzUS9LrtLfz8cBBk4OKF0yCbmzdvBILe1dW9Yqk8PjkciUczuSyck8m5GTRcL39w6eTiCdxNry/dSjy1kAb1KC1SUQISnCUsoC5FzLZGOqA7aGZumMDAKJBOy3IG4g97VBsAuPqCtxkuKkJAZgJ+fuC+tdqnzz/yrS//Tqmao8fR+sGZXTiATQCdJ1w3PJdms2m0fRYX5/NV3AUVORSs0a6+//67R47Osg0MjgzLuZdw+JEpW72chmarogpUtdu9GtZL/9NCvt5toozrYbU9OF44/t0s+wMHZ7lv7MBCUBNMyu8P3KcAaZCqz0B6U7eBvAOfM28PS28SPGCgvxpqLnXBkenxByzHJNMVM9UTYbd+GAgMPJJfxxwWbz6wP0AWHWkCA48D8ftLuH+MyW4C90nPZH2oPwgcyFEhc/oCOqzjufcH9OND3OG6HPQHQ+HAv8OaxkQ58Dos/WHxAHSkfABBkADQDHiG1iAsYqcDKO+KRELRWBgWf4bz1Qsl9O09XgtWwWiZY6PJHsDtwBEyDHJch8HAkcNJ0DJh+ENDQ0fxMDw55UNTEza9yBO0AFEgCX98F8jdwORLwAmsBjCRqPxjOlBvNpEcA4/GJyeeePopODBSN4StgF2kv5SmLMWIIYw7etz+KBmEA1GwMxAKDA03LNZsFkMnRzTkD/rcjUZlY3OlkMmNDydwc1Qt4t8fpNSZnppgPWysrnJIPVivUilFIt6JiTFAv/hUsNmwX8PujJ0BJ501KmVQDF4xbbifaDc0HKTzqH/Xbww9oK5uA9XslJb2Ajq+/37YoBwWzwzRk5kAFWCwpO9UapxUpPO58dnpmfmFAqjAzvn1nOcJqmJXx06pgRyDQd7d29rYXveg8O+0chzmtRtXf/rP//TTzz3zyisvI/nAHMQS8OMexFIt0TIvA41SE5wikE0X5COEFpzHc9dIlwYeMnUPjKczDrwOa/Jh8Yw+r/TdBA6MPKwEEz9QiIn/XyvwsdTHdDKtIKzbQkDPlnui+tvZn/RB4vvT9IdNOf2RhA+LH0j2oY8fVzmHfeiw8k28CRxWwn8q8UA3YDksIJ8XWa9w9nlERNtA4Ol2DA3FgpEw4sSdvd1iSTxver24CUUXvInsGLgO0hC8Adyv19g0AALrKMY47BMTE0cW58fGxmDOdCc0s7A3EYmhA9kSyE1BFgCaQHNYN8FQLofVbT6WGDp55vSpM6eHhhOcYYvaT1feDutehAciBgBhwNEWMYNAWatYGePjxu8TlwhNlFjsQ7Ho1tYa3pp3knXsGNAOuvrB1dXlNdqKMVksHPnggw9u3rhxZOEo5DzMq5mZOfzNJZMpOElub+DG9TsAu2NHjq+uLJdy2bGhaDWftrVqqD+JTiTzWSCyYmbRDiHJezqCveGX9n2sl+x4BPTJJThAFU8MfcExXv5wZHxupswrp5Oj0DBjwLMbVSigxprMYeV75MiCx+u4eevq3NzM6OjI+sbaL//rf8VAv/Sjn8KBXGp3hxnAGZr1Qg5XecpRIF6RMBcXcM+3FPZC6t4FI7TeVEZXydxp+GEXafSr/oDJ+LEEDAx9wNIeNv0DFvuRk31c9dnfz92RMzU77EsfGm9GVxdFen2Z+IFA73138g683f9oanhYQGcBEOjr/sn2l9/LN/irU1LaQBZTvonXOc3jQMCkHwiY7+n05i3CWH0NFGsSDAQGPmceAa0H/iE61X9qAwOkBH6JwmIg4MvlMvBDoBDx+g7EFBvSWgUe+tjYSHwoCl28s7NTxqu8kNnUAsir9DkBBm1LPltKJtO4ocflQ65cQqsfmGj3uBaPHAEHTIyPxuJDDQ7wcuGHn+PIMUnCmQ76NABYJQXWJCxYxO2yO91Q/UAfig1GYs8+98LzL3zCHwjhS87p8QLS5dwaJL0E8PiDto/oDuG3DR0hL17sREOVOlTrLYez2Gr6A3Z4HGxVOERsezfl9lrCwdAbr90q5jtel293K+l1+d96492l22uPP/YUNYT3HY8PzUzPb+0kM9mi3xdF22hubnFnOwmWOX/qTKtaLqZT7VoF9lEbCblAfgH/ChpKv5gBPZDyNZF6/ycqVurPzIcHDQBz+WMDxYYK5hnsMFhvoDgOa/N5Vrc3n3juWb/Xmck1aDI1p2Je+GMWiz/gzGRTjDVSX/r+nfffjA9HPvHJF5DDfPFLX7l952Z8fh5kn1xZ9QZDLr83n01WS1m/2w5ZgBylh3S6LARTW2m4dAODJhXDbEX/6cj9d9JzGWigsT53U+BAQKc3WUx6elu/0kXpsFkFA2/N52TI1GVS8qRWwuD94FXUJVxM7rsBXbJ51l8xn9OPB9513frbZQr54QN8caCQQQTA6wOrdVj8gYn1Zw579Z9ivGm+CfzptOJBZszHW5NaXYS6Pr9rKBEbHg4gI/X5ZTcQCaP5GYBE5wRHLjznwOAvV4VnrfsEjXdkp1CFrFhxroCbB3U4LlBnaGR4enYmHo9jRRyJRFjuus6kBFYRFohFOT3aHzjFAiAe+rlcLHhikXOPnIf7j+9PNhMASqC8nqaa3gSsmEtZQYhBkUgkUNAESXj8yHwr9db46Cg7Fc6grzQtoZjn2o00bPHFhZlMtsIxADeu367WmhcefYyMYIlKrWV3eHA0jdWC34cowQ8V7fUF0Cvd297FpCDo8bRrxUJ6J+R1B30YEQsBjr1QF8apRxCqgifSR6aG/YHD4vvT3CfMt+QD8hW5ejsAhX7gvynTanfQjytvPDghnrE7XaOjAXo7FhEPS41GPRwJsts798jZ48ePlUoFsP7nfuzHzp6d+/Z3vvet3/89qbQDE5BqvYrSb8eHpAebgUoJMYDYbqlLmiw7AK0WCg0hmfa3i5gDL13IfyT3/on0H0mV/qSrcRcBMDz6YyYw8DgQf1jNTDITOCzln2g8Xz/w0oTJ/nt33SripT+sU6qVJhSNCewvwaTsz/7hYVbLIX8ASv3KBLojdFDHacJh//2gtPeJg5bEJbIYPbpcdi+KkwiCOfvJ1onFYqi/ww3P54vAfeAzDGXqA+2OriRzhxinqA2SvIOfH04awSEEzGaYMCMTk5PTs1jw4sBhdHTc4wsAfciAV3pxVEkzeVRyTAoUCbQTMyMHccLMsXSOnjj+xFNPTs3OsC3obhTU0Grcc+8oQwCjot7lJQkCoO/8/qGpyaFEHD4+LYcTMjYVvblSHZ/0nTw1xYlfe0ncCNlKFVyHeqLxoWqtgXjj3XffRxeWw81QPULrx+XEDSiiUw9ojMrjFHs4Hg55XKVM2t5pokQJJay7VaAhoy4XCvQCJamherwbGHg0CXT8Q927n1LQX5AQkFh9DemzYMpOS+h3rxe7aJwZUTKHMdCxU1NTDChhLCrS2RQYl0Z5OUoNEY3fR1efOH0sMTKM9V80Mcyoouxbr1VhBHLUAi4lsAHXLC8F/aWxfJPJqvDR3Wb2t+veYbr79FCN/d8Sf+w90N3B6XLNgJnx2R9/WA10lodNbz70H3OARpnWfez1PKw/De3fHzDhw3Ltjz+swvtT6hhhkqAXWS+j/oiiCOe7gAli0TASYA6YVcwfzLi0O0nxLIYcGIdugDiQBja3cnKWKB1yMGSjAvSDiR+LDY+PewIBWPQcKon1FnJUmDWiC8SlDQIIaCGe8K6F/AceAf2RWMbHJk+cPDkzP0f6Mn4LlBkB3J2DoL+0FfGmoE1BFBDG9gr4xesfmZyBqCcvXtESo2EI/mzRcuHxp3yByE4qhwJrKlPAWNjnD27jqyibu3Hz9l4yjfPqaqNe4dBHVIkiUbJzjCU4jPpznDxKT4lYOAA45PDFSrkL+0Qcaqz3pX1USX7uDehBOSxevx2468QH3uUDiu6WzYCS6hED9OdggyrSXy9au0HUZVEMhTXHKOAaz+sVQw1axGZue3v72rUrI5MTQ0NDoFg2BCOjo9MzczRZpPAw1IIhnGbjUwKwH/S6PC4bdhRQSlIZrXXb3dIdjO0GGvKAjwe2VD54yHVY+oeNlzYcdB3y2e7gHpTjP4247g6A5un6msDA40D8YY0zyUzgsJT/CcXTloHrT63yBuKbwEf6NLP6gf+ssD46zUbN7bRGI0GIQlxhjowkAK17O9tbO9uAVixlYZNo/8nMGyla1g3+WwAYqFbKMV6FcgVYFBgbP3LqFOZIMB/Q5HG7PbCAhhIJRaequSciUwLC86QIFH+0fQCyaJxAUOrR48fQY/F4/UUgMdbIuGWABS36pcJ50H+Q2t0/ihDdG2A/IwYPxIbfGmQA0ZFRfBxNTs9YqZ7D8d61wpPPTe2lC1ev3UyMjTs8XnF0wWbFas9k8ytrqxtbu0dPLESiyJ8zwVAgkcDnhAVBSDK1m81mAZ8cC3z75g23pROBLdZqAhk13X3P6NAyBZch0vXesT9AuP/RJLinhAd40OXo1au7Q2XiwzjBwzORnFkzPDGBPw2l/8NmzhYKhdbX14H7iHLWNtbBBLDFVpaW6DJGR7YIVgws2HvZPBwCXK05A35XYohzklH2RYcKjYBcNs23+AZfJ1lfNWUewJcDPWshhwkYmUd/oC/jf0TBbpfuYwbsj/+PqNIftSqyA9B5+wOE+x9NAhO5/3PmVX/AhA9Mz9v/hC6aoGtrAh9L5ff3jI4B4hugvz+wP9chlUEf9eBrfwkSg+q/aG1yBkAVc7BA0AchjVOEWrkCaAcmwz4GQPhghatlz1nrWFwp0K1yczoI7viBvIAGm318eubcoxf5m5qbx34MwyqS+gIB+A9YmukKyD6AGahJSKXHSWM1+U8AahTaH66L6Pzgb0cppwKbuATCH3JRCdEm5bI7MAauW62eYOipp591OVEAbVy9nhoes04tHr1285YnEMY3dSZfGZmYwMV0vsQRWqX1zb1I1Ic1cKlagLZHRx7N1u2dTTZG8/OzOJlgQ8BpKOvLm9tbGy32AqUcRtOK3a/aJAIIrRYpj7qOurGETeD+8fpt/11nHLgLMB2IMo8o5qJwhZ/UdnN+YUG8IotilSOfKyLi3tjIYESBAL5WswD0wQFvv/321RvXwQpserC45jAfECKbBvJYOBXMaa+VS9lUkiNjGDC2g73vCPRX2F80CAgf1q5e+nt+qX9/G/vD96Tre+hP0x/uS/InEuz/lgmDtv9EPvanWKiMH+3RXzSBgceB+MOqZ5KZwGEp/xTiqcNhF1TJ/r9+wuSesFJmAPkz2JpM04HD7vvJhB8yBp14XYIoxx9+HdbYw3Mc/EYJUUU8CLxj949WpXaxBmJAYwdWAECkjr9lDnHHMsAX8Pg5eh0kILMIGK0uAEd7YnL64uNPPPX00zNz875AEN4LiAH9FPAHTvwpRz4PQe50y/YBng+EO2AeV2P4mlATEnCPswegv9CkaosBtoHHz9ldIhQ55FLgSGohlCnblFa7zoednnMXHtlNpbd2dmCGnL1w4c7SisPli8YTy2tln1+sBTANK1WK6Xw6EvdOzU7gH61cLmFvMDYzjitQ8NTE5GgsFqHm1OfowmIo7MygC5vP1CplQ/7LjuSQUdKNotEmoAfAPJqAjn/Qu1ID5Zvy19PqZgKj4yVY04qgviIMNLH8QgzsAomXy1U6eHR0eGwsBjeP74Jojx8/zj7gg/cvM7SOCTldh0csh6UnGRslri+VC5lMmiOCwsGgqR5NNuH+gGmODoDOD7z6s/xv4T/9HugOnhmtgRocFj+QzDw+bHqT8U8zoHfKfftlFmV3v6f2tUIr6b9uPO81oaWEi3rfy13wBGTPvfeHbIgu98MzsXjun4ieP+jSuRjle1fp3Sbe5Z6Qwo5ZL0JYjHptTafPFRkKD48mpqYmRmfnCrmiSMBt+MGvpHOZSgVushwf73dyoixoQmpHBWD+QJw3W53p+XnMUBeOHvN4vVDNGoLjxhm/bNEhTov0kl44RtDO4kKCO13edekjqA4vo26XL8B5vRztjqfjlig3tlqVGicaSiHyvb6L/KoKwF8HdgeoD9FELBLQBAKiNeyu28lcwea+vlE5e3GxXWtsLC2NJUJ3rl2aHLWcP38yubdVKufr7Wq+XDl5+kQgFIzGY0gspCYeJMOxI2dPj05PXlu5Y/G6kI2MHV+cXZjDWYK9WccOjqPChOvENkD4H8pBPmHkIswPVUnCXNzpIhPWMf3x+pUkfbBLz2G+ojGQqP2o2UjuDifVIJ/viE/sYGKIOjMHnGhkDQ0xl7xowYbDIG9kxYB1/N9hKXxkfj4c9F+9fLmzsz189vzZC4+WatUdzm7LFS1un290DGd8bZwj5XM1xOnSDpechIABoDSKkkT+oWlJ/cOd9powtRoI68cHa+ufXioa9uB/f3rVuvdL/T3ZX9t7U334k0P772BOMFgkH4Az++MhvVQyIcH6i9ePkv7eeJ3msPj+EnT4wOy80hCEckyBvbzdmN5j9/ewcnqpu7/0I0tWZqYqGWKRjLKS5Uvwo3FzDuxB5GUXW1GbHUIY1iphiCM7flUcLohfeNXibAvNFQhhHChLN+ryRcWlVyGB9eaxFyADsRrwqY+q5Lztq7/q596tV1y31L6fe4ajFw9lrUC/3p6ru4BaceklJSnIK8uSajID7J2W225rViu5cn5yPD40GhxyNu0+Z+b2neRWcnc7l85xbBTOlvEHZwniGM7VqZQreBiATBTHx+0mbPoyRzK229HEaHxoRJ3S5cJjNLyXkN/TwILL0RqbGgPIfmdjja9ic4bLBzTggbRICBhlNhIAfXE+XS2N+qboeYzM6GBOkwe1sPNgP1GCMa38kcnUl84CUEtz2EVgYsBxM3jrBAtZi5Wg1QkQKlIxb3gZz9ZjIxxTU9jencUlcnG7U7W89Ilzd27ftLQbI2MTtTaHDPuRmq6uLD322GOoPLn9wbWbt8qNxrHHHnfMxk5aO9/47veef+IxWCQLpxbtgfAP1lNrK7eHho/ULa5Op+kU82ZYXZx1gLdru4sjdDkloId+GQlVWyEnREqh+pzhoP76rqZib+ju/e2bD30vQHJ0PPx2prEFRxyoQLGO5VRMP7IONkDNGo76OiGvHU3VcmM8PoqP52xyl57C52so6uWsg0wm6fPD1nJPjhyZnZu/dP3Wt/74my9+9jOukcTC1Gw6U8Y9uMvNIcJ0jjNeaSzvdhxOV7bp6rRd9k5dHYHAqaCWBrIj6Ay0f4EAMiJqRtFgGkuVBSfL1Ou/E63eS4t0A00zTUDe9V9q3IkwCUygP5UJq741T3cDJpcGVwZoqR3w3WRSc3VJo3RAzTRTbeanjtcFmmKJlIZDDshy69WWYK8cncvcVWLzNUmvLzLcTSPZe0/S13yim0WiVcXM50wNdQZKI6DvvSLkV0GHvhcDKcyjCejM5tEEPlq8zvXgd/M5E3jwvDolE0L/mYycMUW4qfkarErtUQDvYrpD+ZJibgj92RAytK3OKARIsXGGeSok313uR5eiV5kO6PH98XrC6fgf5m6a8yABvSrQ5OOL3fQQcGrK4vsYrj+6LSEMAAJe6YR8IbOXbpVbjQruwTr4X6C/AAiIQB2NCmCAM0Z8wCHBZSLQhdEPaIOHAOUusxIeErShmmMw5vkk5P/k9NTQ5IR4XANeCLITuM8QgGyxYwJb6HUCPhB2v9IUolh9CfpFbVET270lQxGqURgjW+Fba0SOOMIJXORQAdxUh+OekfFCG7DsjgYjlUzO3i49+0Rie2MJXSfE3dFYxO11BaJhT9DPPgieCbZs/FVbraW19fffftNSrQwdP3r6sYtbmWS+lnfMjEeDnBhviwQCyCYA+XLCDbhcILCwX/iu/Cmyl+ppko039LMOczfxJuZBhq8/DZ8jr3AJwX9IX9VWljBqUnZO1ZR+YZycQ+Pj0r2NZjad4a3H4yQe9z8gOUlste5u78IYBTGcvnDx5OnTv/cHf2iBWdZqxyYn/KGwkAqcBeniGB4camAULHZ20Pt8VXaNYhUsOwB6nhmgZ9eD3Pm0vqhmL/hAvya9CTxQtn2J9men2g/1p4vcX8794/dVRCJMISZwYDITaXr4ngorqMWAcpGyPzDwqBOIprIQJLKHuycw8GgSUDldv4HAwCMf0zH3j+9P8yBhU6wJHJaLBAdeAHj11/9Spq9bPCDj8tyGExhcnaDcbW1XLc2aRMKoxlcKXgY4mAp2BydQoYZYB3bVcZAgQLGFfrSckYsGI0BQg7N7O+BuNfnw3Yd9IUUCCzN935uPFgFBKn/wZshP1eQPmMCWQ/wUCHQSiClAE2YJL61Y6HIcjLdti+GEwYOjYzyo4ci/VsmXOcPXUrM48AyGbx+nPYhjfIsd15I4i/f7bOAMupHD3BVXB4JdeRNSs1D1NT0k8AgZI1B1buHIkWPH3einQ/h7Pax+/piAer6CZcnCrgIn1LhxFnzQuzSg1HNXx0m71GUCvbTyS6TMZJXmkUcvoOb43gcfYCe8uDg7uzDP1/PFosvnBe6H4zGOmYzG45i/4kEhkyvgmIjwkJjDhZZXV9GX5Ayx048+jnOITKFoqdbiE+OLi4vIQBolbAUExktVEGLgfZSiYcHLMQdydWuyLyBVVJXUgfvcVTEPcaMPdWrKhEyhnjjwKNdK+IJW0h0/SkH5XAlnP1YOEGu7y+X2++9fs8RHi5n86Ikz80eOfu2Pv4kPEKHkERRw+jNKvpwfj20I56/h3kMWCAw/6d3ul2Re9aQQ+1qiR3b/nYS6f/oD+3LfjTCNGgjox/33uzn3hUis40xgX5LBCDPx+rOYsAkMFDsQP1joQc9k+Qi5KGl/D98/hrGUVac/ZgK6SubRBIinz8yjCUj8Q5ajP3HAvTcq+1+Zz5nA/jQm5rDuI+/dNCbE+U+cUti9hIrvdgj0edc1sQAn4pnu3LGEB0iDSVjmIiNVF9Qf2QT+q3J0h6igvt2dbSQ38XRblyC8tw9NgoGARvsDkTz2l9n/Ftjeq3V3u9flAwnwR5edFqkBVVXioHAMPjuVkoeD1DH5d7gsDtR1QI1e2DxU1ON0QLI77U348xyyBcVub9RAj1VR3alALAOgBQdwerDXC6DhiCw2VMIMUB1DYyFDXU7b8OjIzNzcrRvXsajCIQ8gHkqfrhXaHo5/kx0AzLRWKV9A7RJClf2EwNXeRWJ2A6qZMgRQn2A0PqNHzdzpcVFDpA4WK1bEtXwKaYRXuZDTOAbeUmwozhnzwEh8jvpqwWA4FAgHUISnRg4cSAQxIo4dO3H86u1bxVKlcPv28Nj0/KnT1VXn9ubmaHR6fDLw3mbF3qjb3FSafQCVws+1EALgVHqcCnQnRG9SkeJuVF+4W+3+wXugMPkkq9pOyKe6j+qrhNXROhb8p17inM5CwePo+LwAcis936oXqR/6/e2WPRofW13fm7x2OzYx3szmTj/x5EwudenKByMTiz6vMxDmlEncuiJW58Bkq9MK8wz5An8KwTH6dDO0hZ5sD1TtbiKpuroGAuZxoDBpaO8yaUyg9+bu793Ud+MkZLLsD9ybsPu0f331Mh5cf1NIL1n3i+bRJDABPjHwlse7kMKk+7CArqrkVYtaBwYeKUPHfJznAVDiQN1MDQ6MH4j80MfDyv/QjP0JIHLNowjM5GJStSHqNSkDuASmozYHJKL+bJxRTOkmw9ZJwR1qgkaFEND6hQI9bVGNgSIitss+6r7t6xbdIYBcXqloVQFVkO67PtSgcw/ee9/cF3/wC85wkk/xQZFyqG8oIlqAMiQ2EXBvqY9wSiAFxY631mmWY0FPOOQX9iacGVgy8JoxlMI6t25DN1J8LIAT8APHgcH4joMfTzYOf6E1sAAcHXzl+9gBwAKSMcNmAG9xYu0rkJiTwtot0EdifBQH9Pls2ut0o6lSzGbAtXLMIHUFlPCDfLJQzIguSgnFROHyq/pLH6sjwKRhfbMcPEYMFxmJ58PSKNVMSkxncjGvf/HI0cLNDza2tuzDgbglkM9nT506u72zB5jGWirB4V4cd+DzRoeHWlVIAhz9OziCJhiJjo+PIzUtVmvf+vo3Pv2ZT3nOng01W7m9XLHq8iL7cTszHVhjmE0Lq0cOZUQgQN8J4lN9oComdbr3MjEmcO/7D3+iS+l1NaaDiSmTnkD7Ftl7YmTE63cWi4XhKVzAua3tGoegWVp1ODogAHaz7PROn350aXmj7fFVLGiOzgad7YWAN1Ng/8U48hH2d7iIAvPWmvWy1RkUvpAacLnB+ZM920e8TPNN4D4FmTQmcJ/E939lSjCB+6c/7K3JbgI6pXk0gcNKIJ40hwHM++T6IV+xa+1eugY8mIB+YR5N4OON737+gX9MNUzggbNKwh4Rya8wl1FvIwCUg2hVJ9PCDkJxpNquVxrVPKdH4T1G73Y7LfjfwK46ihAtZGsNlkEFeSl3BF+sfTwjKGXIu9Wh9LsPfaG+eMH5fY/91SP6Ia6+4u8GAbltdEFwmC9cIKmM8KDBN+pPwSegKj47Aens6iEHW5Vq1m6tD49EQxE/Rys2a8VMqZCplLEIdcCx4WR2BKaWJucFuH1IDjlL3YFpEHxhrwvmmGASHElgHgXfDIBMA/goI0VNhBgHcbqcItO1WWPxOA6CEiNjqNyEcBCkMCv6pVyQ52AKEDDnUmJ7XCoUEAUgtUb7visG6KOVpLUK8ktA2NgKncmPrCjpAeF/WfMlDvgN4uQAc+JCqToyMsyuIpNrhWJRinYHfN5gMDE6Js6rrTY0l+ihYqkEe2p3J4lgIhSN4CZhdHiknC/84LuvcKS979iJGkcRdFpDwUCzkLW1qu1Ojc+pI4yRQlgJ1OmAvgWlq6Tq2b2pat6DIfrffrSwoE+UdJGvK4DCbqnebKBPNTQ6gkYs0N+L4yImM+e42R1ep9fetpUKVY/DV8iVwsHISGL0m9/85rvf+CoD6ZuamJga5YAw6oksmBi2RCjFVss5WwfvF2KNAZaFqJJW8iMh3abB+/3b8lD9QGJdmgncv/D7vN3/XR2z/w5o1tDZvOovdn85poa8ImwS9OfqD/cn0FlMLv3qwe+62P5CdFEHxosGF0lpm66kCejvmUcTgKbopb8noL+hkt0T31fOAfH67T33XmfdE9l7OKz83vsP/wXcm0SKpOyCw3KlCA7A3h3LJjTc+RAEDp0TjQwBiQhwAiwUDrsCwo1GDRarqFjUWF8it0QREna5JlKF5lU0vtTWfEwxYDSNKuS4fgHZrYGX6lXdhzqHqsDdzCbUX6KJlMDB/QbU1SwgAQdCnnJwlYy4/FEUcIJodu8KaoIngFpVp68dH/Hb/dZyKleuAX3rNc6QslvzrdpeuZIuF6mzG/lABK0eixVXy/UqSAEcAKOYdkD5I1DVmqGCwZT9ER9VM01EDiiJNp1WnG1Oz88hJUWtEPZOsVjM7u4CrsGu/MMeGJ8UoIONtXUU0kdGRjAZ0IDetJoWCeeHVtAG4UKolgGT+JRcguaAT3JGeseaGE6kMlgCZDFxmhsZRkNyaXn9xOlpJJzeYCAxNkq90V/d3N3BAwRWbKVydWt3b3J6vlAqUkmEwoVSKZoIP/noY2+/905maSm6MB8fG7NkGrupZjOftrv91ra72UE8jXds6dUmyk1Cm3fFv1IhdemAGd+BeNO6gYBJNhAv4847buqHb8iT+hR9D85k6yWcOqcD5Le5s443N9ia+Mx2A83B3y40tJq1fHFnbfO5l04sbW/sbm48cubky9/8ejTmmTl33hIeQQmXxsCAQ+jjsjndOAm3QPHU8Y6HRF92lzLv+Q9HiEuz5vZXs9v8wRe9526l+8Bl7809v/uTmZh70pkHvcDM476AyW4C+5LcjZAVrTp3f2ITYwI6m3k0gbvF9YV4a6aEiZZIBUlMzIcGyMKlkw0EBh5JQ4ywgHRIf56o/nqYRxP4eNPr0h78bqphAg+et5tSVmUv2COGWTw4vPS5XThHjIYjoaDfq4RdcILwZGOzw+poV3EWAI9buakB5q2ursKawJUKdx7bDchM5dnMjRhVetbMlf39yVvSSHyXYLpbJV0znaBby4GfD1lHA6nvPgIN7V0IqgyEhAkk9RTej/QJ76lQw+tshZyoALGfqZeKuQaOjhH+Bfzl5F62WEpnqyiFhzlO0ecKBz01W7NegnPDmbt11KYQGVIEp8FAT0PQQ3krQYlABN0ivgGriN2TG1Ugvx9JAB0IBEefqpDLi7y3hO96gWV0jvSPxZLEb30mi9jWhf0t4gGc0cNv7mMBCQ5QCK3bVHUwoXJVBqpDHKsgo9W6ub1zdjjSGB2+XirW6vjG9FUbtZnZWaB/gOMlR0exmC1US/gCmpmbxRICw+BMNltr4PwuDwWNfkshV4gmLGMnT81nM5VqPZLO2aNhZzlbym7HR+eKLdzle+qidsSWCtUY5gq1pHaqPfvWZLe2vZ/7jXgvzf5fDR768WI/9NVlcqe7wGE4d9t1WRv1MujXYWlxDFqAHRzMKlQZSu1jR8d+8PLLn/2pL7zxwVsnnzhda2Rfffnbdo9j8rjHEgxZIlF6v43SabODlMjvQRxQa3XcTYubnmEesQ3g06ILpNDtAVXt9cDAKz3KJvIB+8EkMwFTwkcL/EmX83GV/6Gt0x8ynxsIDDxSmgiB+WEYBgL6S/vjhdQ4KP1AdpPxsHhd/v67LHoNHO8NPGw5QGqy6Fz6rqYa09eKV0iYF1DxMAGQkcF2uPjoIxwGAnMUH8hYn2L6SJqGqP/b3J4Auu3VUpkTTrioFBaqiD2xnOQRmMWdBUYAM/rN7V38JuJ9F4jG52RzICqMAC4RJ5BXIK2QagLxIV8F7PYvWdXk7u2gBQOs1DsAXRopTUDzX81jL0AniENNPinIRv0JO4bTfcU5T5ktjBOA7cHyC/RVtTcrjezehcePOSr5YmYv5vPU6v5UMZtLZtPJdKflwia0WQZ4WjyWlgdvcQ6LIxHb3m3RfL6gLCXg1AhApxvzwkNX53+1UQ0SYy4qzJYE2AoOoHPCsTgHNG5tbKaSyZNnz0GrLl2+inYKx76jdYXRAO1D2ebWrVtjE+OwiZA6ANnhEfVaJ12lB5liZUNDd6vmyb5DeUnmkxzXS3c7nS5ENFQuk6t6j/sLxSKnzCMaTRerR04cdwc8TQ5Gr9edXg9bED6ED2S2AqLxYuXIAeJ9uEzYWV2tZ0onjh9/d+Wqy+MdCsRQF/O7bDt7W4H5SJHDCPCkZPfhMpmzB6qeNsW2q5wX1q2n/KgKm7uKuOcmk+Kgq7/J/e/V3FY3sC9LU/aukpYOx3lR22XxBQPFct4eDtI0xpp5HY/GUOZN76Zmx0bYAV57f2ViNJBLbg2FI4X0LoFKZvzi6VNzs8O55F5me93XGHG3QqgD2FzeIZ9zarK6vHOzXs47QoF6Cy6huOhAkmBplNDRRzFINbe/jhKWkTnokrqqSy9SgjpwWHoYdAcV0821/xWTYn8kMea7B74lcqA+hyU7tJ699XtYOYfFD3xofzIdc2h8r70DyXSxtFrHm8BH3wFQoi6lvyspXT+agP6weTSBgXYOPJpkJvCw5ZDRZDEBWo9+Bs4MGxVhNk+MzJw5cyYY8o+OjnIKOjFA8529lEC7dBocwJyNxUcYY/jSMDq4M5PxhQA852zEaq0MEI/FIxPjUx6vK7mTXF5fu3LrZiqTg2sBBsLrFtJLmEUUpVjcwLO701d1lBKvaaA+0AUHPQIdyC+Q7qH7WcSEWlMbiplCcIETCgU5DapcybXKTX8Ihwg2R612dHTYiauAQjGArReugSvtZD1VxbaqCj3ftNXRLre0S5ZmPueKcm6uZw/eOiCGo3KLVVEKES4ZDn/8mlnPnXbQgbLJoMF8W6YgbBoROeAICF/9kVhUEGSrPV86WqtUN1fXYP3DWpAtBWij3U7u7G6ubyCGxXcxlSAvmPuwhWe6jb4SFXm5gxPEezVcHZy+hSK+XKHY6BQeP3IaacTK5vrJc+c5sqZeL0cTibMBXwwvmO0WuxM8pgWHMFeYgqanWNCA1+P6yh//zp/5qZ+an5rLFPJDI5OeYAUt1tnw0O1K3m23V+1eGIJeJ6DWZbGV2EAo7ZkuNDFz0lTyhw8wRaVy0N1q5TM3CDHYaC23HA45qqZa6+CvtEXFkGVYfAEOgXdkC5nZWc5HGH73zTdHxwLYM5ZLVVSbd9aWoihDFUCSEEGl+bkFkHO1ZRt2uzkfstQoxCdnF6cnL99YL+1VOg3cgvs5IAEqBuEYHqXV4PYW3sO0zfSMCTxM7o+e9rDPmXgT+GjfMNlNQJdjHk3g/uWbZCZw/3IGkpnCTbwJcOi2YGBWph43E9B5zGM3oBitfa/uYlddokomkSYwkHggXr/dfzfJTOD+5e8vYX+MKqElBi3tGnB5aGoUP8OPnDsL5VTv1JeXV0s4fymVUDqsiAKIkJ84n1nb2lawDDEAxy3p/zWokFxOWOHYBuCcoFJtRCJhp905PDrGEeQb21vLy8vwLigKspfVJfZiGgDK8uSSNSs9T3/S73d7Ub28700nV90i6UxAF2IeewHtm5jBle821dcZagAECt34AHA6OtGAG+BcTG3hPWDMVZ/BYKpa4CBHNCMtqdze0mZ+p+hsuRKhRDpfc7bzAWS8TkvA5sS/T8Dnzzdbfk5OKZQ4AMAWcGdbOFq20XDaRR3oOmkkjVe9j5AEKlzZJoBH0bTCJ4HXMpTw+4MtYKXXAwkJvyW5ul6vN5xuj91lb1Vr7A/oT6j1SCwmAB2uOmcJgFd7HaUD9CmfQQ5NU5X1mfrlJsBRrMNqypCP7QXyhmDEhTEajj8ZAG/ADwPP4/N54uGgdwrfCNhA+SuNofgw3I/Z2dnX33r74pNPIRgAoScS8XfefvOFz3wacqGUTds9nHYZX09mHW18BAXKNksFPYEOvifsgg3Fsx6Mcvq/W9n9gV4jur+mUQPxBz5KYhp30MUQqC2QvANfQqTDygPP+YL+Orw6lwfNrnQ+yx5lfm6ukC3k86s2a2hjbXX6yCz731KmiQbW5NxCPBgqyNE+dnZ16ULaUm+gUDs7OrS+s4JdQcsdsiIyYmOHGIw2imWAg5m+v0am4ftf6RiTwAQOS/lxxZsPmQAlm/D+wIHf7Q3s4Mv92U2MTmoeTWCwiG66brRJpgMDjyTqxqgF0s3aV7nD0j+sHQBFMrqym6NEVni3dr1H/RkFfe7OZPNoAibXgQGTzATM5w4s/8BCBiLJyAVDpFEvuWydYwuzjz/++FBilLbsZdJrmxu7eyngPqa+yPuY7k2rMHPl8OwW59wi3lVSSQAnwExtZnH7AH1KOFOAM85RSh7oU7bYHFwup59PT+M7/sb1Wyix4EaTV4pT3e00aqJaxCM92e3PgQof9igDsG8fp0qT4dAlm4AMi6AZIYPh0MiwiSY3PIk2O552swLRx2EmzWrOWskmoqHTk9OJoNWyV4L7hd5MIZnZ2yslc+Ax5+ZucnOvupOH+WNx+Vz+YBSojbvgIU5nzOXgieNzxuX3210ueGXsgXAk2cJmjOMD1SUqItRB9IJ0FwrmE8xqh2EmzH2kyIAYdP/RVccFcV6O4W0RIycPNBoZHDFv77AJgGVP/WEfkf3uDFOdxbP6gnrgBtkuKpJihAz9z3dtTge+SBHb27xOjqcEK6+srDzy5LMWjr5sVD2xqOA8DrnH0Y3dDut/YW6OcCAY/N4r7xw9eWqcrYDD8elPf+oPvvzlWq4Yj0Y2crsgMJR/PPbGECxHW7tkt6AJVBUXdJWmG/MFdOelorqy/VXuD/dqLL8Djep/tT8siZVKF4SJXosUq9ckCMCFYhZbK1HOEvk5mBWxbQ6GpTt0YmFxe+3O1aWlJy6cj4dCLo97Fb/QbnslV0Kb2YFRY8taKdZuXLl+9PkfbeZKMLec2MhFbRyP4Oo48IT0ztUNnMTWrXUsAGVJoGWG5QOTU7Z6Wm36nvoe1t7+RCYNARPuT0BYBvmg62HTmzJMRh0wj/Kt3hQzAZPLBHpJTEQ30J/FhE1AJzKPJjBYCs99zTXJCJiwJOlVoj+2P7I/TX+YNA9rByCrF6DJoqYgfekv9QGd3gsmp0pmqmJe9Gc3kSZwWPrD4k3G/gD15CvmQ+SVi9ldKc5Nj509eXQskWAy7WY58Tu1s7OHc0sAEqqgHAsFdQqxiOWk6IAK7BBrGqFde0qNFGuHSS0vMLPnAHU8Atk4qzZfzOEyZ2KKE7Amjxw7gjbh7dsBzsgVtrXoFDGY9JsgmG7VeiC7v+b3CbPAuFQ596TSzdwfr4xz5aPC/BFxqELdcLHYBBXLcVzE1FvpnRW/rXHmyMzR2fGEy5pbXyruZorJPeS7Louz7PTd3tta386lis0sDmSEp2yzhiNVp0t2QFYbx6NA9Fca7XK9WUFxHyaLxQmsUV4dRAosHpWoAC2FOyyWAkBKekEyM0IyJnQJAbR+bNb4yPDx02forisfXKrkkL42RT2004aHBlcN3OAPh2hsqV4FfJsuUL0iUmzVOSJpUMpO6D9J+YBE2E2gdaYEZD6IKRDAnWUwnU4C0vgi6Z04p3O52oW8ze/li+1cjh1GcHjEgqcjF0egWK5fuTo5v1jNZz3xyKlTJ2wwA52ecCxca9c3tlYmx+Y9LR8O8trVcsfpB9Mw0bB9gOquy5FqXYBIVVTd5K6HjMAPebEpFXG7wjFC4DDEdDQu8dh4ulxNi6ipgY7yhQKyjWA8FhmLBUdGWh53ZHI2U8y6o1EM1vzRMH+ie2uzIS2f9s15feF4tHNzaW32eNLFzqZY8bqL7nAIPyideiUxPjYWD2e2RCzm8qoD4RhGeriDzfYB0P/+bdTdQhoTuH/6j/Gt+aIJ9FejP/IjfNRkNwFdiHk0gfsXbpKZwIeWY1KaAFlM2ASI7AqBCTEj9QsT0J8xj92AzDGZwVykJ1KHzX0wfe/FYfG994O/A+lNpQfiB7P1nvenJwbOczTof+TMienJMUxk1jZ3OAAEGMOKweuAiH2ZxhwpZXc2oB+dXpvTA6MT9eYWRCS5hZrmn/AuChX8kcHzxAUMdgF1pTnqgKNdLOWhK6EfcbuI98QTJ1wbG2wDdoqFMgBImOFyCQOEhsCNbaJO1+vPXt0P/dVdDwDlGugHCtXZBuLFM73C2FBmeFzTBBSbG6fbvpfaddeLM6OJc0emZkci7VJ2Z329uLvrpRnTfphWuJPfqFoyzg3vTPxnPvHZDlouzWalkKkVdzr1fLLdLJZLdAXaQXDPp+aP1tq21tqWt+MJDyXcbm8DOSSkoSIMpW4iHgT3gA6ENhdmjppy1BwRLh0CspDzCKenm/iaKZeXbt2ulqqQ/ySWYyfVJT3Yy9VtsG52907XSoMlmfonp8cIdYxtrrNSLXmtdhhNOCNCp6vecp9/9EK5UuZ4AwsMsZ09EgyFAlD9mB8jKYXd0eL8+kDoxz//uQ+uXqHHxZLW6xweilurNQsnWzo6Aa+9MBa9fePS6OgjnVKzanVVvPiGQMPeAaerWihhZqWHxgyQCdxT8d7DQY3qvdv3S2IGlH7lW3SqEChqu0MUDk1IDvTHaAMfcR2ba2xs7Hgs9qlPPJncXvqtX/uVYwvj3Ggm4gABAABJREFUQ0gyylVXJEAZI5PjW5vbmPlubid94djQ+OT4+GyqWNnd3Bo/fqLUsaV298bcXlvAbxHl3/aJowtrhZWdfANbANldifRZ1UO4mwdcH9Lq3uw1yUxgoCw9gQcieXzY9P0lmLwEdFjf71Osyd6ruInoBu5fzoOXr2HD/vSHld8/f/pzHZb+YbWAhNIwAMvAGtN6E2MC+pV5NAGT5cCASWYCugHm0QQOzE6kSW8SEAOJMjs/cXRhBq2FHIfb5rKZTA6/w6SBYkJiiGmLbN/rnJ3HosHnj9g3CU8IugZFN8F2ACDFJIIr6sGixl7FpLIMQWrDh0DMH3IUrJVqEY0ggEU0EoOJgds4kIHXwyGJCJk5awX6WBggLFXuKtA/aqa+hwTYaXfpR8lFP+jh0AvDPOqAbDoUS4Ck1BtICHQkLAqSDiumD8Nx/zNPP7EwFa+s3ErubsEsmDh1EhMt9EDlrJBiyVu3DNdtTzz7yWM/+gWLQ9gjle3V5NrN/O6dSnKjmoONXE5ls7Fw7MlnnvcGo0e3k6mGoxlOoDQDr6WMSJSDGMU/BJVVkgDheoGVqAsYQWFVaqTY9JLE2lFn0s7VaogVLavLy5V6jmhGB5odPptm/vCoO45X9150q0g4pFf7/vMAQwnhPVJZRgSeOEXNzMwggqhmivib7hSLV65cQZ7fun07m07FQxGGKZnOZNPZE2e8xy9cwFaZ3UC5kF8pJB21VjHfGRufsEx4LB777NkzV974oJ6/5h4/O5qIl+tOhElYS7mwD6xX7fgl1Yu4NyelXodf93u3L5cMq1Al4DuwJP3Lr6BLfphsbO9xCY3qpmx/7DZsHc5NTIaf/0T41iXrl3/v9Q+uP//4yUK7PeJ2s41ITE5cuXnb5eSsN8fy+mZ0ZGJ2cfbIwsm9UqaUzTf8ONm2M6U5EcyCfLvZPHXi+DvL+TtFsX3D/SjzjQtBTtuJZ2zqMnjdv9WkNglMYLCIP5ln8zkdGHjsr9iB3z9sMD+0nP0JDiy/N3cG+2d/9m5Mr/MHEgw8mnY9pBYQbE5x96FAF7ScookFNAIIBcSYeNH2I940ic8zP/RXdcC8Ggh0FwD9qtIBKYW0UInkfm/8QN79j/3fldyWdiIe8eDAzNLE1cHoSGIvmy1VUGx0VmrQMuyAcaLrFBBiw8s5j4DBcsPeduIgjvoLgSXud9k1w90oFOsQP3wCrUWwBMp2yUwZJXDO0nJ78ZPThvCnq9Re3IWiEWxZThhHAlnhY/BIhPAVftr+an9oTH+7+vtzIF4BfykM1AbMxSqYGHoTm52djQ32QS9cPDs3PZrdXtlY3xyJDw+dP8/2RsBxtWqxli2uSCuScI3Wjz35DHrtlg6i3aYzGp6KnbG05stbq7trq0tXricr7zecdU9saPL4mfEzDrhGJYf36i6Mobq1UIJpQA3Ff4waRxzo0YmCh6gJOEl2VHSp8JEZaPqEx0A4NIOCZi6byqQrnEBfq+GGDGUhOPggAJENOL1wcg7uJbpAnNSIVbbAJsZclIGw4274gz5OA8aLUMtpi4yNOo8f33nndX9sCOFIantn/c7tiPfsraUbya2tz33qk6u37pRzhWuXr0xGhoJj4xdOna5kso1c/vXvf+ulZ1/YXt9Fq3Lo6IuNnVVnNPLsU0/+zm9845Gj5xLzQ52t0uV0stniFEvcStixHJEqUBEuGqum0ME1N7GyT1Pj1H+XzPviycIEFE4XbaXVsNqksWjj1yzwoKRz0dRlF1su1YoMYCBmYcd77JGf/4W/8d/8rb+2l8uMJiawV/CHg/D9S7UW2yN/2I1IbH1rOzQUS8xNbd3YW7pzxzdSC49NNCtFS9FtGU5A/Fj9YVaQy476L6iGQYPd5K8iyZFaUhm12OXW3RFo9U3e6Qmvd7E8kFDS0grVPp1Thw+86+yqWKEk1KO+Syn3xnQ/zVc+9OoOUC+deTSB3puH+zXZTUDnN48mcP9yTTITeMByPjQ95zR1AZBMFk1RqslqwIrEqnhZSRLivwjWWL5yF8afDCE6GbyWP8ZfhWVmsrbFJ/C9lyrGROkP3f2cmiMyiWQqy50SBUyouxB3Kl7Zm9xbkClRBWi51FQWgySTjhClFPxhpWrVnM8JHnMOxdkEN9549woW8eic8DFEl7CvqTEGMvhQgRPhDfmIrDaq8CjE2QGcCpiqcEJxeY/JaKsBt6dQyZ85c+qxM+fLltaXv/IVThb0cmw6ojC7dWF2AR8yayurxWIewjMaCQcCfrF6LeThn0BmojOuxMkULBsC4KAeMwL9PWP6h8aQQF+0i3jNTervZ952m6wGhHML0tlUIBKGUMvB3AgGbexwspmXfvanj0yNX7/yvt3RPvrUp5xBr8BMKFfUYEp1S3C8uL7+5gcrMHNgzYiAlC71ux0ojVbbt24u4zm17o6F50+MntnDXaR7fNYyPmWrNlq19srGRqHWRLLi9AcxOkWC4nA7OFfS5eRwQaH2WZq6knS1qqyAN/4B/6k6OivBWGxyfp7D5d9pvVPa2qqguA4gdeGiWchPpPW6u3rN7JYGihaLbMrE4owHhVyFl9Vpca759ubS/NhIG8f4bmdgfJSjUqrtdtjHVyuX3ntnNjFW2yumrm0cm5m9/u131paXCrkUBoG33nzb7bt68oknbfk86pOPjE6tvfW2J5DYWLqV+2Jl4dknLG1XaG7B5fpyp7J81Hdy4txEwmP9/e++b585WWu7fBwfaZEdn6gtIZqQ4RLAxGDr4eMu07tHuAm7kfnO5JGFSVtk3tIg4aXtA3A00yF9ifxZ/GPLaIuulzDdwPcYU7Bjw0m/2+bNJLMzi4v/4jd/9xf+s9F5/6x/aCxfbbkw93M0qs1CbPpoZTVXrLTcPjhe4VR+oySqbcVWLZ8YHi62OASYrnBVijbU/0eGh5CZM1if/NSzOcs7337jui86E4pPZrKFWtuacONOJAvzzOFArZhze2zCJOpgaOmlB+DlQTdypryoCLCgPG72xShowRMEaNASYWXJwMlc6MboeHVXfSKvZNIwU/ruCtsRQwF9d8qR6XDAxVLTsX2LhQgZGvaQ0pd6Xuo7FZPN1QEX60/H3luOVE1d3a/L5NbP6sA7hrRbvh4z/U7dB8vpZuvy57ulEqknTK8c2qwTSq+p697q8zldgV45vYK6tdd5uPeqZSK6gYF4XRp34k1YsquvmHs3gSQavAY+wOv+GJnNamHc/66T9Wf8sHC7lM/duXEVXyhw7SvVzFAk+OTF89jEl/OZVr0CkHFA+9twceyeGBs5duyY5jkwqzTNQj3x+swaJh5FT6A/5mNoB6bSyVtr+I1fRQcGVwdsim0OJ/JhHBigK8m5hk3l2RgzMafLPjw2PDMzNTw8hHd1LhgarA32B/BX2BnQBKA5kdw1mGPy8TlegTA0xOeVvjQ0oVYk0BdFkb57gZatMLuKwXAUwjmbTQd8bjhcmd2tZy5eHI3GHU7vyPDkyOS8PRBv2YMWR9jSQBMmYvHEk6u7v/eVb3/lj18pUyNvgFrVYY7cuUOTd1KZtt27nS7f3khfWl6PzRw59dSzockZi81V7lhz9XqqUBSNWdEKBFIjVbXB9gIoaAf1Ag/2XWbgeEMD0A7yBwKx4cTIxLhvcgJRLdbITHpp2715yUiEvktAvYWQ5CwW/oCmTHlIkmIujyUX5aK7jtuK+NRMei/pDUU8keidO9fhDgUCoVdf/t6PPP381tLG1tr20xeeeP+tZrlYCPt977/z3td+64swwdfuLO+ubW6vpe6sLN9ZXdvd2Kus7lqSRYvH/+kf/3ypkrr2xstRv+Vzzz/+9GPnV1c22jZ3rd4scmhOvcYxBnCfWBGy+esbIyEl7r1oAQOuGqqHUsIK+tNKDYa6d+aknpa9FyxnMX1ALoyFGr6r6Mp6uYJlsssZ+ME7l1/94Or7N1csvti/+OX/6faGJVXMOX3u8RPHMPS9tboyNDKWKVR8gTCwZS+5VconW/UC9l3OVtXfrq5febuT3Kptrl7+7d+ycB5Adg9z7z/74oXPPLroLG0uXXq1kk+OjQ5l07scLhYJIK0PgoGoOTMWcTQHeeoL13TssyGGqCtmH9S8V/l723ZQPLIGIRC49M+H3rupVZaDbnrm3POG9f3w1wHlHFKImp5y472564CJ2Z/VJBh49cPH96lSALUUVqFQQ4/oOj1U/EAV1dwdiJNH4JeONZ8zgQNS90XpZNx7cV3U2nv8kN/tjc3ZhG9vbc3tD4TiCR++H4H30wm/04pRaFo0Tzq+YNiLzZHTUxb3D/IhOXfJynlZQpmwxpCwBaMBTMPYLxDGTdDG2kY+leW4RHvAz+SmdSxy1Bl38W/TbEHy44keEI9sE0AMK4MlEYvF/F4fqnQQtBr6i3hAXcAIDdn5mO5880ixOsYMiu4K03v9b6kvQAB2usfmrBYrdpsc7JRPp4eHxp55+oVodAiKJ5YYsXCei1gCI7XFTELaWymWr16/+e2XX7l+69bP/5W/YnG6q3u4xtkD54GxcINBEzc2MHjYqJaKzz/37PnzFzzDY818eXMvs5UpbCYzNZuDlsEDkSMC4D2hQYQnAeBx39TnQ33j2G0pMVzUROA1R7rX6wTYRXGRnubzljaaecUj8Vwq0KXrYFRShiKLeM0bjhITM6gOjorcnsWjp5y+YLrUWDxyxOK3p4r1yMjE9Zsrxx65EBobbbkdI+PTK8nN6RMW/3B0s5Abnpt+7Y3Vb7z2DaZsZdeC57rAaDVdq5aupr9z6fozzz753E98Nvr0Jy6MrWykK4VUPhj3fv4zn31/7TcLhbwj2DWBZsSpBtVWe+4uIaZ2Par2dwlVQ8z1iMbeHFDpBm40kgYyzj36hH5QxCCTUMwPQaUqOx3//R+8ikvUhWPH/tk/+Pu//qXfYa0nxudKbJSsbiwCVrZ2jpw4+dbr70VC/pEhtm1Vj73p8tld1caXf+OLRxdmL5w7j1dAzENsldrlf/XPTz32vOXoWff4/M88vjAesL529dbNjQ9uvf3m7Mw836qW8s1Cp6rYqm6k4s4gQiD4BlSUCa5UU+UICszB8b010KQPf9QE5oen0ykOA+gyK/R6NoEHLfLedCq7RJnAve/veTpk3srkN9lNQOc0jybwMcbfFQJTKB8wYEV/wzyagEyw3ozcn17n6r+L1sdBl26MKdYEdPkH5bgbZzqCXCZ89/XhIej4dDqLya7X5UWtGVBtdYgey/x4Iup3ru9m77RqO7lyo1bM5i3VZodzH3F1qVhHgq5EsUT9sGMtoRjnc8MLKhbLbF9DvhArHH0YPArLtlxtEQD3SINxZolXA0wBIAChNFkAKJmwPvEuCdXpsqNsyqwQGh8SiUVLLgJAOtMO2miaScnmUXdaX9d1c+huUfG2chX71XAhX4F3Ho6G85mMy+H+0Zc+NS0EO1R9RfF2CImqJQ59Wtk8GAPgvrSyur27E40NnT5zRrACHvPDEYfLQ2QynfX43Agy8IaczeXbdsxEncVMIZXObe2lN5LZnWT2xvr6yNx8LGTHsZvsiGA/OVEiApEyf2QKmRaZAE2jzlzEcAfTsHMiEgSAzBYhMPF0FDFkNwvJ9JIO6Hi2hiKnUVEiJu1YOL8+mVr3x/2JiemLz76wk0uGhicsk3Ot7I47MjYSSeSLnWdf/MzKm29NnzmNN+zk9vrTn35mbGKs3moxUCeeauULZfGhny9mOVSl3k5gJhiKFpu1126sbv3Gl7/wE59zn39yvunYWtopbW6NHHv8pRee/c3f/0rb69egnzFF+kHlNekDMqJ2gG0Nze6Sqsww9WD6gWSmi3Qb+++8Us2UYihT9ywJ8FCN6qcQGjYPE5g+2N7axR3QV7729X/49/4hm4QL85ajZy4cm4pbnNY3Xv120+6eOXZiL13i+JfZ2elmPe0EYMPqCYbnE7E//PXl8tr6Cz/6WYwpwrHhSdDKzkY1nfGMLVkXjjzz+MKFUxNvXrvxxqWbt1dv15r4UwTD4k82hHYvpjV41UWZliOJcZTBkqkLU4j6wsDCSk7Xv79Nh4YPBiWHJueFLBZ5D13P2u270yGKWcQIgLAUC+rh+QlScK/6AwHzKF/vu5iNfU93gyb9/oBO9IDx+5PpmMPiH1II3KswxTFBeTKB3puH+zXZTeCh8gs4OATBHFKOzeP2v/P2JQ71msA31vIdnFYOz0xbKntRh8U3Ggx5nTc2dm5tp+HuNK1wuZHnepgdMFmpITNFwxdmLyZjbmgamLrWjpgyOWystVCziXsdG/4SxeqIA6/wqNxhutsRMlfrAvTdPo5ShBqlHABCs95qVIG6kEFOtF/wqaDi8UlTZ9NAWO0HlOKQChED6uIukg1mnhoF4RPBY8F0WdjFwiDVQ6PuWFZZ0FYCt+DnPp3MoZny4vM/cu7UabY9suWmUexaOhgKtXDAAJ+kUyoj/YbJDnWGI0w8IkxMTZMLdAX2ioSj127eYCWVK7VCqbyxvcOnC5X6zaWVVDLTamNE4aMHbtxeeuvqtRfGJqNWOw40cCTPkbMuG26Ey5wWIFWU1d9dPDpAowhIW/S8kpG14lNpKB5Hlqq6DotlAXHE67brIdaNNcMtryiZdOpPPiLOrjGBcrYczkypMn/8tH9ofLdYWFicYx9as4d8w3OhoZFn505nN7dzVkdierJcyh3/xAsYAoovVQa/bgmHYoHdDLu9nbU1e6Y4FIjMnjwbPv+opZD9zne+mU4l311OnvCmQnNHxxaiNXuUsy3PnTz+7Ve+t5vawYAZ3I+ROWMIHYCYHWQAi0/XmepJQI8aJIY8qZh77jrt4P0u2uiyT+4m4Fv0GnOyXi45rSJX53QzRu0f/g//rwp+nCyW/+wX/s9nn/qR7Matd956O1lqxacXgxMz555wri/dmJyFP9Zah5+ZTy8+8syZ+eNveb//2stNW/VruIcem5iye311q3O3vF5eXfYsXQtMTA8tzD/32OJzz1y8eiNzcy19/dbtjc2drVQSlGd3c+KDv+nEdMTNamIomVzMfRAhpgp4YH1IsP6QybssHRHFsyr77jINFR6iQPFiJ2/3dePdDr1vSM86kpjAYclNgoF5q9ObtybwJx0vOwBdlf6A/uoh8YemP7DNhwthDitHBmr/1d9f/b3TH+7P1Z/exLPKwtHRtd2dV155vVmpPHb+dNTnrm2toO8dWDgKHJ9xuNudGDDGm61gMwnxgsIoBD4gl7FV22zBBELAQCxDIcHP8fjw9ZDJpPii6I2icqcYFMxvHF7CuQd/sBAB0PoiHo4sF7wgXKJRN4h9DegBE8QDI9AcJcCHeKXf6gAxqOIBJEkPxOQihotC+u+mvUg0oFOxcAYVUVhya+fRc6c/++IzAhElExyWGoduWStWf9ALz7yYTQWdmMRGOBdrb3cbSfjE2KjPg5qs6HiXS4KT0qkUjjTgZu3sbGHt/Ojjj6Nav5fK3bh+G5O4+SMnKvX6O++8V2xzdgAsb9zqQPaKZ2QbXABV1bvVUyFdc4I6QO8RoL06mfDNFUeIVmvOGAnM2/6iiO+BTh2tukVFgVtKlSpGX+n120fOHt8rVIdmFixjicbOpi0wNnl0nBPnd+4sr+/mh6cXOOV8ZG7W4mov37gCyys+NLqzmy0Ur29s7s3PHdld3xgZmzxz/snwkROWyKglNvb8F0atft/Ke2/tlKqObM03MYNXWfaOiVD05JH5GzevybBikcvsQMVMVR4EwCygljRSA/tuQwQ5doX/tJrEuk/6m9kf1ksFSp0GEuZmOhiZEVso+C4gHsT3kxPjC4tHv/jr/wGaI+YL/I1f+PM//Rd/3mIvvnVtZWV17+TiyamRWcvEfGxioQHV08zlq9nlGysry+k3vrf645/59F/4uRd/7/e/uVO0ZNbSv/aVW5NHQuPz8+GRYV84iMOj5NLSRjI5NjURnTh64tRjJ86GAaZIOrCzubW0urGTxGhmfWMLhirT1otegMvNHgA1OWrOuupvkQmr0TRPHzUgS1Z3sOoe3UnqrnpKv9K7BMErussf6mN3e7w3gVU5RB/crv2F65b2pzdhE9C5zKMJ7I/vf2XCBExYV89kFDKEd6YS/f3+sPG60IE7IGMgRj/yocPKPzC9idQt0XeJVCSTeXv/AFzoSts2PH3snR+8vPX7X8Xv1bnjs/nUBtSpJem2eAIWp38iiOb+yESls5Ut7eUquCiG8FefYwWzagG+8HFb5XrVHwlZmq5Kq4HL+TY+k13oy7gcGJPBeEf1od1GawgIjbdRsRzgT/EumBeAb+oJRAMiePG4WYP4FiEZcA24TzxvyU4XkYAYAkTqoQFwUBnekhiAqC/CmqKUivbwAYEuXBCg06iU8gszk5949mmGvNEoY6FKFBC/WMhSbZ9nCA8Zjk7L58QkugGjJh7yDUVDZ08db9bKheQO1ShkMlhHRyMBODPgoddfezUWDS8sLPAhWsTRiVCcgrea4kt18cRJiHfEwBQF4x1feujhwxqQQxJ7gKp/DvS3Wtqg5qRuMk0zrdbJaC+v9Fv6SgfUnX29rGp5p/EBRDL4vGPHyi8S8NVxBugLdTzB8NSkGEeHhp2+EKcSW2r1lb2rcycvxgKeTqtsG4msvvHd3/3WqzgCcg/7ljPbCwsnPvkz/wesqpxYigGmYyOWaquUrvijUWt4nBbNXHw+u7Vpw3dFx8nk8PnCzPsnL5z97vdegenB0WZovLDRE0yvLBL6te80IQ+KoOaqd/iVy0xt1RYdd88dWS/TSWgTRN3yhpp1LyYeTpcgUNgEMIHhKy4cPYIagc/te+5Hnvsv/k9/dXtvL5deCY/PffLURUzX4iCzIfQ77SMcw7B+07Wz7UqnXM32Zjb121979ws/+7M/+Qvn3rxyJTE5ufCF8FY24wqFpk8eT4yOMCJ8Hgn55ubm6tZl+1LBExsZG58aSozMz0zMz8xw6GTL4vjGK9977/K15ZV1RoOtLi1CuIYAHB2pQ+hu05Rek+RXloZwbD6+i8rrwkzgo5VtspvAYeWY0dQBfTe59gcGqmcSfCzxvX1oDwcMVJqPmer2vzosvj/NQP0GXplmH1j+QOKP6xGFs71ibSScGJ09eeXtl3/1175Y/tzzT5w76nG277z1+uj0tG9m0RX2jbTt2LtE/JHpsaFX376CejWADHUaNPrpDuA7a3tsahwdob291NLSUg7dHqfL5nKWKjWv34N/dZY5CwMEIK1T4BuWDnBzKBanLcgA8IMP7Bb47ncCzjQ9yCvCAiIU84e8+qKoXtDK0Sgko/9JCc5gYXNRFI86nlfmouYIosNhL75/8+m9H/tzP3vh5BH0nSKhQG53N5vay6dTnGgWtsBeD6Kv6MXvTim7sbcFs7uQSUf9XpwmFdPJ9z94H5G1CAnq9RAccY+zWbXBMBodisYjEZw0eN3u48eOOB2eapMtkWd2eurYkUW85eQqFRAax4igGosxgMZS1JPmUEkC5qKNtJqLV0TyloCO5M5FA3UkbwmDaXRend7cKVQRlhpGMFBd6Spjl87mrC4vjk1HpxctDDCOu4dnEIHiAKdebj7+ic9LWuTU9mb5zpXvvXvt0R/5DAggmcp+4ef+j97xGYudgxIUKxkzYKt7u5TJVhpT0TGP3VOuloKwqyJjHq8HFYFGsQTfsJTPLk6NzU9Pb+6lqqjAulwoPuI9HNDPJo+eNPXXwFs3gUhNMfGou0gH6AGdfvAuGE7i5LcPZoLHyyXE/laOsMewemt7Z3h0NBCJPHPx8f/67/w/rt64MRT1NjquhjUQmVgMjU1Yyi28fIj9x+wJvHu3Y1Px4/Zhf9gX3ltf3fu9H1z68T//Fz714heYcu6ZmVMODlSwYj4tn2ZkPd7EVDUQWwHL5hBlWSyFTIr3oXAcTU86FEOBl559hrxsGdEa4Gj5wVY86LMM6IOmfZh0A7PxYbLek/ZDyzGjrAP99/6CDivnY4/vIoD+b+vwYV/SVIlpxv6MAzGHlcNS1ykHuoBpP1BCf7L9r0z5A+WQUr8yCSQGB8O++Fax7B2emTxy9tJr38z96m/Wi5967olz4yOjOxtrjc3N8fkjvrnjOEr2WdvFjvX0wsTN1a3t3YzL7ceJAKCr1rA13LZSNX/p6gdsl4H4rBr0moF9Lq8bGIeHFAW77DgLgob3Ku/2PlmnVkSmrHzofY6awSM/qxq/8zUMj9tyrgaSgUaVvEL4E0PNSSCQTnQHEUYK2Ut6JKJKeZTTmRx4shxRlma8BUCz36d8whqL0JVemK1SYPvEsdmL507YLHWfs5PaWo6GvFhEpJLrkMfT0wm3x5He2cnubSHYHR8d+/5r31teW33h6cfZDfzqr/wbhBInT56MJYa2N9aee+45DkpcW1pCQQc/kzeuX00Mj8ZCwUIui6iDswXQJ5qZHJudHGPn4KPcRrtawFWySFSwl65CRSuSVYant1mRoVFYARlAb+BkIgjzTXHJML0gHoQKVdts1QWzmmnSRSTyjL4nl1DDQhLznyixLOMCxeayxZgc/jXhCUQEzHrA69Z63eENTzjdNTkRrJRHzoE4/EtffeWlz/0sWB/t1clj896JIxZXwFK2iqs4DEh8Ps5EDiV8bqujLlw/B4438Z3t8rugulHk93iD7IkCfg/7tJ/5yS/8P//BP+LsAZTf89UyqrA46KdtWGJTKyX/lx2mODFle+Swg8uJZ6CFcFA4oCvvUftFJgORettHMjpU9SE9Jf0Gn076VDUdmQvqligSMyVazXrI70OF6yd+4ieeOn/2t774H5544rzPYx0bmxwZSXiCEfR3LX6nYB58gDus7tPPnguP7G3cdjSakycCj8HMCwTd7OeGh93BMLw8KHpxjiLYtWPzReXABVfHuzjqbddirTIniSIhQ+LNd8Vcng1cm3lb+dxLL35w6crNpVWM54dGJ5ZX1/yBIcYKNimN0hhd40XmP+PINKYxDBwX3yLMAmZFSEA96gBh/cgrLp2RGHI57C7ZcKmFwysiCROQRao0qvmuzkuAi1esTlA1kXodkVLn4i2BB7/669afa4AlbtpCxfqTmbBO0P91Yrh0c0wyEhDJI/HqvdBPOkbf9aN+1Z9rEAGQov9jJulAvHk0AZPyowX+dMqBEV2oNn3uELLY8SOnc+ndG++8/Ktf/N1UeveFpx/zeoPWWu32lcuB7b25EyftI+Nhm+3YOMeiOKI+ZzKbbdbEbwSmwsxMDoWpVqHnOBLDoqRt4tKSaalocRlLupGLcQXcVy0CtZmaHCKMRhABPU6AadJAD7JKIeSh7iE5Cdy8eRNorgvR/UnhZOEOGcX6J5eOYYLqi/R8i0g+xFsSc2dGAA0waKvldznqxgLnJ1+xt+vxCLJoRza1VSykpybH3Y5Ofnczl0xyig2L7Fd+6V9/42tfP3Hq5IvPP7d8+9Y3v/61PZyCfupTjz35RDa5t725jiuL3e2tyfEJUA0IoFCEH1YXUa3VHYhEYfhMj4/FI+G224UfHw5ZdnOIFEsXrFRtYiMtktzeRVfQQP1Enbl4JJIY6k9Yx+g05t4fT5hLJxYYCMRHWYus8mVK4418AlTU8gURu8B5FsVH7Ru7Y+OEK+h6JOWiuuUOywiWK9my5TuvvnfxsUeHR6dCY5MWTAMxcUWkb7XWKwUOtEHLxeFxMPg4/gdgB30hJN3ico5m8tEOXscByRgltUYSQ088dvG1H7w+d3QB1xLxWHRrbw89YrfLg2IU/9h1iA8STApFpiTqv/SPjJycsCYuduR0X35pD/QBrvYAurgmpHPoJDamwDdaKN724KxpIEVQkIS8YRpgBwhosDsC4QinQn7ta1/h1JcL504MDx/lZcfm5UBkTrSzOtDSoVswBMc5lts5d2Y8PiHHP/PtQIiGQ+PAQaWPUsWi2x/i8EuhX1QGJOWMMEjZ0vFwWjLVQIMIwYM4WaF5oOxmx8ORA/Xan/2pP/P/+Wf/IuD34nd6JJHYTe6G/R4x9+xdZrgZMh3mjZ4kMsxCJzCaAtp0JG9Jxh14TYx+ZBXoXOhXwwZVc0nO8GBOaQMLTAmB8kx20e3GoSMqEMqjHfEUorfvFKuXmEa3GiuoOhxw4xMHxH4cUTRkfzEm0nz3wICJ3F+CibmLAEityzUBncg86gB34kk5EDAlDgQgZAZiBh4Hyh94++CPD1IOy9PO+R12Bwfbsrk9+djTmeze62+/s7n7e9vJ9NMXH5mfm3LVG6mNNZelM4G1S2SIA0JOjCcWx+O3VzeWN7dKGHVyiJ7FAewTz+eibG5zcUS6cg2N6gy2qrh4cyqrH04FYTIB/4XcgDMghyciHRDTX6h2WdiKj09eKs8FKIe0B8RzIQcmRs9CAgB3SSFuJ8S5GAVyp3PMNDUxDA3EFEXxCrCBj06rrel2WWcmRrF/dgMfW3UcOlsqwPz1ainncU3WKuVcKs2hjO1647d/60v/9te+xZg99liQI8KvXv7qpfe3Oafx1q07KPZdunQJ5e4IR6bYrENDiTfefufqneV0tpjaS7EKKX5iZnZ4fBzfRwA2cUPJmkQFk82Ow83p9FCGNcW1ljkB2SrzSBF0nJ6G2RagUGK4AG5K00kOLRaUII3VU85MPL2N0K+ACqSQDmmjjsUPLRe6Wt7yRnYScCdY3sUimk0VDj5mjHgBHEcthZronYdoxDK37diBjH7vB9+/+OQLTk/UYqHPIGblcIhyoeQLh8XATSrPsInRuBwega0TR82J/ThAH/effBM4RdsdAbftqccuvvfm27DUHHaHH58WODXyeypy3hm4iG5jDgF26RJpKQMHZxw5isBRqTydQfVFDYEYaZtdWItyqa6TDu7g6VVaCjgjE11KORiXMGfEEQU1bDUr1Sp0xvDw8JeuXRuO4gk1vbW5Mz4xev3a7Urr5vjMfGxkwuW2QbY3G5xx5mUoLQEI4frVK2+eOHuK3Z7N67NZ3cVsMh4eEjgs3jvEXR52HuxmOGoCuRZSKR8CFWwL8IINJoC+4fwgXIQj+oGCaTbnpiYuPHLu6998eWR83Od1xsMhKkivUUkN0AG6OoyinMB1ekdUMASFc/Eo/o7UpYZb5r+02oLSsJvm8kahA4Us5XinhjqRCVRIy8DRbLLlDq5ivSinJ9KL9Kv0uHIxrhcjc4XPyQpSH5VqyGw68Lr7qj8NWQ5MLVPjoOuw9JS5/xWRXLqY/YGDilcraN8L8n4UOwDTHSawr+S7EQc3t/det416mAAzuffygX51apN9ILCviDb0HgOOpTvb+8n4yFMvfpaldPvSG//2N1+5fmf1My+9cPbk8ZFEkLPQ165edYUiI8dPQTizl1xI+GfHzhbq7aX17Vurm62mzePkDACf1Y6aigA71gJbYU2dMY2Awqh/YP8FNcrS1VOKdvIKQMBbfG2iH1qv1CH/qTYzFTnB22+/zQ4AnMFypVvMpSc9zQEBUJSsbTXdSaDDlKcWg0xHYkhDmbjWKZZR/Le6XY6J0QTe1FD8LySzwU7t9vXLSzdvNNqN5PZQIZUpclJiEa2//Ne/+i26dCJuiceGr9+4vbebZtPvbVgyueIbb75z/drNcq09NTXFaSoAkQ8uX9/NFTLF8ubmDuCOY5XLVA1RsD+4efMWyJCtCgAV1Vv4YI6OHQaIzeOFTtVV5a4DVJWAgmqCt2iCaS+LmFbrYe0P0I08mv7RAWIg4FQsIINxBnwAMVgrAk28LnetnacmQH/egg/w2qnWOEnUvGPnhhWHN3zi5Pnvfve7kchoudrCTzT+nYBfFM5Jlms3NzDkBgRTgczeLuKcs2fO5hECOQKqCBrCuQtSf8lADSyWI3NzP/LCM1/52lejiaHVlSUgUK2ONq/sCMWFdqvNFkT2d1xWB/7UyANlrsA+zBWQDTsEjpsJCHjHno4jHPBEgm4wALbdgL+oukvTBwK2FA7g6BfRnhJ+mKCPDjYMTMKo15MYGStlkzduLevj6nKFAo7x8O6MogJZScN+QpUC7PMgonrrxvUPVq49dv5ihB2EP5Ld3QkwIWBZVTn8hpF1I1aHduDUZky1h/x0An2Iu45OlX1no+X2tn2ITrB1hyfmdtY7rReeeerb3/6222nLpZJen69YKrSVOEfPWFkW6ixV7vQwXcJkpkg9Q6RFdI3Q92BMHmSfRSTjK7IVGWWJVytM6Hfc3LGOFAVGmwD8Ms+EUQnO6dH+xLN+YTUx7xgRSpAC1SKSpqg6sOjYB0jTDri68Ios+qUJHJCWweklO/Dt/kiauj+SmP5yTJgA6fVj/12XQEx/pC65uwPghX42AZNnf7wupb9aOk1/zAOGzedM4AEzDiQz2U1gIIF+hLJslPMoZQ7Fg+jA7GYKQ4mxpz7149HhsTde/uNvvr5649avfeqFp158+omRoTDn49are83mOzi2jI6MOYfHOT/LA9TGmY5n7ubSJka9tQoutmo4VMBztNPhgrrmAGGZmXKKZEN268oNvah8tOW0dKYm4JkpRwJR0VE0PrQp/BNofzABlsPMeBZnmQMpFacILCKzUP/ZbLDjScBcU5sIWbSsHL6loSePhJnRQkHySja2cGAo3O93uBuo7qd2b1+9Wq+VVlbvvPfWe+xDvOz9m5bt9Y1KHkcV5dHhyaGhFmtkfSt5a2UTy+VgJMYeZn0rVW9uo8G6ur6zvpka29hD9pvKl/P4i66Uk5YykNTv9Vvd/mytxX5nO5OxQgzCzIVTbfcgJUYJhiYHIiHYHrSICrPauRNm/lBPHcMjNeeRi4B+JEH/RTxrkjuXiddhFrheMsjf1XtIa2CxsE3g1je9vqnxCYArgnqkKuBfxVqBpAeY4sS/7cKGw26Zm1kYGZnwef2VOmdjZfyROPCrXMzhuqO4XGB0osNxyl29ee1//Of//Jd+6ZdwdMMJMHSaAKDeRWMBopwoFPI5P/PJlz649J7d7Qo67MVqGT3gRl2OkqadgCLRTofiFdWxChwbykGDFiQJuJc9pgArezaTQlnLaXcJDQsD3iHwUYEzO7POCbuLFQzakEu6BHhGz0L58syEB0DKIQ0dPGBf/Ff/4hcR6S8szF29fDUUDp6Zn28U82V2C24fLj+hW8R/nGx0BROdOXPui7/1a+OJCceYrZbOR33+rUvvjs3N4w27tLVerDX88RgiKRfeTOqFmtfGUZ7iTopu5NTVSr5drbk9nB3tVPr+UN6O6amJv/yXfu73/+iPWh17qZQPqk0AlVRbVpEScXGHGBKQrZCBetuVCoCiiCQJSJZtGOPCagDrczwR8VQZGwNIKNVwKSqXz8qKaHXYhCJjYSJQAHNERGyUT0c6GRbQJZNR5qHYdSpzFD7KQutfWcQcdum5ylsTOCzlw8brAqnY/ozmWyagK9D/eP9cFPtR7AB0oaq7ZYmawP6PEdNFiwe9062iuiagUt0nxwGlkNpkNwHS6fBABnQQkdxVq1m7L+oM+jK75Vy1HRuaWDzrCESGrr712q33Lv/qb3z3xtVbzz9x4cyx+XgsWNpeh1vCAejeRt3iDXF0yEg4OjI0PhSOr26nV9a286UqPFrOBAbSVZmVTDLOU5JWCSxmfUP2stSFQ84MhBMu6AGgzYZTnFZyAfioLYlZ0jBPqDMxGh9A/6r1IHhailS8Th0gnvSE9Z0smk1JDBOXSLLANsDZvcMKN96bTedae8k7l95fu3WzVimkc8mrl64iRg56UGZtX3nnUilTgLjzBsJkBrbfWF6HxhcD2qScJYKHjGLTksDdNcZUlTqq9KlMwekVH2RlDgpW/ItKrVS6cad1eyVTKHKOis0fcPn8ojzFCYS4xcbTGHxYyFk432qHZCA+baGlPHIRNqNGe0Eceii588qEKUHH6H7gzkWM4u0CUiUxF0BfkiEI4WhcNgeNps+DdrwFPX2B+p2WU+h1FFW99CazRjg3FgsHOSSGRm7cuDU9MwE08Xp8WNUWC9WZhcVHH30U/9/ABjj3QaftD3/7D17733/rueefR4eX4yBUe2UHAzOC2kDFwwykwFAwcO7Mme+99uqZR85zmDBnJm/t7gCh4Y2xL2E/AcZGUwhaFQmPy4O1lBtAxj4VmaTqKmkuPCYpGCk6yEG6XDgbpXKdOSZzjosD2OQSYAG4p+HQBlQGuQskOAGgejQxQtU/uHztyPwHF8+fctotKzev5bPJ2PAIbtzgiaGHwP7CAYZhaB32c8ce2Xls41tf+86f/6mfwlMV/qLg/ReSW8Hh4VqzhBOUgCXo94U9PmeJHgbNIN1weYCzvlBYZCDsaOp1ti4YfdEdyEXcNtsnnn32zp076XxelgyIWAgYqSeLQnMyaQpDwGQgkrbwyLASluUg+JCFIGPNgmCLw7iBSSFeaD8DzhcR/NI5kBYQGIGAj5QoaOOzi7uqDzijwTZbzNGETyYS6zpnGjHLm02vJ0D38Wm9paY+1I1EFCJde8B1F17p2pLEBPYnP+zVg8TrNNz11f8hYga+NRDT/6jDqgN7J4Lp5vGiv53m0QTMJ3VmHk1g4PN3Hw/tuC5E02X2f/du3gcLmeqZwGH54AgEEV1xJnw+DVUcCAXR7kzj+dIdnDnxaDSKFHb81juvv/XeVmr7K5uPnDpzZPrM8Yl8Prm3tuLDAv7ISd/cUeF0lvYSkTG3wxd0h1I5bIzguMrB8cx4nMkx3ZiJTCfmjSwiORsEN+kuiA9iuIQ6A95AgTSbsIMYOjAE8cw5qEs97zlXkt0ADqUBCiwA3c80UK8EIR4V7U8MYe48CgToXYTlUbbDHfY6Xgv8itTyysrXfue3y+mkz+/O5jOb61lK8TkvuazOpdvr5ZolnqvnrXtOn4+Vpuu/my7hDJJSkWwAL3ehFKHKLdZqtggcEr6Ci9MDaTdJYPJ36uUakkfYPnZfyB0IegIBhCJOG54j0AaB4QICgGGugLJCYFLJ3oKhFap7NFqUFtFq9GUJ7L9ISSQJ9KXD3EVMqrARd/qVPucDjDtqkSifYOImmyNkMbU6wLdZr+HGggcoQvrYgvdKAR1NrDPGRkf/4A9+/y/+3J9j4DJZjnfGZRPMKD5KjTk7J++PBs8cPzI/FVq+eeWlH/1ENYMTBRwJItq10wB0T4DVFAsipx6teu3MqRO/9G/+NVsKkRW7YZIFaTta+h2vl9N5hLnflr3j/PwcWVwuVAwqOdEZQxqEWzx/hUnWbKArUCwiGYKtjj0t4iUgE90mPSozQQAi1IXMB+gBxEgUSkfpGSLqMGAkm3N6enFj9dZrr7/xyeeewdQjs7M9OZZwdWqxYJxpBe5Hk9MbTwj7ChsYu+sTj33qu3/03XffunLq1PEt5NjxGMfMf/Dmq8dPnJhamKV368U80yXg8dk8gUYVglyZ51sd2HxRG7YsTKc6J9ANJ6CvfYEQdPcnXnj+7XffA647vSDXkqZ+uGsDeHoADAE4JgYQzIrQYd5yOivLSETTzDrpCaaeSNNgkeFmEW/WPr/4WMFNC1b3LCgQCb0B6AcTcAfFyFA2mSScXM0Z4CjOYdNSyuUyHA3CIyyjirhiEUs9LsZIulTtxWVC7bsMeOMr+qUOmMeBHD9MPHn1RZkE+j/XHzPwRfNo8poYAoMsoP53hMnDAhuI7I8/LMH+LAfGHJSdBSsQ56Gug8o5uADYLABZnNhwRFcolmB+4pc57AvkK+Xg8NRjz8XHx6bf+f63bty6s/fd95EKbG/NnD21ODY1DXvk8ltvJLZ2x+YW3ZGhyno2FBkOzSUa1ejq1t72ToqDdAEWO8Uym0oICBrBLhouEHSJTCUmMcxbVhQmssxEj5duRRQFpcVEhEXE9p5JyRHzHqtPPIxGorlCnhimvqIBKQT2qFBJIA74R/xnDiiyWNim0DHIP2mzbG9F6UM+ClhA+7xRqtjcnky1eW1t/Q9e/h76iNOTI5s7GK5KRxeurIbcDqA/4XK5UmDQy1VhIonmjLvcwoebbOMq7Q51hiblkQWHn0mADhQjNYdNIwGnB+iOy4FYPCF+L4NBJ66QcaQhGx/RcATGCQgSx+EtCZNfWO/dy+cP6Zkmq62H0ojxiCNSqkN72TMB5oCucqehQg7jXwzhi2ICAHKh6AV9EgcRqyQloFgSUAAsg3RqD7UZCFTYJ147vC8Hzi9s9VqlVGjViG/ghRqOAJMeRx5TU2P/8//yy5//zEuReIS9A2S6wybwtIqOP+4cUIFvVezh6PT0DCfJNEsVFye/ODj1QB2CLKhd1HqalpYXX5rVeiDoPX3ypNcXvHLlVmJ8tChSHw6Upo85XsXBpsTDBlGpu7x39TpcEUAY2q5odjGIiUSCfSF9AjSEGgDL4J+DM0eBbngUT6eyACnyShc1UUITuhagD6yMREIcDCxAU5Ywc0O6fWxkFPO9zVULR30t377jdyw0cVm4tgF2jISCHNawubLm5XyAcBTQj+zY4QszzD/zZ/7cL/+bfzk7OxMK+956883Hn3wMihsoKYfBN5ousDsGdNXWlUuX54+cpAZsU8D1bvGHC6ZioFt37txqNmrD4xPoKru9/snRkWtu1142H3DgEVp2w6A5P1Pcw7A48P50+tx5OodP0GRayoRiD5fJQw2o+cGN5kBIaVLd6QiHQTaC+Wgs8Uw1MAcUfqachYjnFVw1kCLZZAW12JEzDWyMGQelLc6zLeEIVPS362++8e5eHROXHOWATmDHocZKTWRTwULYDwt7MXoqUwFFDMmUlQwHXcx8Pf/772Q4MJ5xJV6IRYXk1V0jwO4K0rkUSpSY/jL7w4CigbyyUWVxSo0VJdV/p/GawtpffyZuN7LXwIGWktcUJSkP6DNdQK/ndIfpO1hdLgFkg+WoFwfcetUgh3rbLZaR1ld/OaRtObxpgJjdZffZSxDXHbjJ6OqgB2ct4r3S5o4dOf3k8NToresfvPPu165cXd3NvnNt5ZFHzp06cRQpWHFvc6dZxDuxf3TMAoCubTldvoXp2MLcfD5f2YYM3OzkaziTy+IUGhcQDo4QhMXo9QL6vYhCOVOrhHNg1k1NTG6VEjS4gXkmZ6FA0ThcrN9KMr39re+IU1FAlZ89qUAX6B2AAvsPOAGiaQh4Uexd5q4Mpd2qSFTU2SEPhadEL+KNGuDIoVByMFUo0Byd8J07d+vtt7a3dqS3YBh0LPmOJVltgn3Q7oaox4s81JGsr3YbwkzoXS6oY6sVDVa4ozw1AeeQWZCubk9sagFj2nAwhBAbRj/riuUKFQxgIIvk5SMUJwuWG1BKqDliQFAkpZ4AaC49D4HpNEaJLYmQoYVJJTBGECfaNRQpElk1mWV6gw7QLsUpB71B4XDcrZYaxCHpYGeTsAnLyeaBBYG8sbazu7B4RNSKkKOUipzosre9zSHzG2vL1Zb1xOnznkhMeoRqd6pDcb/PbXv7je+/+OKLmVwep3jji8fReuGcFyqFYbXdCWnfnj169vf/4A//+3+Eaz+/1euz1NgS2Vu42rc4b66s4O740ceGS8U8UnA0fl74xGe++Ltfdjpibo+P/qZrwY2yE8QREzIAvEZRczU/U4hGO+Ith6Es72bubCWB+0A0ugtge3tr1/LO+xD40XDE4wCTCbGPmIeeRzRiFUxqnXBM0KtAT3S59CaA3oeaGA0FP/n00zfeewPEsLa8MjM6AmcJE154RXcsKy5cm/tjqJpmcxUOwmlCxtSqrlBgdGIMM8Zv/tFXn3vmMW+zff31txbnFuJuDMdkMO1hrFyceJ3++qtvtL/36l//hb+eTGWGY7F6tYRHUOwemIfnTh69cvU6BMzQ8JjM3mrp2OzszW98i30TClY0rVhL4/QV85hsqZwpbtut2zQnwBnOSo8OX7CYp8SGR2/dugWBxSsb/qQZZZGciKvx7NaWrGIoI7XnRuYD8mC/5cJCz+PDJ0qpUQWQ+7xhplGhnLewF8FWolbLpNJ0Pw7hQ0HZNvzcT38e6mF1fePf/dv/GbU3yAe2sGivyb4D+Z8AWDWlZWozHdliAlcF1vQmcBceGX3/gXiIFFLs/2NWMvi84x/FCV9SJQOdEWAmy9qRhSl3HUMKGitIj3h1V9l1IYN3MimcJHcpWT4kBXV3AKYBTB0TJmAuculXJubjDXTLl52dVMxcH9d3dTkc+QXhygd0W4RwEmwDUMH8RYCmwFGH3+f0j9o8bf/Q9MLi6hvfePNG9tbmdy7fWjp7+gh7fqBW0dkppLYjIyOexDhEoaVRsaAaDeUWGl6YmU2Vqrt7mV38jkLp1YtwDth6y7EXXvaksMIdKP8o1W+hYP0+sR6ivQLDpV4CzVEhkV2E4oGKQho7elGVk94Rd1qi0SzcEnIJwMU8ymJhByuThrzSIqH9SU5LI8Eox9Ky79nKFoLj05/9Cz//xuLxS5c/KKZT+D+wVMr4/kSBQjYATEG+IpQ95eE3GlGe24bkES0+ux2xIa7sgPLaOTO7KIAOvP263YPnSelIliLclIY4N2VCih6h1EStDSUFEfAv5ySg/SJkO2+1IqOwxHDFIY2TySkVVxcJuPg6LaVkbmQUql/QBwuTCSnQXRaFKlAMqDsNNJ4wkRY5OEeuuVp2iEuS4uYI1kmrOTpEO4LF9dXy3o6/UfRZWss3l/B5c/GpZ5B/tCECGw0h8BkGp21rayOXyQr2qdZkI9Rqc6BbIOLiNPlYLF7MZhBoe4MhjlO/fP3auXPnKsmd0PAo7B43uu3C3LP++m/95s768ud++qdA9EwxHKlRCufQdGxONmkMI2Cf6nMkGe772bUxBsgbbFbgLgpCwhESfpocai87MjQZGQkYTcxg7KoqVUQupfT2LlYJLjYf4GalhibAwGoZHR6htwgzpqJ2DLLlhjSCnVBmF4kBc+/tD96ZFFvlCZQysdFlHFffvzxz5ChnAkeG4vQcHkKYqGB8GIZeoGUx//brr58+ujgcCqMqAOoWYbQcBM/hoUWXP3zq9Okv/MSP5VK7f/tv/ZfJnc3R4aHVteXpwAJbS4vfvzAz/Udf/eMXX/pkaNiDI/Tk7h6DUWJ3SNVkziHdFicqwkgVmCqnM0EMMRSI61FaxQstyICpKAQ+zERFiAqxwKSl6TDQSEovY4NAnA0pmoPDnzkSWbYCHMlQQd5TbwUg/dBIYzPXYIyqlXK7VkIT2CUnPFv9Lmu9sIPbvEdOLhz5r//Lf/Ev/83azu7w2DT97PWB+OWS/qCuXVJVVoxEAlB1QJ7UdUi8hm66kP13GTL9Cbqir0CGVOJVwR/jnS/cRQCqcLlJY/ouHmV5q3gd6Hv5MQQPK/+w+MM+qdNz1wlMVfvLkZmlLn5IIABXWDQqUuhTYZ/yHsqbTTfg3DI3ORZ2rV1/b+XOra03V29ubJ86Onvm+PzU5PCJI0d2N9O1lV0YDwD/aCwRDA1ZPQF7OD7scg+P+qvDXqQDu5n8Xg5HwnWc48tujmPO0eJpdsQxKEdsux0oAtZbdX1uIgx7CEJAmsxtNObhS4OiVf+jPATpCrEBKazPp2yyKwVucNA7gJTtqjMAYBSswNIQfRsBi/zPZApuqFafvVxvhIK+icmFhcXTuK/gROR6pQr3Ezc1nBkCT5xDEynT6cX4GMgPfS8XXtLQIWHV4esCXo4gpa4BkBRO3zaKWVtbKFPWoGjBuLD5pRGiZ00jNALQKfUdJU3iwWjkBZBz2eGJoVYooyADIVjr7iS0wk4ABgn0AtQA0GgisIt1D+0vZlQgESGZhBIUL8MNq83dbKLt2rC50I0RY1SsD4BRzXo54OwcmxkBYZf21lv5dLbAGej273//B+5IPD4ygScomHUuDg/DgbWlAzOkwJmWwH2a7URe4AEko59rraI32dneWcaJU6ddevSpc7/5pX+/vH7j4tNnd1K7ljTcnjA9SM1GxyKlyt4/+gd/2+9tnn78Sf/QyPRs3OqqVy1FNI6iEeHqYDzGB8TYgXbgUBZrkmoboyqZnDKCgrqEg2htA8BtLXAKiElgDtw+kFW51URsBfwDDLKrZBZxBy8yT7Z3doGMQgioO41A1AygLeaSP7j6fhVOVcuylUvbgm5rwFVolbfze4FKtNqpekPu6cUJBDqlKtJvfyEF0z/++g9eZWA37mwuTD0CmiwX89hky56sUkC3wcIuAUUDS3NxchRf57/yi794ZGT485/7TDtfiINNkeIEg5ZKw2Wzwyr92te+8TP/u59HMHT69Nm3rl53xL0ydYSShclVZ98DHcF2h0lUZAA4XI+jxJj8Lju7AWYfHCQ6R6WXGcS0YCVBJSArAjHQi20mMqug3cRtF10F6591EcC8jaPfmrY2lvINORgU7AXXzeey4at1NBGemhgdjotRQjGzExCXHy0E+j/60tP/8pf/XbtVdXv4IoYJMgHVJBW6AyzAf8aCashTX2Dg0STQ8YfdTTIT+GjlHFj+QJmm5C4C4DXdahKZMAGS6rc6cGDpROqU+9+aMve/MrnuKV/15oN/V0MNXbj51v3rz9vuJbWmhaqNqpkQllAZTQFhCtgFgo8+/8n548fv3Lxy49K7N+8s3d68cfn28rGZyctXbh+dn1+cnwu43fntvdSdNT+kI3LkhQUHzMxQGF8SnoBjBDt7a6Jlc1bwiNBoZQrl3WQmky5Uq4V2sYCKH8cEOPAiwXxlv88/uxxqyMXqF/uBXufbOOFK6mm3wrECFos6kAUFCkmDuSYuHxzgBsSwMhKiegrJCPCDPQKwbKIC70EdpVKtJAs5IM2xxWNID6G1UDyEcIa+rmHOhE+KVtXmQNECmlxplbCgYFVTB4Gy8P2FsQ6YBc0otjtkK+p3AcTMqudFJUmPKdXTaprsxHUTeMVFXcXFvCxNlRjWjdqnAKQ4MU3wRe+SYaEpHXRKRHBMWDpFMbvU13FNWqKlUIManwj6lkohIEFbv2aHm4IAnpeMpxhiF+tI5f3uxalxdLqKe+ttkVvWdrOZ7377W3/pr/1NTDpa5VqxWg0j4axXlpduXrt0GZaAz+vBk3YkEILTAskPxfjOW1f8If/G2koiEX/iyadOnZjnzKy93TVLs4r11Mvf+dpnPvOZNr1u6UTCvkfPHv13/+Ov/t3/+1//t7/xm5FECBdKwZDDG3Rky00HMAVLQqh/aRvkP3QHoNQGTsZ7M8S66nfhEckeT6ajzVoT/jUNAiGAkcCJ4AMUhehYypGREZIABCDMJVF1hDinA0CMKp7POK2dpdzejeU7VlF5bGeKOWYcg7K1s8mOrtWunjyxmEiEo/FguZQM+YMYT3mxDhMRafL3fudLX/jMp9ER4kjt1M7W5srS8MgIzHKUR6updGx+kY6fioX+0k/95G/85u/807//9y8sLrANwT6rks0jDcbJxPe/+e2vf/XrlVYnHBt79KmnorEYbFIay1xlJjJ6+MrT04TmTM/PowHBnKQ1EBOws2D7oOjGhGEPL7xu2ezKzGCqsMlhBOk2Jo1Ey/wXg3CAtr2OI0LZ2UnX0A9yQrUIJybGR4bi4cnheDzKyWX0VK2USZWLqZHJqKWZaVaauXLz7EkIwFilXvT6QrBDoVpYk0LACPlPUE89Rk7mJ/Xh3h8YeNQJTDL9dv/dJOgG9hVrEuzPS8x93vJKv9V3vcQGdwD6nSmaR53OBMyrjyVgijUBXax5NIGH+hyDDbAgi8luAtBEgrh7F/F63AS4AHQUiGH6AE4oBFfOlXLDOzRxLD4cnZwLv/fm7Svv3djOrW/fSWUrN2+uzY5dP704f3R2ZnJ4BIhbKWRe/8Pf8kUCsaFEIBwTQShOVAJRYeTDPnG4hhK+xai3UKplcwUkrogJoYirHJSBMb2irqkXsFasPGW1ColMBbnDBJEw0leEB1axFeJkDYxkZDUw1aGjYRwIo0HSMDPJBnSG5eoPB0qlbKuEG5uAy20toH9e4wSbBgf2ohCCPgoOAERW4fdafW5nh8OMK2wzBPbKssSSAFYKoIolycICUDnxMA34EDcAcuQrxHYR3xK6kpJF6ZxQH93/1I9I6WwmkvB8mlYAul3eSrwc3AVvXI6hr9pwfSFDJpdMOkEAcHhaHCmm8DQwUOfSCED0btVXGScKJ0wGGCb1dguhAfo9sJIALnijZo+PJw7kvI54ZG5qdO29N7dW79SyewG77dKVa3euXh4Oh+2tZimf+eJvfenJJ588debEm69855U//voojk9tnfTmanThSD2XznDAvc366//23yCoP37s6JVO64knHkuEAj/745+t5zM7K7fhU3/w+quLk2PHz52v5fPwawK21qlxy2wMjR82cI0NXOdzmrofNyIexlFt3WgUYF8UG+luugRpJ8wW9nBOh+yxgHrE0HS4EMLPAcvhWa0jxhNwfQB8zAsh8slPIqVQRoHMfRRaBFixVaIXAfYyI5grza2tLTow6PbkS41OtY0Xz+EQuwDr/JFFXJpHYYVbO+WNtWQ6NX38ZKNc9YWGGA62pe+9e/v8kRvRk8d3Nlbnp6fyyZ1Wrex0ezeTaQ6My+xuT88vOOMjP/rkE1/+zd/ZXN762u/87n/+V/7y62+8/tynPoW6GEJerAi/9Z2XvaHo/+1v/Vdzi8cmZuYee+65MsoBTFP+0QzwFiQ8NvJW65VrV5GBc5xqJBZl3EEAyOcZaexgQG3MIRlvnE5jTSAkP3toNj7Q9RZMSzxOn8PN+X1ggUZma48ZQMkg86FYKBGPjXMSSCLqtHfEvkYcurMRLraaiI7aUT8ROXYBDqs3Pjp6+8bt2anht67c8Xkw50Tj2UAOIc7YUMgMFbJMTWaZuAJw1G/3Zh5NoP/t/rBJZgI6jXk0gf15HzDGlECAfr6LAPQLvfAIc5mwCdznGzrN/gSUsz9Sx5hiTUDiH/K7TBlTfv+3Dqw/VWFvqXOQQNdMlh0IXflXERjDpZjsgD0gaLHaLHUskOmx2SNPJEZnjp5aufZBan3pvTsbMZdtZzuzenv1vWh4fmoC3ujs3NRzjz3SqFcyuezOzQ/S+QKGAGjDuXzBuYWjdl8AoypPOBry+EMJNDODrByBq1gYUAcUSLgL58QK51sY9Dxqni8xYAogHez+Gi6J2aIyXVnacIQhpa1Q+tl8QbpCyQOYlDSOnS/t2tje7PidCo/U4HC0A27OiC1UyrHZaKXZLtdbFXhQEM2wBFiCVg5zAlSRERpWzWz40xjKw4cVEawQljCl+LKwm3DQJr6uoTJFHM0gCncIBrXqWW4CcgQA3Z0ALBu4PTo9WQBcwq8V3GL1efG+oRGA7LR7FzRsmU/qS8pUhD6r1u/xdlleYEHkJ7oCwAUwYAebLi92ndBmDhjLENAuR6eUj/tmEF1ceuPV1MpKbntjPM5pwHfg9TQ4EcHSRLf9l37xny5fe+nv/f2/d+v9dy+/9YOL58/aG9X0xvJYJJjNFZNYN9Tr3/7Dr6ayZfuPNR579IIlk08khr/wo5+9cf1aemPTh/nb0vKv/utf+rt/979xBwOA3PXrNz/59BN/82/+Tfz21Xf23vzu9zH3wNlCNJjgBHX4fQArAeTCzxbRBrIRDmoXrxJwgMSiGS9+9JFAGf44UAV7CqAWXU2TQQXwvKS50vcgUyApY0KPMyJCJLPDo79EWoJEAaVRRqpWySUzbP2qjRLI4onzx4dCEXfb6nG6FkbHVyG3i6WgizNh7nAu3UahcGdtq9Cyfu7P/sXhGJPW8jtf+saPv/SJrdXb9okJ+DGrN28gG//+yy97g5H3L1994aVPvvD8S889euHc9OiV1e0UUtlq9XvffvnY0ePDqPQweZ3OaqOD0HXuzKPXlu4s7ex94gtfQPsI7IK2ECOLFRot4QYtJP6EMGBEzmR31qp1VK3zKB23WlDspNHLlADJZXpAnNvxo4caBBMa44s6FBTbYSLg88TjY4g6EsPRgB82GLq54Irsq698F18UfroXB0YOezQcGkokRLmrtAtJxnzL3rlqbTL+YN68NzbMFGO663mI4YEQG9wZBni0vXh5UpcJDDwSP/BKJxi4mzQS6JVJmv54Wj6QSz+aNANv++N1mBII3EUA+/PzWn/GBAYK/SEfTbEmYOrwEb5LIWTXdwK6eQeWcxegAMnIor+qw5DSQmkKIoBoojjUMXHlU+C03o4tGIpPHQ9GE2PF5NbtS+/lt9ZW9zbxkZAtVlK5IqdieV2d+akEJMbi0SOwONn2tvK57b0k9P76e2+ilwLPEqUCyBZYLlBqDo97bGKSlQ+hB8+E+Y3ZEQQvYbE2UiJQZK0I8dj7C1ltx4sP60OmPRQf2kUwrVnm8KpjcC7dLoRZgjP05BDkYZuamBCMIhfUDYwRjOFQFmzDkio1moVqI48sEW4yfrOEHdQp5OSESzgpCCqArDA+obEEANmhuG2wmLC8oUDAjdUlAX9kSLQw1GnGsHsA3rQCUhUKVY2GTDI1jxgKVnqT1QeYktXOhc4l5gXyFbQwvSAAYYjLpFd3Ia+awZgP8KXqLzfeUj5cKAAbZp140dHiBF5RXgsPP4h+u/JBOGK0V7ynwT9H5dfTqS9t7V2+tVJK7hV3s6Vq6876NlA3u7veyScvv/nq7Rur1fyv/cSnns/srHqsDdwAtoqpiqW2fcd9e2kZWc2122v57TLo7sqbH/zcT/5sM13e3lp75avfwbtZM1dNd3YryfwrX/3eCxef+dQXfiJ1+/rbr7w1GmYGTS2vb7778rs3r9wOxBIgWbfFHQWUIwKyuxlcZoJ0EujN2Wja8J8jGFH2cYg5lK4LqJSTddUeURasMDPgUzaRHVuc+J1jUqFlwOYA1zyw0VGLEfTcFufdSIoRq9Yb6O+WIEeK2dpuyoaphsUyHY/8/M/8+TBqqjkcHAUbqawLXWB4Maub1Y2NlTt3UCt4/9bSdy/dWF/bHI1HkF3EfBa8X4zEh95/+51HzpzeWV3fWl1funqNpfHGW5fX7yytXL/1+U//+IXz566tbnME2dvvvPvupUv/4be+9DfOyFqw+4MllpTN9tf+r/+XjsuTylChZhUPc6i4eURoBICnE6Dv3W4PwjLWCOgfJ7uMbGQowU5Imi2eRhlWimGjzDLQakANNOw4fBqDbigf4igB7hNHFc3MTcbY4oX9UPq57HZuayuV2synd3GAOBxNQLf5o3GZWFyoBu3lLDmsQzMIjK+tpWJTx1eWlrBvZ3KxBJjdOiHDI06cBD50BYjEU3P91gQGHgfiu0Xt+zHJTOCjlbOvYKnhQJmkGUQAA9nIQO8PRH6Mj4eVf1j8w356oBwgCiMmW2F18UOBBLljCg5kEQpTcVpotTQciryKSQikmhunzZhqQoB5grGxSHxydn57+fby1fdTq8t3csnNXCERCo6Efen8ncDN5dff/AALFDxBomU8Mpo4OjnFVwSf4Byr1cGBzCaaxrlcqdW+887rIBugPBYoGgGwgRdHQEDRDrJi4QAw+9gOs0KgQjiSAPqWUUFzFDNdh9eNskQZ9fyO1e2To8QgpmgOZWKQiepzvY2mXh1ZLkcRRMNDuJxg24H1DSraIZdtLIwNKcadwFLZA4Eg0NLhXsWot0p7axz8C/sUNJAvV1mLRTkWF6cCAGqoanhHTpTohfleQ/lHWaMiCBbEAzmG2zeB42hASQ/Lxov9poglQSQ806lUBjwmAF1kF7LPoINIq/qKCkF1oa1CWukKsvMkcJ4f8JDQwRJWPzJFJRc7FfRIhf0N1wMZCOZ5VfEizfGdYKlC9s3LN66ubdG8ZrWTreVubOaBa5ksOoRbSIPhf61tV3/3d383n4e0TyB+hPyDtFxdXf3g8mWny//qq6/xIa6V5Z2tjbTDH/3//pO/82u//QeffeHxR84/USlnQOupguWb33z12Rc+/eU//ONvvnZ9IRH+97/622NHjv7B114pVG0LQ9M13CWgYgVSgqbnjASOypV2CS0CiVBHCs0WBkIEn4HaGTjxsAhFHxGmj/jGwZsQekTgfgFIaFCpCxX3urNuqdpqyApaLZk2nPVJn3B4AUw7gCa0Mlu8WiNk93Za9ZHYyNH5Ix+8+UY1n56+8Mid67fK+TymAOu3ltA9/f43v0Md7mztXLu59U/+3//06ccuTIwG3J3G1tZOI+jf2tjiuPhMKiu6Q412Mrk3Phy9cnWnlP/DleUtfyCYCLuT+dy3X30Vs4Z8x/rpy1eOXrgYGR3DLCUxNf3aB5eOnTptD/iXt7c8CB+YC8jYxVcguKvJdgT1+0A47CiLNxSICUaX1VAslVk4I4lRFhEYkEZJu+kr2WQ2KuUq+BAPFD6/C+fkEyOj46Mj0Wi43ORsuvrO5tWVpRsV7DfjgSNTscjxOKe/yh6aDXdyqVlBy6uFPQSOK3aWbq2vb7rCw8cuPPulr32Pg5Tnzz+zla2gLY45M6BDgAJQhLkp2062BXdxAKNBh3Pffx0Wvz+ljjks/WHxh5WzP96UQECWyV/+r/47+VGXSa3f8Ui0jjQBk1/HmPiBwN3HgzukW/LdZL0PGRa9fmUSmO+aSuqAIedNSpPRBExDiGG6cOeiQF2mFroyl0wMw0gCcgm2AG7L6mTNKbkPM0DeiU9NDhRzWZt7a8vX33t79eb1WqkQsrQWo0FO4EUxwYeRo4ftfSeKs+BgIBZiXfhgQbAyhd73srv14REMsg5QDobho8iqWN6ASCoDuGcvAmhgCRDmQsYAz9yGM1BkW0IjMjwCavEoAL0dDIWgwtlAYMNLhdELBHdAQ2/srkPZC90OYQW7AVdlwhhA4QLNCid+f0EYclKLV3SF0O5HC9bpxmucB/As6BL4Aj/KIbPfghNtFBBRzWDBwLiqNQu1eqlp28sVWJkkBm+hto9+Io4TMLrhGGT00NlM0A5oJZoAJxdvkaw71fMUrpaQAu/oGdEk4mV4lFSAClP/SquAsQodQiHC5iaLgvlgRLoOjC1do47fka9gNyfu0sQeCiRADyMxh8lA/aAwMzs7yzev76wstatVuN4oUeZTKebPi8+cmZ5dePODy2+8f5OuO744fubUUVuzgsVUwOPO5TPbW8ndZCqVLqby1XzFWpM50frr//l/8TN/5s/86I99FuFjKOD7x//4H29srP9P//7f3VnZPHPq2Pnz5199/Y3LN+9EHP4gjJLZ2dGFhcjMtCMUqrWtaIIlYiPQFu1aC0EFfc8UoO01ABkDzo5L4zO1T6LJXGzIaC/xggwg3Gi7UPxVZNT0pk5v7gTAYQBT+oFkBOguicnnCssrmfVV/MkuTkxePHtmflx8xCJPigf99UqxnEdlLVfMZQsFzGJL+Wb79dtJGCLMNVRjzp86+twTj4Emr1+5NMPOtVbHb3mVmdS2YFLDbMQisuF0lZvscVBn9eLsIVOsJ8bjx8+e/4mf/lmUn26srg1PTjv8fjT6Ie1zpXIsjksJ0dmn+UFk7h5PtVJhOqHYA5ePhjO8EEDMZhBftVxDXRvKBsM59nvVGtprBdSivG5WQguifjIxvDA3NRQJ1UrFvZ3tYj6zsnpzEW98s+Lz3Nqu2JnU1gbuHS25DNvtVqUG3dGptzOpzObKBoIxlLguPPms1Rf9o++88c3XL1fdYW9ituEIYAIDhaNAfwvpmg2tDfbJ9Lwb9+Z3gQk9z8UU1sOkw+ZOQLIcdBGvX+m7LAJVDpsafel4wiagwyaXDtBjB6ZnyffHm0LuIgBe66/qdzpsIk3gbk5VRRN/WHoG78DrsPTwHkx6ncakNPH9ASEm762Jfms6wrzV8QMIgLcaAfCWpunWSd+r3mBgYSIThrOKgBE4hPWhOHmxCm2O4MhhbXmA3q1GLr23eud2ZmU5e+26r1kHcITg/MMUt+IEEbvTjt/j5I8pro7FJrf4QROZs0X89ii4LKaezBuwDjGsWJoAwONjXIRJA2D0BjliSRCA7JbBRrBVlBSRBKwZPP+gYS06P+rIFFKK5oIgCLRI0LyBzMc6CEqLS06eoWkI0HDGAowQpALLIRCzOjVjGuaMyP/AEBhoImtkh4EtKzqRxFB/KtXA4Uoo5vZh9OsFMol/FRzbcWEVxYHAkODKz0tZaayz42EDgTNm6cmmqC1SCZgWYqvLGoKsg7UBaS+SZyS7MhaCEZx24eUCyzhJkU4QlT+oZyfgTBCn4AM5M0fYX6jOkrTeVAafbeBXWVRu5YJtVMauOpdZvnHryvvvlZBbqnWIEJvtkhtprMdRgntMbzmswQA+35zzU2MIfhiS5M7ubipVqaJZaqmK+IK9P1CkOTY8cvL4sW+9/E0WHBqKL770CdDeq6++yhm5sp1hzhAfjOULlbnFk2eeuDh59Jg96G+KsidtAME6YcxDgSK1YLBoBzMB0r4idnuC5xgdPRspjDDzgZ6hLTRTusAlnsbRksRoWCgT5J00SVwak0jECWx7YP4w1gBoIDXnCFVLZcyv0NhPrq/ubKw3MIXrdHxOm5z9CeXvcQI0CzkcpRcYErAtndp2eq9s5lgAQD60KBemxx45czLk9W6tLYO9+NDGxoao5eDqHNm7y72dymGpnES4RBY5WEAM45ilNg7ODseeffETYIIjJ0/jKJB9YTg+NDQ8kgZLIF1vt5m4NLNWli1XEFN4j5vNJoMIN4sJJ5VB/ANPr8FGE+QOQdZAkEu9E0OhcADzGpiJNZj80SAGAFYYXqAxLNHmThwRxTMsdYRYb1uq+ebORnZ3G5l/vVCGhYjv62qpkcdKxhcYnph1Rke+9fo7X3/l9c10JTg+H5qYrzvC6UrT6YvIvIUyZJXgBhw0zeJin07FupDjLqSjIQbgEmbI9J1Ab0wJ3nPJdFeXiSULl0YAvNHxJmAeTS79iiwmzYMEBAFQlvqW3AibbDpef0m/0mFzN5GSsweFB3IdhgAGijXZ4T+bEkwkMbLUD7qgl3W0TmyymPT9zVEpB3cApOTSA2YS63IgKXHbiLyVsQc4AqpR0hZOPKxH0bWkKBwkoLYh2uMYfLY5dHAntX3rxsadW1jNWGrFuN8N6WRtVkNe1DpaKMkj4RNatQvYOxy/roE8axtAR5m6PrKc4d2oPQHLm/qoKgGrnDLvIOLBASwuuh0ATz25YFQ5cIgiZD7MFhAJbzxBpM2iR49FO1t7D+wf4KfLEYuEhfuAUSW8GNW1ampbGy6H8ArgrgOQgCYIKoD4Ljf+6wVKc15iBxiCmxqMHDjfil0Bsge5+L68lUUKsMbDjVzY1ISjEfY9iDXEgglc5Q9LAFRG4aTUSqUdjP6Bm7jQAcZJw+kNedXpZEtwtEkIpYvtE/gDix7hS0HdiyoG5K2CiVSVeOCFz4NBrFj2w0HG6Ytwmqi/w5VJpkCvezu7t67fXOYUzwzH+9RR/gu4HZhmy0aeKrHXARfJfo+ubXq9guXgvQlu1AmkUy149EeVqqNO7AnFIvl00hkAeIlXuSa6OtgDUwYu26y2hfMXT5x+bHRqZmx2GscCmVKpWK1gshvxB/k6gh0kLRYkHGA7/islE2YAtWWG6Dkps4K9p1qV6PzoAIMO9UACJMfsgKgwa4BETArBnfx1UEINSydKD6suZq7K7G9zpI9gwt3dva3NjZXl1OY6dcA+IMhBPbhOwNJcNZWkpKcdmAZjEkFzoL85aWg4HvG7XeiFSkdYUCRFl0lC4CV2u2kUiwjrqceRZLzBMxaejCLRz//kT45OTrn9fvGqAkJidFA8rjSGh0eZLuLGhzkme7UMnjmHE0PhoL+YL7B7Y2VRPu0Q1iEAsdIIB4IBHND5XNGof3Q4grqtx2HBk53Vwi652G5WIMiEkQAK4oya5K4FfWuOxyzlMns7yd3NernkQkm2g5LqKCy4Yr4SDca8k9OWQpXjyn7xi79/O5lr2r3zp85PHjldd/rTlVaZle/1I+8FmtHpwAPQtvKColDBQQjAQBLpyT7Y2B8vA9K7dDx3HSCLznXYDoC3OqXK0c1FYTrSBMyjSW9e6S9bf/5v/be805eOMimI7CbqBUyC/a90zAHxd/Giyd0N7E/MC8DO/nhiTORAKRoB6Lf9aWR59LpD95HOSLSUpbpP9w4pWW+AGJOegE4jCADXCzQBzgkQH+UELPfZrds4ZBw3PkofH+ZyVXx2YiUb93mC9VZxezu3t1MvZG5ffr9TznVKhU6tgL4BZvVMGrVqhb6FgBUNb1n2ULoKlqk9JeCYWEg8RfjSG12KD8KHKdgUqlgwglB6anyoKhUG9As0wYiJFazuQjex72XSgg1YObJIaQHueTDtguPUYu9MBVCB4A9tCOoCVeMfCpIeqCnFiqRZ7O6pqh8v8BYrG4xIOAa5DWwBleFvi3piTQbrifRAJXg+8NPR4OaIcF6xWQcxEM+dJ1rVRKQGgwDNcNACDDGf+H5hWUH0SX5BTlK/LrawOpvgX/HcA0NI/LWzowApQttm8zm+CHTUjwwf2pk41Az6gtSBrQZyEexIYU8AboBsIDDSs4sgJfgTdIJiZzaTeeO116l/sYZtFie2izM5aA17wNPKZmQyMokE/rKHwvEDNB8iZRKBL0R5FaE6RH2rUJLzxJCcoJ0F3I/G4iNjR44fj8WGZuaOONyBFjIIdHLYhkAqO8Tzj9/twUETswc5urCToSXobAaYjRpzi8mkGJIihxcEwAwRBCk8Q5c4pqe3ieQRn2e5bJoStOonSEhoA5GjiAMiqs7E1THUV/AKmjVQ1pxCKsQ+SgxrN69eWV66zdHQHGEsKFlfChtKkAirD7gqr4TpCH8Sd552sd9QF13DH6m4g/AEj0LcwCoEx9ttgVj0yNFj5y9cnDuyUCyXkTwxKAy8WBV6PNiX0d47t5aQlsEfFXuFRh37BJSgmJ1gKaTkyEnEh2unDY8sFAyy3RkOx8ANftxMITjg/EphATfa9TxHGnmR/os7VPZVWH6U2tVKp1opbm7ura1ub25RTjwSjUc54E8sBji6Lr2b3N7YQ7+rkK9sbe3eXlq7ncws1e3T5x49cfaCJxJPlWqZUsPqDfjC8Xy5xmzQCIC7RgCsRTRPjUxRwxOmGZXQYdVJd28yA9Vo3o3qhXT6/ly6nF5PSzrzlkD/V3jUV6+we1KaSB0gZX/gLgIgtr/Q/mw63iTQrwYiBx5NYoGeH3bdk1fx6HWOe+IPKeSwHYDJa7pGt1z06tRl4llsTESNACD8+I5OwB3ICeeQ8SRWyA+UDliZYAJUyaBShUZWaUWLQ6hUtCIhBaNebzwUsDcqv/fr/8vm7WucIsg+gO267ABE+OeEJBMTLbzJeFzlfFqoFVnmcvF1AXUKe0HKUUnCGoYKt4jdtrhYAIkhj+puZdiY0skc/Aj/Gy6/DzVCiMaa2qU6HdlSQcA8HBJgFEwGBLoCv8BKRaYzRDtSCGhmH6rpoBB7u4ZGPovXJVCbbqFrqAANpw50DkQ9GhUoI1JPAHrA5/WJJzAn3H8uGLhESu2RY2P8Ka2AUS3Sc8AWbWHzlMMsX87QYj8h/QwHCCcNwGtAv8I3gFp4LLJDkvQW5+TkUXhGwEH6giopF0TY+LvYWFAZFweSCKeICuO4woWpk0AjoaxZo3hHFqYtJCTqknxCtgjiwQwTa/HUnc3ms5kcqKhQrHKwQQ5GlbAJOuAPVGb2tjZwXlaCJ55nw4OFqlOcC4lrhgZkKtXB1RoVZ+cjqpnsORz2xaPHRybGoXAhhn3+YCqTg5wHiOOyE4SPvCcYiuCyB3iFElilUBTUyylc+F0GblNbiuEk91SOKUf30i41/swwNQTCxuMST0o0gQowImy8APQQM8JEFGYY7aX9grVAFcRrBEB7KUzQg91WQAOMWS14SEYcTXnIF/iBt2/dKhTyu7vbHP+ZhRFUxjMWgwO148GKDok8WzZUIjEDZn7iP1W4MUxOOdhStDgZPpiFEBe+YIQj4TjZdGJiAveffl+Qsc4XC5BHcNbYqDE3aBpNAAHINqLTZgMNDsNNJ9weMfuTY3Jw0tXgvLBwwM/LsM83nED/MyYTCnzAcuQOXWVpWHEyzXatXhbLZoznYcVurUPplwtZ1BNwLgqnbFTUMUYxKEBAzCkFK7dXOOkItb10rgz0TxUqqxs4xyohAovMzJ968XPWSBxtgjRkTZ0zEjjTwlmjH8A2qme5CwKgExWsUBsBGiQXr8yl17J51IGBNP1vdfr+BKwOEig2aLfkA94SpS5JeW8FzKMJ9Kcxkd1NJe/4nontT2ri+wM6QbeKvQ+bRxMgmeol+T3s6i+WCgBtBlLq0gYizWN/nYnk8Z6v99INJOtFy69Or+8AeR3DI5dwQsRfHvNTkTy0VNFXUHSAY9RvmArsA6CrYMZUOh1OPHfGQgWYEo06mOBOMnl1eRlJJVyg4UiYUvwem9eJpqat3AYU4xfA6gkmhJ+p+lCoGZqg6sCiZ07AY2RXIFJH2d0LgwjyiJUsomhFKVJHlgxrEEtIDjzMlSuuVhmwiuNgYVcDVVAuYiVjhawOMITfrKxAbWPHTsGFqLPrrtQKCBJxK1/HKWmTk0iY3QL9QQHC7FJVUjiDEPHsHqD9qaaAY1TTxWminGbDwqZ64GNxqYVKa6Pp4SQwjRXYQyjGFwAMopWD3mkDafxBBM6uVlQUbUOcIaxGXkhNLtVk4OLO9orAUNEPEb12uAtsT+gA3PJ4IAPFUZcoj8jORghkFyQ4gBHqmEoAvegnNhlcICT2EQGv0+aXItj82CZCVtssR56Rs96xF+D00GaPl30EQkivCyGf6M4jyi6JrQTG0jjfaEi8BU5PCS1DqgkfDLCeymZm5xdwRYZUkyMB0rlCp16BvQ6Njt8ErajKJHK0ip1ckcbgrmDE7cV5tK2N2XK7xFkACC8EdluG/WFN08iUEOYgKFgwcSIxwkfZ1bDtcsWCfJo9ARKU2PAQsIiZQ++xMeSuwyJVUmHmh3kLrrC5OTdLWBmgkKL4gxWvJGxcf+STx4D3CGWIF70atQzBRHkRBleYh0iPSvk8ElpcW4NK6dJKncNefLha5ftoE9B/nMoyHBtFBZMZrrEUkgGPN+iLDMlEpUEtOcIMUC4d6HZm0ql4mE1MBrwSCkBAOJDzQieF4wFszTguOB4OCmWgNq+WVrWTSVpqBUh7peyANEkO4BCDR0sbRhyBOkoQqO27nEdGRgKeGaii1M5mIhZHB+LOjZvLq9uZfAUT3xye50qNte3kpVsra3lLJOw+//Szx0+f9g6NZjuuZF5oAIgMTyRIy9g74j0CaZ7CpsLvkp4G3XbBspq1ffATuCFrpu/qBz794b4kEuTVwFsBQQoymHgT2J9XlzDwdZPeBHQynZ1IUUAeyKNT6AymBgMBnWUgr3k0Af2ZA++Hla85nv1V0ilZsvcpR9e5P9dA4ruvVIfKW8pVYdYSTzqBHjvC+oLQrkNUMnWhthXjDxVjxgQ2DkuCLTwACR3MZrsKnhDfU/5Qtd0q10ts/IMwYd0OdVZqh11/pgkrEk5D3oXNOmCLXTTgzW7zISGQ+S0wiZXPpWsFbSj0Hn/C7SUI/15Eherzsi0AOMh/cSSDeloLkhPAjSUWDuf8/KAYg6sBh6OIOjVapJ1mrdMEypQ4t4lF0mq/tpYCCsB88TlQ8EBejccfL/yogJs7LnWgb2g5SaiTKGKybikNjnUZ1noFoparApRnkwRqos68FRmDOA6SBYDnfWJgQwkaUZQbTUPRJ8zOXSESERvIGQHgBqH3cdxIe6BqlZMkWi8X8hIkfC50i9whlMXlUBEMZgFe4uCghbUnW6JKDQ89cGbAglDBHLwsB9W26vlaJS0O3/F2pyT2yUyaAsE6VIMFzQoXnrINz3/BSHyIPT7Qv+P2o00VdblCwYa1VcEmC/ceLle80caTEjsZgCbHq8Hw9wEBaRfbOEhatlTYKPlD4XQux7G/QyOj1dG22x+o1hvsNl22hpzsBYHK9oGC2jYZfpszn8qAyMUOvNPMNap5/vBJ3WpxWg39x8jK7BR2H8uTMW/Vi5lasYjmFR1tbcCtwsoKEXsbvRk6RHTjxXEQGFKNGZtUp4u6EUPfMgLQ6YQxIna7A07xhC0Lnyrpmc/n7txchd/HcAinzkHHivyp2m4GYhz4FWBYmHyReo2MzEmAO9wsxOrC1anjS5CtAL6pq+FAOLud8kFjWDDJtstAdDphGIV+HwIG9hxsI5DNpnf3sqn0zPTkEDpRpYy7Uw+GA+Mjw5Eg5nucK+BM4GUP7mUNY2ZEzY16cmf5zg16DHu+3PZSB9NutV4qVdw3JJEVs4N6+vHH/Nj6Bnw22EPMm3Zn587q8vId/EC9VXkvjQZXrlyqWZBZbKXLG+nC1eVctm0JxIMv/sXPnX3yKfx9p3L5nSYbFJ8NTlOQOd8BmXCINS5uE6NDxVyemcN36TIQGQFRrhAsIAMl8eoiMHCZtzpePw6k4dHE60D3WzxI2XKZ0EAC/dYkkBy9PP0BXaBJZgKyA7jPRRGmKqYI0pv4gbyHxQ8kM48mfX/AlG8iTfr9Ac20IV5VT3oLCo3L5O2vNmFWlX7bf9eJuVOKZFaXZATyw1BnnKHLFT1OubD/cJ8CyQUYYvzZfcMvYS60m2Wc70D8Y90b5MxXqLXdJKLfJ5969C/82T/7y7/yKyur6/lUGkUZrFVUkXbEC0AieBbQUPJNQCDoQJY9laxImzBuISxs6DYMDoBODZmh0LXACMnE+NFeuDMcSIaUai7hO37k6ImpmRh0onBB2Bq44dqEhuPuaKTisK3nc7d2d1bT6b1KBf905RKnQ5bruUo9m8tmC0jlKpk0/cBF80WaLEwgUbqAaSGqGWj7WDhdzwOJDdRA0V4YYkAfuCw0Hp2PiihoA8JW0jtgVqx0aAwFgD0EttstAZjXKEe5PFQNYp+7VuwJhAN8VNCKcLEBfcLgkiToyYgoQkS5QHAIT+5gRUEPIuVg9yWnDwjJL2eHyY4NhgPF0OixiQl8gdFpFEWM1i+gMop/LxOGC1gGnCrVMDVt1aucjWypIuGtlBkNvk5a6FuQilgjORB0u2cnZvJWVF0r4BKYJDgNZItwYmwEyDvui5TrfrhtyXQ6hGI7RtXtWjwgaBXQCrKBCAZ3weGAC2QfnZEhhO3GNsVuqSPdZGcEhwSRjWB22U5Jpyp5ON0BOKa29CJ35owSumAJ6Kuyc2tj8SaXImWkUVykgUJXZDgjIvItVIPYs+aS6SKYgfmF52X6UI4ea9FkfNmKojHDXC+SneGnRcDrzPY6hlWkozogHE4vkIbX6xActUpWXG/UccCHbiZnPlc4D2F6JCgzql4X55oBdjno5uTKW5uAZQgQrlaxMBSBuWM7NR7xoFLa9gH5o/4IvY1ABzNmZlWnkWsWK9vra9nMXjGXvnr50u2b10dHR597/JEx7K2dso/EkyjaUuwkmCOcApNP5xi5zFYK9QQ143DmunVzZfmD1SXOiOD04nrbtpMurW0Vk0VL1Wo58+TFs489OXviLHb+m/kC2keNjh1SDsch6HRBWdF1bDnBd6zxAsodfEZwK2PGnckpGJqtCTEE9CVLuA/y6McHv1NIf2IeGQgdY16ZgEk5EKPmwCC2ILEpaqBA2MXCldOvdWZSyASkperSH+CuA6QhsU7Pex3JXceoNzJ/eaXDLDxdzuC9B2lBod28XeYPsLSvur0uEI57X7zOIjGwP+69lNKEJCWDpql1TXR2gRHAF+Ex8F7e0Fyqr8KsPvVp7oouF2X3RpbEYV8Ew5tivs6xErA90vmkM+itNAosK68Tr8P1dhn98KYPe/1SJeCwxWEdFG5bbt98bHz8v/urf+0Pvv7VS++8b/VYISjRKoGEgGGKSBQ1PSaT0+NEQ14ADpC+4wiCO2oAIIdohzDtENhSmRqEJBwawUaSkJ+WBWedaFDDIYGmptd8FstozbLQtI5g7ZnPBa3WoUQcH7hxazvGUgxHLJMz54dHsrn8q2tr17PFnUbbE46BB6AhEeyWt/cQu22n09B0aovNEpC9Npxu4B3+k9OsXpRzYBPkYclkCEPTQk/Cz4E+hHLE+ACaHmyI8gVEmHS4wmZUGDzRZDdts2WKBXFZJwxkkXvg67/TzBNgQTFizBwN7plBagpaPXSEeEQA9IkElfUoH7SJdZekR3NHsIDAMgIgAyGBWZ2AW8XE4hVZmCOILqQWmDNgyqegGFlwhYbCOneO/8XY1YOgG0ECBLvgcVH/hcMgU1yoAEFOwM16rYCfb0wK6Ba+sitHHTtWPsDbDQaDnDABb79MT/A5zDY4kBYZIaCZvPJdrD9EtYidCrsVLLrV/k4E8SjwwqXyIaFNF/MIYACypJQelXYz3raxSIRCKIpKOYIOR8wpEg54NRYqzMRR3kGIQYCqVy5veCFsINCMrCkBVkLzu1BURT6OKDibK6Uy2TL7AlsQOwdYhkiJxMRDlpodlhvHscRwqiNC8w71YObT661anppY8+kxjhtqV61ONmFVa8E66nFZqgXME4ZH4lDliLVGRzwYaJVy+dHJ6FCUowsQQ4MGOTvazcldIi7GSq1jTaduovyZ3tm5c/s2fnowoHn15e9euXyZLMePHTl58vijJz9vtf8YXWFx2ywbS5xlI4izkstvbMPGBL2u76ahdvBnUsHVRLGyspm8w9HVqXSWAR8dT5c72OKnsjl4XzOLpz77xJNHT51F15l+2MziqFdpebGjQeUJPR+6EytBtD8gdJg6TGGlOsEUlQ4FUnThC08SJZCj71JQRSXrAS4FYRSgUTGsdAE66urLJ3xP4iSmhwYoiquHaeQNCWRRKHCtZ4LOQjJ5raqn3+pHHaOKEYhnIvsDshPUl44lTKHczSOBgUcdQzIu81Zn1Ln4GPXoj9Hx97/3pzdhE9B5zaMJ9DdLowI9JIAXqgdAVdXsVlWHyasvU1viCZuUVF4/ghjDIX82nS5k0kFXxG3DxquDeSzKnKjoyFSALCpC+DdcTfE0HsbdGwdhAFOgYl32P/fpz9Qa1Xe/991Xvv61Ub8zVWmU2nVWKEQ5mwespCAIoQihjKFyZafBdgamBsAQYt/q6qDOhmgL3R4ZDdHNgSaD8QQ91mSBESkqPtgNNICSQP8RqyXu9LVwVZPKBhscOGNHVdHmRWMHzw91C+f0YiNWroaCoYXhiUs7l5O5Ap63WBUu9skyZM6mzTl85LhwNhTaBmbxYaaanm3chS3QuwjDJc/ubcFpFZq0VKwUC5lyoZ4rI1RE3ioa0wpbUW86mLK4A9TYmAC+CaAQ7/aGFEyHNSGQV8aFXYOAWqFn2dyUIZahERCDcGiLkoaQjJIxghIuFeUrnglVBeVADVBHhk/KFGwhBhagFuB+Ah8yUGsKHoqmLJ5XhdcBBO3aSfAomETNIWqB9ALqlRjxU4CWOTIWeHd2+/DwOEZIczPjUn3O/hT9HLlwywwDi/EEWVJzvs0dIhykBMqUPhOvnNIo4cx0Opgfw0KDYUhYFguNkSMMMDaip+4SZAyEvhTJLzsh/V3BXrIzg31IPnYIQBDaRgT8NJ2dXkBegPAjEApFaA5twRMJ/Jro0GgiFrWE3dMjMYt1WKFpuIHune3dXL6MPIdtAfwlYbKxiUE2AaiTkxSrNFMGBb6dy8WjoCiP7EiI5A62QvzDxhiPPB53FAG9jFHbHXANCw7DJTfMfKxqsDRbS+9y3GU+i1nIxvYGvQMqREN3c3VtfmZ2cW7WVyn8lZ/4/NTUlCUWE09Z4gyovr63vbeylLA0Mmsr+VSOFcuOBW6eSKPkfNfYrbXNa8sbO/lKFeGazdEMjbUd7lvpCtxXb2D04uMvXXj8idGJ8VyxuLyza3diIS8EFf2GUAt+qpqqcMwYHVqs1pzqUOJpHTbl3OVizdHh+lJJB3CAZD7oIhfRFGBe6rCOJ/LAAN/Wr3jLRRZ95/umHPWme9OJ+0vWL0xiHTDVuAcB6ELJoMG3yUPMQFjXQ0f2vzXJKEqn0cDUxJuAyWWqwqv+SB02Hxp4HIjXxd6tpSqKLELIqzDpdRbuOsZ8q/+71JbLfAsrwXKu5sVrGz0Pn1OEvfBsW5GAF/WBTiWHof3oUPT0eQ4Pngs43bUqXMtmLBwq53IkfeGzn2D9oFYxOT3xxjvvXr299N71G7uFsgVVZZcb5j3np6K5hhKlQEfoZEEM9VKjgs48pBbnh2H626oW6Rdek0AUPOFEw0Ow4CeZs1rcwGqkc+wHfBY5RxuVnHQmB9mVQHTmdKBJ7Qn4xYqhZQu0O6QBRNrm5mdHRyfC/qVUslzMOoMRspcaNURn8CnWtzYF/GOPJmCUhSk1o0MIEwOHGNJUx/MIuJTtiaLlBWRTGSRy6NyglV8uoisC2CoVsPTJonSIIRI4gz07SpzoBaGlUcll6nDExFmENI+BAUBDxULqya5d1LitIR87GXWkCSJnPiwnQXFZsFXji2AL2UVg2Cye9VUpHEKpWGnCnYUjJ3aqstCX90BIXWwhTBeOhRQFJ9lBMrTyeXWJRF0pPsFTUhQeZYl0gfSgDPIA+0jAnQSaSNczioNlIduJpI56HQnyoBkNIYakxoqZJi1QerG1priApWXIPMhFJLmoLcxDepX0fIWLwnX5cDYImEgSg1fYjNlwBiSaauBENhtC8JCGr4AcEeo2a4VqKV1cv0PPozzLBSsrLOo0Njj4pB0dmxweHccwfXxh0bK54ajUYkPDnG6G1iabZK87ZPdDiDAPkKCTS2aCvnDPzyYpn05TVGByjM5rpdN8wxuP7t2+FXVH6Ybla5jHF2vBYApbup1tGgapgDO4XCYNzQS2ZecTDYZH4okZTAROu2BZ4f5TDCkqldxeeufS7Wr1Mjq6u8nk5jY+fFJM7Mz2ZgTTG1wjYebt8eQKRVwuwp27cuf7LZe97vDkmp3dAnv1ttMX8ESj40ePP33k+OLRY6hMJbPZy1euw6OLRGJpbNdFwC74UgwsBckpmoOzifoAEY3V/c+di8Zy1z3QS3YXOPKKSH2Rphc89Nek0QX2P94tRBVpPqrT6EfSmIAugRgCJlI/6lc6XmcxdwJ3EYApglimF00lcJ+Lz+i3+wP3ydX/qj9j/9dNA0yAXLoB3AkPxN8ts1clHSPlKxlNf3qJVJcJ7H/UX6ETWHH1UgfACpcVo0qPuwP1h9QRfRtI34tnTl589NzkxCiAGEgJw4Yll82nxAWEtVEt5GNhTk30VqrFH3nmqWPTc7dvL33n1ddfef2NW8ld/OlADUNMoGHnDAYbZeRasrzkJjuBNuJZvDR0XA4USizYoaIWpw6DFDJPYCU7b71paMMIgKjGGo0xw76mjVC6VsNzGz7XUDgNi9NnF1bJAU+g7clZt7aQkqEDeHZm8nZyb7lUdnb8wubG3ZjTXWk2sdwSOMHhMIBUOluBRxApAE7QB+xeAJm6Azx1H3I3MAvKW5zTUCUoZmCGtjVTiIRcdDWoBX0eaElIyDqm/TWRJIM2ELKxb0C/Qx3SXRC+U7WEiRCSCZFlsitpoosiJsGQmML5gFYDQyBCQP8Tgh4GEKJvOELoUrKdF0eboCyUjagzTubYBDCa4g9D6RDJ7OYlpUDW8iDPlKgWD8Ad5gx+ypSmjOBCkZbKJZr1bAVAOVILmFcCbdklQIzjdiJA+eBH4BpMBThn9B3Cf3QEqAzqRfQSRXCnXhqyU4oULoMuHH/AOZ6LYmxElNSaakDmc2mUQwJy6UiwBT0p2du1cIiNi5Sp+lZWB2+5APgyOrBccPPB2Yoet83rJwbTqjDyF6cr0HJBK2xdfe/WW6+ihxtBM6daO3Hy9Pi5R17/4zf/f//yX2Xyred+5ImzF5/c2N7B4pcjg1DcHB0bxnqDFn3nO99C15PCqTYW4nyOPpybnkmihrmyPDk5PTszxZlf8GBjoVAqmcRZWzgaToyN+eZmIBhEeiSqpbagyw9VU87hqm4PhdS1XCGZTEI34DJ7L5XM4RJRziJtsmFieORAee+wPZ5AELGys7l8+Ua+0sCdXB5v0zF3slhDItx222MTcyePHsUII4r0NjaUyxU2tvcgESCZkFoj8lnf3MaiRQQdzALWk9ify7aMu95R0Y0yLgrU6Duto/e4iDevoImYAnoHoCP13WQnMBDulqtf9L4iJarP6Xt/FvWmWxP9dZ2VcH+A6vWn7BU/+KtzcdcBXsu86b8oxbwz8Wp5dJ90FVUJ3VJMjE6hX5m8+q15HAj0f8uUsz+LTnZgvIxZb5ykn3phXeduJ/Ui1Xu57W8RMaYyfEh/i/kRjo4CCiCX7NYWxGUNr4/1dMzn+vFPP3fq2OLw3KzwYSHdULYBzNg7kZEoIDwQHavk/SI1Ex8pzYDDcyQxMmRxDtlc08HIN15/7fWlW2ULcin7hYuPLpw5fXV1+dJrryHFgjSFxm2j7YEaD8QxMJiZwSeER8ggo6XjK9aQG3PYKkI+8AXCYdoNMePAXTEViQHmLLYMqpEddi42ZxVHaJWKu1j3QkGjAW5pe511e3vh2PH5iG87m+G4D6srgKAQlysCm0E+bClAADBwKFiYtmL6EI3HYFBBZRMPe5e7CMVRwsO1mXgeFtUcDrWFX6w7WcBc11JBhoX+1GsMEAw1DUWNyy+3L+yDElcIXTpflOtoJEHhfEoMH+bEebGvEDYL6ocAGrgRAN+d7W3hSInHOlhPbKJKOK6DL5dVfvPbFWEiQdTJOCrOEl3HSqc7WcJqEWuY3gkohzOMvgLrigZUSALqUkhpQSSy8WCzo6jxTq5cEM1/xJeAdBHAgwdscDqyeVwRVyydCsQA6gFgLyqPpz6vICQ6gK6VNnCnD/X04y6fUJcC2ghSXTuoM8L0Uz2mOqJ7A1UQIj0pyUGY/sTNGSZfYAxi5BsKnegjc/kQMYydKYTPsb9JDEVgPMIb09hFzop2uRBlI1NNjIzSvW98/auc+vnvfvGfgNXFwS2H3TmsMVxfVcsY60XoL+ysrZZjQ9HF0QS7RhA5XwdkU7eFaOB04lhmZAh9q+HhhGtqgsZyNSfH6XP6gdHnWDW0bJO7O1D0uPx0tl1oIm9vb2MZDJ8K5h/aRHw6n+PQZkTcdVj5WHSjKYC5wk5hs+L1lG7uQpOVq6Wb6w02uomJWNFdWypU/PHRufMLk4vHhydnXcEIaANNh61bK3D8RPrgsou6qKhpoMXgRkVD0S3SPSB/uaOyBT7rdT69x0XlecWdIrhLnytUwSvpTqZAz5OrfstcJ8Aly1ZdElaRcmdG9wrkkzpeJ5CiDrr4nH7F53hvkjHW/Y8Uoi9dhknWi5aam/T6rb4PIgCd//53curLfIzPmNIH8uoPD0TyqNtjcukSSNwfb4rVzdCF8Ol74jWzTr2jEvotd53Y3HUW80hAp+mPN2ETENoPt8mVKhrlmKxmy8lyavPoaOITj1+8+MzTFoD79hrDagmFnAj3mOB8NleAC+wMBTgCHh45u0vhtxZBA+2IpXNqeHzsyZDH5qgUCivZtH9q8p//s1/MWVq/+jtfWsN+eHvPkkbAWsN7A1AW7gkiLpHMSXXFGxsH3iKBAEr6XD4WLZOgUa3gysYluoidNABSEsI8QSDdEZ0LNOI7dpw4lNlIp5nDbR9b+UKuk8H3TXY+7L/hsG5VitiBIU0gGzAGelloYxQsmPkirGZARIkQ8aZQS3QboFDOFxQ/xbyGwyL6Iqo/pfOJU50Pq0cKo/rATpYKMEMywx9qUnKNTQfor1aljmgnckcuKLm5FANEhykfv7+6TNHcD3A+mA09JFJNnzzPR1FTkSyQcESq3Z4wg5SsAnSBhBCP8IpFxFle+IlnPFm+iu4WvpGA+62NbWpPGEpWIRnBIiC4VCaD4Rz7MeAq1DnwVKTAsglrIID0uKrK9EqGSeTc1jYuKEDflI9vMPRb2SrC9Kk77BwoL5ZewsyB1SzbIyWWEB9nUmcIecquiPCVXiJlBMMnAZpUSeqqECoTnhDwnQqzkkFdAl6EWm1ZgkqYSvmSFA4cHSsHzVC24qHJlqfLTRIcY+8UqkkwPPwTYKi3jra+mMbRdWwCgL9cYD4SXr9+S8Je7/B4ayQcmB+/iBMRyqRr6Qz67fzP/gwjhWUAnRJC4l2rpdMZdJVwC8XZ17u7u1dWV9mVMQ1gXpERYhkhEfs7ul9UA+gOmUduZMSC7W1ujIw5TDubySdzWWbz1g7u18SbkHggYeZ7YBm5m6FwxuZZzxfRtg6Ehl2THP3icY+PAeJ/5MLF8NBYIJrA+SmnnbKKRGUX6y0vu1OhU+giuhsdBtrLDSm99JH0p/pPbwoi6MIlAwGIkfmlLiJJTHt1MuLpWzX/BCLxikfuOgsxXCYjiXmkn2V4emX2J5CiesR3f0CnIbu+TIGmEOJ1pI4x6Xk05RCmfJNMB3RKISX0ZV7rR9MSE0+AVzpbfyThB48cyEiBJkYXou/mQyZwaHwPAfQXZaqkh6C/etCUctEW9WG1lHgvu3xTEx0gFcTCXjEPYRAJ+sRuppwcCtufPD178cS05cYH+FFjJsvfxhblAcNscDB9QTj3lmwOkVe7gdvhCuJZi9CGwrRByIgd+1NHjtYKuXfXl3Y7bc4XLno8Z86cXd/eXrq1tPruJaRe8BVQvIDChhng8gegXRvlIuBMzABkdVvHp6YWFxeh10uFHIY5bd7m852qG32+NKuUuW+xBJmKiKIb4jcfBwLuQgERXQAvuKWCM+esri3PRBPjPk82XeTAYcA4MwTgLhCHmY0mOPOcB5m1bHE4aMCtwrjrEe4HdK9smznE3AsHSa8i7rIn0MbrKLKQFbgllDYLWi6moGhW0GsANMJAIul6QDzBujKukzmm15QaH9TZQWEkJT314a40GsmzsZtmgFjc+k7pRHIXTj3bKNa7w4dTMQQCQgWDVEAQNK23hkEGeoaffSoqgF1dwtqRgxXlkm0Q7cQJuHCrKsKwwnoZ8IemZF1sDzgyl1+wNT0CYsFxZg1ny4JG0GviXBLu0h84NRMMQlCvf90LVEO48Vq2AWIGM4AmmZadnEhs6AGFNUWuLWFhPbm9Un/4XorppCQyQr3JaWwkUtNZ0tH70kZcQVQlrwwSTWEPxT6F06Rtjb2c2HvVYLhtw0ADf8B2h6fuc7va6AHXkrQA2QabABRu+WK19G2/D1s6P1OXooDp4WAQ5Vp85GHZi3CcSAy7mYSiqet2sndkKPAIS3eJuAPJM8xIJFkiQ27QaiARDD1YfJx4QRfXra4atUX5tNzh3DDMlIX1Jj6I8EDetnus8ZFxDlJCKBSLDkVmZ799fenJxQW2l5BZxyNByCAw2VBiJJnGj2ll8/Y6DgndnpDXg2+JDvbd4QgkkHQ+W0dEJvQYkhowlgYDsueFk4ZhM9tMYcVhno9KnVx6OjFG+pFkxNBYE6PTaK8YOjExGo7rLDoBr/TVfeyWJ0koilcSUmEdGLjr1/qjvZLuFjiYWL3pL9Zk0SQC6XWMDnAf3AGY5pFOJ9LF9deA+IGrPzGv9CMBU9pA+v5HXb6OIaP50EDgQxOQ13SWhBUq7mGH7geJ1mwJgw9VQpkfZmj5rr7II77lxc7f0WyUC3srgVbhmaPHL8LkuXHFsp0p31rZW9oCVjhDMW8iFhgb8Q5xqJDPMjIMhwYLK04YhwJianEsKa6mLOxX4bAUygv4Oj//CGDi995847//23/nr/63/+2nX/wkTieLuWJlZrqylmSTrAYG8OqNJhLIN/d2oRNRu8FJvIM5l8plvTvbLKpSuYg7B5yfRNmhtMOtQi4HdBKFNihVYZFzBDquSN1Nm7veqWAjXPS5ch4Ok6w47PF4YtjpvIOFK0BP2Ov4HKYbYAVpeC2dR1fIpEa6IPYK91xC/3CKhjC7dTKSChRDhkp+gaHAbaXZpBLwSgaXz8gCp8vVloDEsCNYCKRXFJgUJZBL/1jEDhNJOSXI2ClsQkAeBWPB0hDoDh4C9An4tNiwteNDkGJiPiUcErmg+iGFpRqCQmQNc4ES2NNspNclgSLfBFzRZQJGAbpODnODkLdj0xW2hBQdTcWwAhEpjVrqqgMExFICcJMyCRPQwEI+DBYF/KqthQpTd4E5UMGUAB9ccgkuxNoBo2y8qZZS5RR4RLVVEC5lU6awswrsk9i7kJjelfYywfnz2hlqBoLuheQXFICDJD6CgRiPIELdUpGOIF2A3nMGRxI4zA/CPcOgD0ERTkF205lGPYsgiw6w2fCD1Lid2qDHmLA+B8bjHY2fRG6C0AUchFptMNSs7QjqwqCZY2zoVtF6KkGMkxF7EZw8Q/sjnOEox3QaCzkUoCvi9Vlp2NbYqwovBu8ozTKuSaiex+qOBkE8Do6rLP//KfsT+FqTqzD03Vvamrdm6cxjz5Pb3Z6xDbYxGAMOQ5gcEjKSMCS/hJC8R373Jjy4uXkv9/3ycsk8QCAkN0ASIPDiBAMO4AFju9vdds/jmWcdzVvaW9KW9P6rlvS1uk3uzaujU7u+VWutWrWqalV9VfVVbfhazvqwztD2zUuLqzqUtZcv3P7k7z/8tV//0T/75x30//jjX/CRje75pRdfvHD5Bt35fKvR6+vwHt81uMfPfRnWvVZNCcYpjr22bw+NGJTEEbUkIWXRTzHBFM2VaiwXexWsVLMCjjoZ9fOAU2RRlnEAaxRfFSOctQJEbIVWcPcfD/QBCU9MJIl/MABWPSZySpj8MwpVElZ+AewBkwomlwklJJHjaBES00U0p5xYlEJZcaq4VAEIVTjl8IiQU78zAT4Hnv7BxCqgKOlWrIKgOGIkH08ZixyEr/omsEgXbTjKz8RcmY2GQwYmARBhJZvSTD6FfXjBX/0l3V5EDHsVppbGR46pmGBogGZfudFTd2tl7sLA2q23nj30aHNo6NKF2o352nMXeq7M9126ffXVS7XBkevLS8fvvfPMo48ecfmRW6SmB2tjg64rrW2sMxg9axv17iZjWWs5qWqjf60z3Fp7ePbw0Ac++NO/+d++fO7CX/6Jv/nwgw89+eSXDx894sbwG8vL0xPTx06cqI30vXrlwsLNq9HsSe2LpOjYelbW1rW5j/zRb7vv/ntffO7Z3/74bzhN4Ojxu+4/feqLv/+Zi+evrFoMbI6cX1rTYEccYOBe+J26A+w6a63+1YGGuVuD2hs3jzWbhwZXry+vDk2OOAnBICkmyEu3SeehIV+ZllnRUPUBt6c85tQ+1JjZjGkY9rcM6WPJwrdBWlX5MrXUBM0q9imWoX+5zQVpzJkBu783OoNSbMEqeaevaPYis7xQhOHmSjHFtI/+sLxhgHqRgK7DUGUkrrjVCjXbosNefYOUFjd0KS3biYakGR/8scLRY4SLmGKj9/qqIlPAY5UnEi84Ech6VQLxCq9oVFUnE4F7BYz1Z8vgtZrRe2AW/L1vU+CWymmpnG7JKSOui9x2cogchOkPc69n0ZMKM3CaAni8fhU436tHx62jegITVGWeykthnJBnRss2A8PynOmK/mmzs2RU3tlqt2oXr3dWO65Ed1eRnZcP33dfd2zg0OSE7lQr88mHxtDs64kR+tb6YmfZGVN0znq4uR0bOu9v9GzfWHZSp3dK3xi0WvH1sv29nXIkz9CAEUWsZxleuilALm2XdZFXs1mPnQS7teNHJxvjO+21zsTMVO+E21HdkNOzasazvdGSlF67b+ilV88dPXmGTXnPe7/m47/1iQWXFWx03/d1H/qff/InF5aWX710YbfVuuocj4UFgyBq9x3E3I1bw83J6ZkjPmXoGgdEW3b27dBia8kMmaktY418KfJSp7dUXmkfSn2K+ssIxGpPmY1hARQrHqHNYiTDwkQZlsFNvtJ59C0K4xnaKTak2EMQb45phVApX0xVVbZKoqajXksivtaMR5ylyEHJVNRmyKpwkTMIOVEc/Bxw5COfVOkkKpaDjJvHN+BDAxGb4oWxqx4ywuMeswM/CTwYJZyPGcgkk1vCkzqFqyACmQodVcgp5UH8DB+EyEyySrlFeeSUDQhHgLAmpWD4Gg4cWk80PgQmKCTJYtibNg22hFH1UQmjEsA2SNi1lm9VNsY21o8P9N3V0zO1sFi7fdvFUbXry53z17pza0dHJi7Pzx+fmDz/9LMvvXTuoevzxx+8/9D9Z+uHx3b7uzooY8q4CdadvWtbNQcPt7tm5Ue2Nqe364u7PW+/897//PQzP/ljf+MdH/zA1OT4q8+/2OqsP/DQgzOjE3ZBvHzupU5Ho+kx5W9LEZvmapnbcwtGanff/8CbHn3LocMz586fN8JZ9hY9N3f3Pfd8z5///p/+J//00tVbZtgPeVW3+mtRers72q2vb5bvG91x5rCttbbzfxqu2tZU4kxiH0KGFQn7GJtsXrNxWXZRNV9fMYpKY7Ohmkpr8fUCL9QbQ+tiYNl3dY0NV7/pPjoJFRNzP8WOo8u6GzUy0o1l4Og+fAkcKPGsimqKEU6fUS3hZIPBa9U1XhXUe2nFTF/AlWjgYVGsbczpv4Yu1oRLSBbg4qJHIq9/plpipG+PR8YYyxtjh0Se1Sp1rdRBQfIErPIjU9l044w+fWqRoEhKaVz0ATipbzHtsOMQbUAi2gakhzFHXiQK0xCzhrHoWh93P33wjXenKjV8x4YnIuEohDBYXjh4BIqJ7zBvO2UdOIRTpXUEG511n8i+8Pxzr3zxyYX2lWb/wO9+4QnZ8of5aNygozX4xjh+fFw3O2n9dosk1paVgFsZ7WGKxYTu7h2Owl5a1iWcmZq1d8sNDfccP7qxuobQVKShsQ8o5CEC/QP2a3phPTF72PlR1l1MJR061bS5s3XL7fSOJzWZZu0FydDs0WOHjx6d6NSuLix7A/iXP/Nzj7zzq37kf/rxd73rXfYyrV6/sb2ysrWyasfqIceDzmgokyb0p2Zn7Xf77d/59Gcfe+LQiZOHj/gacmltfatm9mq0qVZ5v6KEISf8+ExvdGxtfZXyo7qF6vPlKcJlwFCKGPZ+ByBQouh1r56EbkuRx+ijDJc9CnCJyQepgBmG4SUqgXuQQpVsk1yYQ84JaJGJKVYgo/isGZ/L2ET2mAHIaf3FKg5Ar5j8dBWV2Nc6gIpY4KDLVNMHz4Q9cpIByfAbBEqgWKaqCldsUw7wJK/4eCQu/6CgiZPIVRhCmiTVOvkHk6J9j8J7r/zF7kMmXvA0WKVTY9ECgcYJExKc84gcZ2w9mvYe39iqryzO7Gw8ODV453Zt+PrN2uWrW9du7ax0L83drPeNjRyabbvbY3J8qe6+pfbc7/3e/fPzD/k+YPNE77hvTq3ydXzpW1vp+E6x5jgSq1obXXsamhtbkzu773/w4aVa7Zc+84kXzr1y+sH73cQUJ7HUa69eunT16mXHWqqzd99/36lTJx2cZljqC8fpI4YUDY3nn/2Lf35rzgaK6zbdm4jdsWTc03PqrrtOv+nhl65+4pLvjOrrjMmIE3h26pPdemur1wxp0xeTdkg43WbNJax6qPjO1VuzmwDCuIT13yvW0EgpXz5bkkUQakxXDI0+I5ZB6HPPssLSsrwWKA9VOKop2wYhRvyMehlryxaI3iFQJOE/P5KGX3z9UBj6vS6kAGGJ2vODYbokLjKTQuFH3yKVEp+RgVwsY2TsgCO6EWd0Lyy2/BVB+NFThQ0PVFIFPIaO4fZbcMlZLFDvSRtNIZq2HBUG0YdEV+ZGgsCKLmNPYAHTBq+haqJBHHXPr82sYeNjalnysUrAJKkSxu6k1Qmkr4Oz14sKb81dC0lL6vLNLOCPhu4iCQdLxEamsvHUG3Jvz+HZ42fuvuNd737XZ+761Mf/039yIKqcumHLhwOm4czdG09jJm0vxk4GfO7Va2QjukctM+DebfrqFrptHVpZWrLYfuSQ18n4Yvxmx7cxq1qToa6dNs0J9/a6mMEtOOb2e+aXN5669GzWj9hnbEvUbtfGGzeIYUtOCyzd1pbjejqbvecvXpYbORgenf7SZ79w8dXLf/2v//U3awa17ebSwpQP433zMtg/MjZihcCxtM2RYd9G/sif/WPf8HXv+elf+g9ffvqzh0+fHp8Yv73cbtTMMcYwnG7M/zgdyzkpMdKXaryWZjdQLJspys0tJoiQaV6iSFiMMsEQejBcKJAMF58XTlQ6YTjCmHAeczSZj3r/KlYgEfjC+bhnqQovcJOSGZXygIjJ5JKK7zHhKUDC4SNM5ESocDwmhF/ePcXsc6mSLzh7eFWs54pjiisKibCoRKsC+fiGqOBYMJO8YlLRpuWtMpn4/CrdCjM18oYosenKh6FlqIWyuEgXH69rZdoOmtQxEcn3SuUxMQXyDauvvjPd13D13HRt+3itMbHari3M1eadOrK9sNbemZq6td3zuS994ZXtzbnLtUNTfXYlH6m1Vp54vLW7+eDag2fvv3N4bGhnedm3kQ2WxuGLa5qIqV8fjG64asR5XeuXb3zg4bew37/+B5989amnpt0e3Fs7d+lie2mVwKecp/7gvUdPHPcRjabVWllzrK7ziQ3izp+3xbSzG2/dlmhNpu7Ye//0iy/++m/+1iMPPTg09ZgDTNruM/HKUe8xf9/Zdj3TtvdS0zz2t9g+HWcXhfFgPdz2HidFx3txjJT3qhQBOAjpVwGPqahieuL4mhKFMoZOrF5YzQINk5V2DwFoIEZVCVdYZGxESii8UpH2fQN5cx5eCFKkg35JMdgUt8cTh5J2CK1lM7th2uNpb7Cyh77/E62/vDhGDkkUPzHiige58W4Qc1jBDIDtjf5JHvyP3CEIRDF+g1WG/JRwyXCM4iMiero97EArsw3sdIDKXFUAWSnT7m4Ki9ak6toCwMRL0kwK1cUbiVzpXKOL0+aY4vouw+cLYg/x5hPMwvrzVWnJRAcVp2UyG+o5/Nr1WzdsAbKZ8xs+/OGnnvjitZdeGh+fiCszzUUQojgfZXfsS1JnnLYZIvoqzw6mfhJqnhIzhllabd9cvRoba2q7ty9cdenpQP/ol16+rKhOHD18+sydx06fbI6OukzzpXPnlxaWf+AHfsg7JHJz8eurrc9++jNPPv6kfs7ehuBPs05TLBu4VlfXV1962Ru5j4+BZeLw7OFOa+1f/tQ/+Mwv/4etJx9vtn3Tx+zUe51i4TSr2o3V+s7y8FDz2DFHJT1896m//Ge/9xc/9rEvvvhcs35sdGzKHKbtYFasfTm2shTL+k0Ds7544/fSFVWylLhHAZuy8pGoApRJtsAsfUA+Jjz17JqHROBzCUz9VyUOv5Rp1MOGE2BLPRNOh6qKFQZMPwOePXLJjZ8BCSUCwQQSzk+gQCUJWvyrMW4ipC8qdgEF+5JwhpP4DTJVBOAQOJAE8j0eNNy4FZTgXOFEGgccC3swCr7IZCtQRX0ln8RMTiFMGdnvke8rOlklDh8ahpxW6rtOc0ZqIjhIqo9BThxa4wBTvDh9wdnI3c3xvvq0a9Bd/bG81l3fsiB3abP7xO253741f/z+O3/wr/9I8/SR2+3Ff/tT/6znxZvnrlxbfPLx1tb6SH/jzB1n+hbX4hgW2/7WO9uuVC9nAtjarF/p6dY311eHpqf/yFe/b2Gr9ennn5m/eb22ZAzWc+L02XvvvffMXXdavXK42K0bNxau3XSGouUwtyaVrLHbjuEdjHvPLeRa+B0d9TnVtetzk5OOvV03r7Az0K8W2znkMguHFZsV29rq8UrjxiT9hZt99RBuTjKna+7TokKOaPcGjyUNKsr6kTY4lJgVlPYMbdgHpmevBgWBSNYrRuHREZSqnLHKV72PoXD5vEChFOtXEokRcgzQCm1A9hmaOyrmP9rYARdtMsVIs/talBKOirQHjlAM3wO/NLrXEINDphJTrrhFEns4pGb4yxtDZDKniFIPYVIhy1pk0v+9P6P4mAjyDFJ+0ZXXEN/vSehgNS4qtPIRt7Sbn6GHvdpbGq1XdYysUDpSiR9vTWHG45iIwPNipdQLRF/kn0VN34dHZljT0hJDlnw/ln0iRU333xypxm5Jq9vY3JxbbU2NjttIdtOt7nB2a00nD/X2rrTasVPB8QpySj9xe/2wRTOl47tmmO5U1Dak5I5HemOmNXyxh48c8tZ8c2HBXPyNW4tX5ha2H/+iOXdffXupGR2fnD561Gb8k8dP+Drsl//9fzh38ZLTo9xA4ELqmDx3yqyzR2NAWj5w1M1sdFyV4Ai5ybFxC1+njx/+O3/7fz3s3KGttTHXOnY24v6A7Zj4NVllb/Pupk/dty/P3ew7fvjuRx/9S3/qe/7jb/zGr/23Tx06PWorGe046NBV0VYBmk6iGx0zYRUTZ1RWiozGSrCsAu4viKbRF6XIrDbz0/oJANJGRIXl2DMvhIlqbErfu0vovlSCpAolx1QoPxLliyx/8VAmaqIylWoW75wRjDWDWBiKaly4lRQlykkohZEozEiruAoIDiAKhKtmYvIxuBeq6HvTYSqQvjh4CU+8PaTCsQpnAInEKKuCv4EVeKSWeS6pgKTlFYB8EL9iUkUlAnkqJpIDzMdo38XtPZafimE0kZJExkYZl90jaeK969lmI8qugCq/SesRjnW3xY31wZ1O3GCkQa5ra3Xb/eZuL1+8vXJ+eW1gauoH/87fffCbPrje2Dmy2/6JB9/8r3/kx71Fry6vvnz+3NmZ6TNDozX7ELjVlnVaR4ZpEposc2zDYc9274mxifOXrrYdneCi2vaGtU23Nd57x73vefSdPtVZXl9/9svPvHL+XMtka8tHs2HofQZPbF2Ub6B2DNXCIDiBYru1uCLW3p7HHv+ST7KYkRUrUb0DqpPCtO3QtVfec2yr2dmwraThNFCnTMQKbH+f68E2Vdq4PSysDRcyHyjuAnudV4ogTGVqbB8dTqnl8SwQtYg9hpOutAxAm91jTFqoYpjN3qbZDrt8sD4XjD2vmHJ1Jx8LZmIzi2WySZ5LqhjEQk/BC4td3AFOMUEjozEWC/vPhZzZAZTHaHkFEn4E8ickK2shZSRO4sIjxtksVwm/BhEijIYUZjs0ECyCuDQu+QeJTTqyUeJiDwOcYlzK5EeoJD5lK1XfuHVvUFdqP4lIRsroZTwgjM+fo11ENy6haCPBUoQU4ZSBm/zaYTmh/7949fo73vnu++687799/DftwVlevD1z6uj9D5p/P2QyxxE9vgNweMcLL56LBQaC0FZMgAgr1pob144cPby4uGiT7JmzZ9Wpyxcv6zWUTWzL8KJtu7KjU9zAzip6O5gYt8Pny0996ed/9udefOrpom/C1a342i8QtbWA3GYUWvK9hcWzOFV37Pq1i0cmJv7Mn/iBzdX5z/z2c6dvXHb2ojmdAVNiNGTpOa6Idzbcequzdujo0c7y8rUvfuHYmx/8zg9+wGeNH/vsM/2j01PjU15xLTO7TcwXJ6tuhI8VEZ1nSEpNoduiaS9ZmKcjCZdh7VLAo9IoBRJmByRn2LHKsMeE0HkSJgck8ajUvsKOQcgCEkjnkYMZK8JRU19DSJ78xIEfXF/vRAGmeJhULnl6rGjR7Z1bApS8Mg49vINsq2TAsc4oQM4jJ5AcMqpKI+HJX1QVqPiDJJMkTHiiJTx9cEDOIwcZhDMAoXHwYF4G8slH3SJVFl9EFWesoR3oDBEqMxZWpUwm+oCSj9KHl0ktqWjSCxsdp6FsDPZuRDty5NVIz87q3I2lc3O3btZqH/meP/Pgm9/zu//1kx//g09+/kufv/7yi287dnJ3amhmbGTlys1Lr55vHT3VNPAm3kpry/azjbZvn+y78kFRXFgY30LZZrP95ctelM/3DNQffdc7Thw7PT0+Mz+3ePvW/PlLlxzOs2ObRTR3BqWXUfC9V55XrK0bIKrGmkxuXopTK7o7LV/KjI7TTE971bu7UaNSInxciLhdjw3o5Xxjh/K0anHyoftZ/K1rirYPKt+i6lRjKlY41Z+a5CuArHfbZqx0HKVEUsmFJCxFcQVL4UCgz1IevDJDH7YrjDjmfO8fUYZ7kAgVuNIp4AS8FlToQRXWM4x4/kZ5a2nA/pJb/IQoZdCeTF6jCgNexv4HuGc3hCDpi3xhbGPsT885+I8UDa1LB7D33hRvAJkf/l6iCBziXQx85D/oCRiTNWE4ODtIqE47D/7lv4NV4/w/e/VZt/LFNQIW2BEUMZ0klZhUslEUNHRjQKHe2u+CpRl3OY9u3HYmLxhxFB6IvibsNgFM3zsy5Orcspk+G+8fue/BB+57dK219e9+9l+//e1ffeedZ50JPre0dnthabs+dMd9j5goefmlS/H1g1q35fpfishy3ZmcmKR4rcyO0pGhodsL874GYFutesc3Dv7USjn23cpQfdRK7ODA7OTEpfPnbFqLo7sbfStLK1aWjVTiY7o44Mk2M4cWmsmPyStfLE80m/PXr042+5zh87d/4m/OTDR35ls/dO+RB5rDJ2YPTQw3m72OhBiq9bu0Szcw2Dx5fOPmzc2lhWOPPrxz9Qbt/cmPfOv5W+0Xr96y9O1qajsdTMZu9baXFhZ1b6VqRQW0fbl0k2yClwS3OITTfKIFFaeMOOVT1fAMgMR7WnEVJrbpQCoSAQ5i2PXSlpJh5Scw0dLPJLx67Rm+UqFLUuGRDQLMSpJ8FCWQ3AiQQGiJXyGDJKu9DiCfK+xkASPh/INObEYBCkiGrzZ7rBKoAuDCGZX4B8lBOBASY8JVGQNPSGrW4xtylVTuETVqlulEiK642KO20zqt7sYQKxxkLjp8A45yAaR3beNofQC2aKWrk4cdB3iV1giiH2zXO/V2Tz/p2lGl3fXn6nXnmEE6PDD1/m/+0C/+6n/4pz//c279fviuNy1fu/3rn/3y3eP97z11R2f76sKtm93lJfmI7f+ddV/Txyk4LkC31uQkdeewOxN0p2f28KH+1s37j52cfdubJu44YyX5qaeeunLOGvNtZ0tqxz2Dg8btcTG3z1gaQw5DkFu7NMhpYx79GWJ5aT571x3OTP/yk09ofXZVqH1TXhd6dmx+9g5cZgz0Hy4hsMO936fJq9tbrZ1a2xFdIU+c4eZdO9QRw05FTy0qkDRxijC/lLzEo24reQKkRQj2YTKZCCURVIwUhUM46LIgKCTMVFjt8hsj5yhcmPsEUo+k+GkcQ4fh9uMF42C+Aqn4FL74BFnQhwuiEo7IkK4YQtYz+IUx1+gLSlS2DAQcSfZgBWiEX3IX+U2JVdjyIh8cYvsN3w7Y0mfEoK2Mtr10aRZGGrptjQQneKVphkEODZZcCQeQDwfXOGwjNral8NCcJeH7Z5DQXrDxtVRsUmCq1Pb+XhvfXccYTokEWemA2NPoAGLax3oAYLSLkM0HEtt194sNzDaefPq5lwfPP/L2d/7Kr/76F59+1hnLmExPTU3OHjKToS65uWWqObLeU1/ZbMfgiZJ27HKN855mxibOXTqng3EJpr2YN29cY0XbOxsDvgtwaY2bbWIDSMM9a93VtZvXL/3Kr/wi2/vFzz3u8hrLwjs9Vix6zE5a3zaLFXWnr7FrrwQp672TU5M2+KwsL5s/c2vcr/3Hn/uFf/Pzv/qff/tErfafX7xxpVZ74PCNk+MTx4fHjkxMNqemayM+wByu3bw1MDM1PTBw/dnnB48cmr7nPvr+oe/+7r/7Mz93/cZ1l8w4MGp1re2D4sG4fCJqqNuNVQo1lXrpk8t6EwW974Q5qs5Algutpl2yaJzw9KExLPjknDucfTZ7NvPgIyYcQn7FPyEJ9IXLHr5qtF+xowpIndQaQfFL7VS6Ubw+tPRqE11Z6ZyCdZEsqplAaRGoSO/NR6yPQKNiRXWMiYJIRiUgfVSX4vInkiyGXhpl22rUSPmEAp/pxByES275XgUoFpr6KhyvUQYvpe6yvKbVogaX4xXzjSyTKHKWpluyxz5gik9Iz4ibQrGIWbQmLeMwMisfkACWt+ryRhdf23ccv5yGsnyn4xzbGNQvLJBTHttray+98IIwQuMXbxOOE3OKDEJU3Pr6quNWtpZX7jx6tH51vn60aVugwfLdd98198orO7MjX5577mf+yy+byf+f/m9//ZH3vHet1Zo+evjyevd3n37h206e2r1yZfnG5YnZQ7XlBQo0DHHE2Gq9x0funfhep7bpJOb+2s2lm3R/9uQJr6PPPfHk+Wu3bl+9Vm7iDhPraqadrs9mtBCNxa3rq3a1q7JKmTLd165X8xnXyNTkfGv59suLO72+q2zpHEzZDtdq442tYWbdpzzxjeWuedaWmmD42Nuz7BAurW5gwKqwzYoslZFnu2PZuKuTlHY0UajFToKk+SwyZWUKnXtNDb0z1GHf4IdvpKjA1I2IKiUVJVP+ohP7Slci4SuLUhxRH2NIGHLEAoqKmdxEpHMGxleyifTU0mKb4VeugB2vFxJUfpITWC2KcBk3JBAkdxHRcIGErw7yQx1RLWOOHBQmB67VFZw4YTIh6rZxvFOPSh8ZdSxcmH11NK5PwCFQYlwRtlfG42tVllqPoU3FoL6kjn7bjWz68dAPAoFA8W2uihAfrMRSnlSjGOKNhsJ2Xa4bZy87HFDrUdvD0mqUvfr5Zr8JnyXNZmRiTK14+eL5P/ODf+Gf/YOfev7Vl2cmfUPbMzs04fXz2k7n9z7+2+vLS5Zid3xZ7jovq8kbKm5tcMfljdtHJmfXNjs3blzTP/aMuJHI7ZBxnQBhRqFr+5umcWqr1g1WOr/4b/6dbFohcPt0fdNVORQxyPDbedbVhes91zv9I8Mqs7wPjIydO3eh33fF3dpf/f4fbgyNO+Kffhcpqla7ajfn0m7dnL5Lk8baZ01iDuuk6rVJY/yN7cG+ieZIw942+4iWVu986C0/+r0f/Wt/68e31o5ZZ97q2Vrc2vb+YQeFj2Gag1FYZmV9XEE8n1srYIWumzQxZRmGqmUu5oj2zKFuOsqGQyi2bzgKkYlTdFGyztmz0zTuTYo+IypzzNfHJsMou2JqFD3CINncZIUyXE0xwQRJh5v6Xz700F9Gl6XNhwXc8YX5UIw7fBGiQjIlcR9ebNXV/yh93U55U4xa6h9hffQXn1zGfix9FMPtviI0OvoyEpFqOrkC4ZMsJC558CjWI7EE8lEUV0EAEx8CDslErHwmIYgoEJjUpxsAT1bJJJS6r9aEpJ9UmRYIhyoJRcWgpSzagMPB0/Q6uAbDrzDplwB6KvexgnPMvX1oKR6LBcGnA2Y/bbW0u0b2dVFbm+vbW8t9C0v9o92RvqGtwYFGs9F/7Mh0d/v48vLO1PBqZ2Wz0X3l8rm/8Tf/52/8um/69GNf7PYNtnY2Vmrdq7fm3IAYeWb97bBst2M3gn04dRcSNbwHENOROLdtYxgdWmu3L51fmL968dWFhejg2B1mNK5sjFKyhcMlSaqPOXxNIF6ZizFmJEOHUTlra86uiV445g+cUMP6Tw70zqir3U1zCuZmu719m/XetiOKXVY10L+2vb3QW1vd7TElFcdxWiRUuUzYhmajCYQMxdDx9yEl2QJXEYrBqYb5WROiFZU+4LXaAsJlQfBNbPyhjghZT/gQSv2xhdJAkY3a44Zc2WuC/kJ9X+GiDljdKNUs/agupdIm26+giBcCLjJdXBU4+CjReIyZm738Js+AFeb/vYDY6D3/MKcyaM0QOGy5qJ9hXWwbjTCXbCFIxvGA+6mUAioy62/DQkRE9CSJgCl8DKvHMoLybB9RLD1EkqUtw5BsfOW1u/M3fvxv/dxP/wut8uKlC9ubs8bxzz/91OrKEiamkaLfwt9tBQOD/Ru769udl6+f73MknquAV1aZN/VteyBOrWoODs40Bo+6tKZWH7Drsnd7rqdze2fj8nwowoi7p7aBWbmN1AsK0TYdVto/NLy0suxjaIlxNwyA4qPCmHr7p//8X/7U3/v7OjBHfDz65kcaS6sXL7xqDtThf+75ssiw9sJLd9xz94gdeiaChjZcZuD8UHtkqSZ2xy0tnJ4Y/fDXvOfxl84NHjvJLErLaR7N0SaGtiroUcOAsm2lcIs294o1K2Soq3yI6rGCUFTCGfFUNUVxaaYqNDhZjqISny+cxZ1hCGF89gcQGVv5WHnrQiCnQSUJM327uw7UY6BYuaG+AbQG02tbcVGrXYKBz3kNUNRlqSOYsLpliBP7DvCJMXO02demgCBxpElRBGQykYTRi/UYI5f9BimARcKj4hb3hliwkHufQ+IjSbioELU4OFymWDi95sHBP5NLEpgCnOT5GZWSJHNz+lglYSIgUZ90jroCMqn2MhgdvsoYNZHhIlV8oG+iPvYp+2uv7rYWeu2pmVk7MTW6poKNDddOHh3tdMfP3bhwc+XS558abQy9/yMf/tiv/lc727bc++3LSKdBb9QubbTvafSv+RzTvSe7Pa1NR37tdLq7G1aR6zveAFgwuzAHRpuG65dv3njFp5HGZ8yrijs0El8MxNjDFdmKoVg7rycuAGhvhoHQNkDVJDVMoanJMmDfz25Xa/Q3VqtNWK9wHLJtTxTc09h0P7CXrcH+ritiBgcW67u3XdC6W9MBKFdv4z56wLMolHpUt1Cq//ETtXav4gqkPhNS6nOF81oglV8IA4gkXWxa+cOc0oGcZSdeACQmYnJao9QF8ACW4oPwh7Ghsz14oYi0Ugap/6H42QFkVOIc9MErwgyEAIXnG9jmYyaaOJmX/56cMDHkQ8i6jSoIQbnIRxFeSymNhfXNGDgZCJkZ9Ti+aW/ok6mnzIkWOPtOrKARDz/DNCIl+lLvfXX4tne8/VOf+MSZE8eee/7F9tqy847iLQJ210Ri7NEqH1d2VjTG5sD2QG93ZX1zpTZp32dP8/TsoYcffeShRx5qmmoZHjzUGGz6+rW+teHwoZ31xa5LCVYch/7UY19+4blXrq/U1vQn/ZYpaqP1Pge6unV9cnzCwXlRuFql2df+GMxKfHFl5dEH7nebmCm/1fb6mWNHvuc7vu32C88/9d9+6yXXU2/VZrbqy88/91C9t7nptiQ30vT5sFEmvfW4Fal26/rw2bu+9cPf8MVnf8pOC1eamaSyI8gpti4Vsj00ptOMGpRFT6/RiZ5PGaSKaEnpRGnsl7hH7uCjeh5dVlkiFk4EhFn/s6QOkqDllI5Cr3CQZzgxxaZDzkYlk4TgLJAVBhVWSeig1rwg4ebNm1m4JZ1oRxnABGH6yFNOtPGayeUz1OpRHAeeCScxhCqQmNWjgIQB+VymmmFRHAiG8oMnOOkT7hGQQwvhDbTJIbkd9GHCD542NhYnnLTgAHrmpE3OCdSnxTCm5CJGkWZRfNzvra3PktQyKj0qwbzh6frsu7CjoHdjvbu8Or+6vDU77vSUKbSjo7Wx0f7t+thW39Ly5pWnXzj6rtFH3/uu537rc0dnjpxfvuHorAn95MLiA4884sOr/vHJrduOtHV11K5DOt1HumHTWplK6PTuOEOiNTzgPlgDvCEfKDrimYyd9qCLOSampodHXYJhS8biymIsDVrwsJNMu4x94r7hMnoz3NOOYu7PPgdhr95Np1j39o+6bbdMQNPURm9jzSVYAwMmfNbtHDUJIMv9ves9vb7S0bZNHJociLKI2eI93aaGU+2UWT1WAVE5MZKar4pAAKuDj0nCxwb8K13iH4RH8dFSvN7slazYABanAhxEfi0cixbhYFV+Afx3vYMvAVXWKoHfQJbv7Mk8o2ByVX7VoowF4Ty+gUM+ikIlnIH0EWoh2QgTDUQUP9t8kojKJAK/hOEkGgicxBfIcLISFvA/hjn7HCi4NDlTBO277777v/zyf3z69k12Ql2KAVcjGoIC6N90qHiQM8lsqx3M2oHO4URz8KMf+Ibvev833HvytGXV+lBjc9DLdBlqbcUn9OaFJnY31rfW7YD7xje/Zeg7/tj5Cxc+8Qef+a+f//TjPqBvxZ2rU8ND7gZbW15qOkDXzoj26uBo01s4SU+fPvndf/Tb/+DTn9ZJ9A8NTkxMugf1U88983XveedH/8L3/e4v/uInf+n/+8BQ39Zm/caVm4fXutMxV9VH0p7e3Y2B3s3+xubtW43RsdN33PXo/fc+9urFgalZZ3CVy4RXWQMnKhhDxfRmMab0poMsH67v9c20WrQYX9IWHUetVqapWPhhLsp3dsIQWBsBCMpLAHKWi0DyEUiXxZEWD3LiQ96Pfw0fJoZckuQjc49WcgQW5W3AbQ32gLh+KiXBB2bKloKBiOKSA5/bs8JCkPjqNz/NayYZKReXkiWL9CtZDwKTD8jB9PDkRKUTS3R5hiPAgUMQKIh7nmQrzhC+UoBIZR+eySEpJRJ9Iy4QUsXgHgF9s84vCrf6FO80wlsM4tKSQDQ/37/Y/sbabm6ttlb7dtyf2rm+uNjeOrrta8zubs/IUG1i6tjs8RcuPDmztPPmyZO/8ju/13/o0Joh0e2rvs33gaLd+N/57vc89MCDG88+L7X1rW23lfpzJ6Nt3ibiTQSZqbWyZu/Rsouy1TyzpQ7ONZSYnHafxrve8o7Dk5NHxqd8an/+/KtfevapF199ZWNtWSHGva2qRPRcRmgspIs1rBA7JtrNsLXBWn28Z3DCKZq9vcMxJ7vmG04XDzjnZXekuTU60T86vjM6ttjfu+KTfV2dOuDM5e1uoyyAde1Jya+cQoGUEWqMn3jZKD+h1b2AnyiCff8rA1l84Mkk/L2tnGCvcwfLV0TiM81eaio8QAz37NeBcq8QIvCGjiFlfR3Gaw90VznJBP8q6Sri9YFqeFiB90QtWQU0alLZBAJASL3rH+ZEKcNsDkxysjUvlHrAMx3SDASrIl5lvkuCOoBoz+FgKqNIuCTt/TDBNJAvE8GiGK+kLBJGcuJr27Ozs65t+ch3fNfHfu2XzS9vbZhisRxm0wCaXp+MQNeoXHraH0sVtaHWzg/+8e/+/j/63acmp7vtjT6NYsqZnfX+YRWw7quXDQc/+7TX4NpFo7W+2eZU9/ZSvb1wz/jMPd/zx77z69/3n7/4mU8/+fRTT127dK1159HZi75fGR66NrcwNT22UDY0/9m/8Oe+9Zs+8pM/8eMba2vHDx2xD3uw2Tx2V9wSfPeb7nvs5efu+NYPH3vw7v/wv/x/nO88fmtuqL09VR/yuQ6ZHTC4Pdxru2hfY3Dp0oXZw4e/5YMfePLFn3YmVLvVMnnlOwLT5ybyi63uMy2g4zXccPCrSZI0TZRDVUW1e3YcxGMCE07fbEi6yo4B5poNOJKkSpuTkCwBfvWYbKP0DjgVCUJVnSocaOZ8kmEK4L4mEMN/+BxJsIGfdk8gxah4oxLFxYU+LKboNL6YQsILEFJS4piUIIlQPSZOhVklDMJBSx9/ieGGPHnqUSUBmMyFweGnGMKiCo/XNFI9Zmb48HMzjAA+IAhxyLSEAWUwU0cuoGay+8Ik8ZgWX+oxl2dp1AjEV7o+hy/LoNi6Y4vJcR/d6tpG055K4wtbDo737IxbEG68+oUvv/Vr332xf/exKxf6mOPtnTNnT2/M39ZPfPs3f3h2qbU5PbNwc0Ej9eVXZ3On3d0xPelk/egA6j1rFgnGRq470yqOz6rPHj0xcfLYgw8/euLECQ1QGS2vrrlmYHrm0J133OVCxfOXLzifN/o8oofppyO2o7wRMPIxFVsfdlmkMx0p03STdQPrBJTc6N8dHq47Vnd03PTn9lBzzuVb5fgza8N9W64A33FAP2PgDjLakfHUNh1WLiFv8IkBkvgVVeJ4TJeP+ERgn3MCK5/aq/DBgOFY5JNRi4mv2DCaS2EZfoOPkNFNckm/js/rH18XFfoLtyfh68MH+QirWgczlVSpIqoQJVz5IP/dfBUuENKVNGMwFOQx//Za082GIApOxS1l4MdttqVlVXU+U1ftUypUktiT06tdzOiHSw7xBmAWdGf36rUbA42eR7iHH/q7f+dvs+n4xqA/hg9ek83oD7rdzA602Z6edzz80F/5gT9/5uixmZHmRmu515lwR5q1sX5TNKPTs6yvhjCguWxYutpwvFzdpe8r7o1xEOj29qWbm/XN0fGhP/E1H/oT3/Ldv/f4S//kZ/6P3//yi4fGBm7MWZaqLS6smMz/gR/64Q996EM/8bd+fGZ6+vA996wsLr3t0UdcWHbfw2968JE3L7WX7nvX21955vG/9w9/ylhsYGdg/vLcZHd5snFzwplFQ/Wa4c+IjQz10ZFt993Xrly+4/6Hzx4+dKllmUEP4WJj+yd63EFBb7pi059MVMwPW7GNtZi9LjxVR11GxllSqd4sZfAg33dMStq0g2WRek4fPsIsykwCJJPweBAz+YtKYBXwmMz5SQgioGKUd6a9tU/ArCpVKhWaQIpNVIHoAKrEkilKHQAfRpp7YQ5aGk0skgsIhwtXAfMRHIRf8fSIPAgKSfqZMTgpTRrrghLkyRYOl/jJXFQCBZiNzCQ/HkvvB80j5zHf3SQNGH2DVfStOKhPLEgsgFoFLSLpDDY32mTwBtDb7xzBOMnd4r49lDfnF1uLq7N947Vtt4EM1Eab6yenT7/7rc986pMv/84f3PW2u069630NV69shY32sdfXvfOtD913X/uTv2/Jdcl9MnGTVZzPSK3OWnRxcNwd7BjFWu3lmzefv3G10TfyNe9997H77t11b9fg0K1bt7fam25+98rg2BILO24xffjhh31X/MUnH3eb9rZvklWmA0YtxjpOiqf2Wo/dpuqDOVP7NhyA4iKSgZ3ukGvrt7YG3S7pY+bt2pLd3X1qvIXBWl93W2fo5gAltr1rd8Ge8iOJfUuU6gJJ4H4gRqC06LEqr4yCD5IuIXzcjCWqx4MBmPmYBV09xqJNVDGdADMVa7axx8WLxB/mH2T4hvBrDA9EFM4pfsiWEqQAYf5KpiT+Gq2KF0v0ByAeCmHUbXhaLECYzhARJPEPpLkXhBspQsghXizvhS0ofMLwlmF7zEYIwEzh4KcTH8C9j11CHrQB2XeqsSLwBLMiiUIsmyDw3WNUKPWjsSW6v/Hkl596z7vfceTYsSuvvNKcGF+1iVl2UQ03tptDu663rNW+4f43/dB3//H7Z46allnbbg8dmupxQPqUq7lGRmtTpjDVN7200zh33VdsU9DAVsPC8cZCfaxZa4z3TmwObTn4f33jxurytWvveeDh0z/x43/y+7//4nx7esjupf4by5t/48f+2jd98x/5wR/+Sw/cd59DSY1LPvrHv/fRh99893339Q4O3Xai7cjEjdrqiYfe9ud+8id/4rv+uPXgt/cNLbhReXHBYRrDPhAYcRq0byB9B7k02NO7fu3a8Ikz73joofOf+L2R2aZjcR3ybsN3aEgfyIDGbrbQXUwCh9GK4girV4aVwjqAfKQwj1wGGC5WJQsuDaYojxp8mrv0E5nPJT6GnBSx5YMjzHSDeylffkVeSQITmjkfSXDgHrGSOj4giQDoEQfCcIBc8N3nnNlBFdc2ZFzyVXUAQZIvAhKTg4OpbxCVrCFwhWeIniQZmwiikCDHE9wjX8Ig4EhSOMgZFgXukauQ8xEJSJWccLqUjcAZhSEmfHyqFGEmw7T+dLRHFV9RhTAQ/Agre4/xAmRA6ivsTddIaY29i+vr7PjO5ljcyGL2c3T4xDe+75l/9e/vPHXv/KVnF556qXNpCNXA8ODu0tzhnvqPfvSPGQe5KM/xWj6BMbTR0dghZ8XV/p/1XZ8WxG3ArXrPem9dZ+Ba4IHm6NzthRvLSzZ+uxZ14eZtq/Z6LetvPgKy3s/Xso4fPea8xgVTVDEPG6/7BGX0t2xPtZ3BdH+t3jYwLC/sZHUKl0qh8g672mCnx+0bbjXsDrpRbLrrePjYLRFn3PfudPvjxSiWk+O1X6uId4swu7EhNN+HPOkbcqIhXjEYYgYrtqblSDzaUgnrFZwLj0NAwoTHyJ1vL5vLQCr8Cg5i2MWP0X3Bj1T2uKk2agMLRwqw0juBldKVwYje92UgCz2LO2tI+gk/CKnC2Q1UJBmoHhFWtAKqFsIKIpyYWkfg7VfyxKkgVVpVQGVTYyFgiEMSyp4gPSR5+tAgJHKSe0wIP/RfHIZiiZFtoaC8jipps7ZX09wJVF4+S5yfn7vjzjs//4XHv+ej3/sL/+7fXr9wofS0NQMQ98t1FhbtKv7I2972pz7wjfcfOTJ/9fL02aMDJw/pG2JdYL1Tu2YH8e7QiMsw1IwdNz8YGPQ03IzWbxdc/eiQj+FrDtO1Xa2sxA30NCf769cuXz125sTP/uN/8Bf/2o8+d601WN/8u//rj73v6z/0v//jf+hU0ObY2Ac+8IF3ve0dD7/pTa7fsYjl44fRkbF4ea01fv/l547de///61/97I9+55++d6JvfnVjaKPVaPXVVppjq2P9Treo93ZrC6PTExbzahcvPnTH2V9s/8b40Mja0hKZi0GJt3YnlzoLS+WjumJ4onw5uuIoVphiqbmA96wfDXtMXyA1KYCEuUPFBFkKRAgnSyc5QBA4WExoQaoiE0hufGh85AnEP4tYEhxWYpMQDiY2v3iEky4FA/eoCglUnIU5/PcSYBYrSt0g6UVLg48L4pQDI2gSy2yAw8SE+RPIvTeujYbglcRKBbbCHKqUtZIJhEuxkINz+CMRSMFSADixKbMIUwkMk36dGAUCQRJE4qQCIpBwOFXqIGutlamJcdzs+OQYDzMmEFyZxFlmlV8Q5O6vw3TYzuXe4d1m7anLlw73NsZvTzdOj9uh3pnsf/N3fXj5D14Z/tL0l29evLW2bM/C1trK17/l0W/5+q89fuho7YXndxaW2ovzncVlG40X17DzOXG95fao3e66Sf/d2tL27rOXLq/VBzaXlz/28Y8rpRhtFTMWjSTMXOhM9QgbGJvi4rhIGBZsTUfFLI949cMGbP20mUElVUy/QvUn1qodMgXWu7I02NkeckVwe9sJGJs2/nhZZncZ+IYTlP1RQb2nZbUvNjrHPChhlFDho4xxY4pA0t8rTlZcB1EMd6ypxM5Xxj62MzGsVYeR3QbrHZP6MagNXlpN7mHFVasBD/O+7wefgOuX9rqiGLeGMqJT8QrPyqjzASlUsYcrpCuOzMW28vcgkY/XDHcCw9xCkKrYosoq4H0tcVStyG86I6yOz/hKkqXqCkc/qEUUe5J49FCYBY3qlHySKluTRGk3Jl+UV7Io05IlKeW6J6rqyPwkiSXWwIw9UQAIlXi0qcZgXw6ppKV65zgIxJSucscwYCFk7P/hgKJgQ82xHYIAUejxXrXt9t/5paXhsdFbC/Nf/YH3X7l46fKr55av3txwrpRr2TZrD01P/qlv/OYjPf2LCzeG7jy8fXTYVyWbt9ZHfHQYQ46dIX7vfG32iGUDtiA2kLoKwL7BoSFfsdQOjdWG6xsjtZ1Wf3dpsb7ecSrn9GBv+/bcPSeP/dT/8+/89C/90gf/yLe8+V1f9eSLL331e9892Bx/91e9986zd+UY0xUxdv3Ynm0Dxcc/8ZvznZWXX3llY2Hu+973/mNnD3/5/E3Xmg6wQZurA62VgbkFw/9aZ6IxM6KFO+e/5SXg8Im7Tp58+uWXJo6ftGVSG1eRKNMvdeiOs7zsgyhqCS8VGHovvTXVCVMj4ybAtrjxCZVkc9IfnDFJkwguCWj4CFc8HV6NmyhOAAISLtFASssr9aLMxpMQDqCiZBszaciAkFNmcIF0KSSGHoVhioWJnMCoSpZjkQBCg8lOAhFAuEMVYJEFANNhl3bZI3yODYUGTh2QYw9AeYHCHV9hiQmk/YUGnklWHDAEJBZuEMQKg0BIcZGDUxOIVMTCiUpcNA6IA1rAosw9hdK+RKElEKuoFeUaINu/bACQRyQIMYweqxai5p4hPOVLWYGThNKYx1a3da2+faKxfXllufHKhUMzQ0dnpvrHx8bubB5tzNxx+swj8zdcmdtwL9JOd3pqbPrI8VprtXbj1sbiQhyS215bdNtTfZfdX97tbfXU1xs9rfrm0mZ7rr3q4LeObxI0a1YuLLnRsmrJqniMJlx8Od53YVxiA3kMhiM2plSiqAVVsjJDAuRrEAvC6ONTnOKsz/lQhAZ9guGwx4Ubt2Kxl7GJ74KVaVxZ6Q4xe+di42hxVEdLHLW09yGA6QBVGaLko3haDVCpNoZA4B75yU0shyVZyazz4pKKn2hpkhI/fZYEWlQp2SxVNMgkZL/ffo1SYxIZHFDXkh0SZVJIzASHxQvlJCTMYcHhI0zmAqRNPvxIojiBjMoAbRzETGAiV7QHA1mfk1XCM5zCZ5jvMZ2qWPqEkARccjSDv9hEFk6Xj+q5NsIl80SDoM4nPJsPJlgBuhQmCSshPcZMkkPYenVjvl3b9s3YocNHT58+2/iq93zs3/zixQsv7ba2R2q1j77vgyeGRnxqOzjeXzsxu76xvLGw3rStbaFbuza/cGNOZT92+vjS6srE4cONU2e8ncbIZay53tczcsfJ2rj7J41i+nf7tro+p9xUgt3BXotTA+3lxTffd/f/9hP/j3ajcXHu1j13nL3jgQeHR6e8A9+Ym3vxhRcW5hZ85Pv+973/yvkLv/4bv2HXxhee/fLI1IRrsz//pae/6kMf+uS/+LfzPbtTtU0zmBPt1fFVp5MO14bdpOYmPqcxNurtzZ7Nrm8EhnwKQxVMsOQJWEbHlGNTBaX7RC4NCJ9m6JMa+WkYARkNEPpUUrkVh7azjASQQDhYSUDAceAEMip5ooIMrowEYIJwAhCULAcfQjLJIgOBUxVfBnBOnhnrMSEwQdi0ijk4EnB5EQjzIAHJ68FSFBB5Q5DOY+G211ax4xDzRRE9O4YMIxQAQStVscTKJMEzJymTblB1kUNJi0o0UUg8CnAIpVKR58FtEECinRQzLR/SQsJHkr5HhHjy8YcJTmaHRlkAUMkNh3AAcU2EkbbLG30UZ0twrHWVjs0NFYrLR5ab7s4a6W/ttgc2Fifnui5fdF7V4NrW5CMP1uwHdSH12OjZlemw+Bt2cO64gKJmSvLi5Y1z51YWF1sbbbftze9sznsX7akveQPobaz37i5sb99qr95wR4DjstgmErNyMRFMHM8BKKZJ49QfiPUom7F1VSjGwPvQeBZT/UU01TlvrphBX4WJ2u0zJLf8XXeB8LY6sbnWXi8ZNDba9Y1Nj+uSBr2u9w+wrPGxYJQapdEeRWVZp26F06W2Y3C+97awp3yxokKKLJHSf3jMfDkPIMJf6Up1kqgYfhXo9YVpgbwBXvbNBhdSxU9xwjGNlBykX94wQiyvCDoGiHpND/7FLzV6fSmz70m/n3o8pQRBGvyjBEpsNpsUcZ8oZKbMfHyDL92MCNn2q6hAAPch1KVpcOp2arXCJHwIQF4zZ7QaQZmJX3+eVYPUdvLjZ9llKZA5HwWgRVvrePmMF8iIioqWDHpGmkPMoYGIY2pd83n+4rmXXnhx/tVzx0bGfUdyqFb74Jse+cg73j1mu7IDnKdma/OLjbWV7pX5a0+fX3/uSl+bYe9f21x/5TOfGhwdHJuZtmdzxLbE48cGZ6a2+3153uo9PlObGB4cijTdkbazvOWlkmV1GKEhRs+W0X3/0Njo7IlT9dnD3iHU2M8/9tgv//KvPv74E+deeXVsbOKPf9d3GcLPX7/eMzpus8NYo/nsi4+Nb2x+6IGHfrOn1u7zlbsPjzedJ91eHh7pa9ZGrDps+yBgW35ba7udTd/SOLAoVBEvbVtKzdDfyChOpIjPKrenpqayLOgtNcYwUqYPrzwKVBqWDZiVeREGyYIDTBvoEX5iJlutSUBBJ63YRMA8A+ACUueEs75V9SGwi3kUxWUYbSbNnOqTIKMlQKaSnJMbfFTCAtC4aN7IQDN7yUg+JQyIRUUJgoCf+QH3iJHccphwAvhIG5qwADTcOHAOvnDi8z0mf8A0NMkWZmYvRNzvGzNp3YAo+MRgrIkIIWUjLRlwEMhZLHxwMJwnCeSJibHlpQVtQrrpJAoBGvzUF7Y4wPdao1osO62t0bPmI+HbcxPbw4fqvRPnri1dvHZ/a3Pq2JHaocO1AYdGO1vTcfuO69msXV+szS2sX704d+O6odCyi+Tb7bnt7ds7u0s9fSs9Fn53W93txe7G7W5t2f47I2KVsBiJuH0qqosnRRvBvWmfveF9QYrYCIgr1iDzEcPesA0w+ayyiWT2wadvsUxeuDn/q+sG892N+BRToy5b/tVhn/ar1X11+6bXjAuscpvJUT+j+1NU8QE5P6Z1ylqAcIyoy7gaYbSJ4lLVfE98xZSSUW9qOBHU6oOQBII4qCvx+YogwxTj4Jjc/6NjzFUBnTTIVmeDb80mY/fWD0D0NxQUSow3eVMdDD/7okyTs7SEysJFaXI0FHoLV6UrDK3A9oCiMhY8Axlb+X8osOJQ0cpvZpmfQP5rVV21N76RxoGuQhifql1UKSYHWSMrnSccq2So9ma70DQAs0prHZlozHyEfiJ36CHYRwjHZwjDQ4Ozh2aOHTs2PTV768SJpfPnR2vd442+73n/1806S8EHzM48MPV4Y75z7uLCy9cWX706f+7m6kp7rrt2rTY/4/OUxs5yd2d6avQtb3nLwuLN/pGh0/ffs7S+0HSr3slD9eaIIhnWkURF3e2xpaKnbsZ5c2Xlxtr6ieZofWpCXp7+0lO//LH/+kv//pedlXvP3fcdP3Ha4RD/4l/+zPd917efvuPsq9dvDTQGHFzX2O3b3azNuiPJeRi26GkVm9aZbOZo77bW6669GxzYWW3v9A45asKqtXG+8x6cnGByzdQXFWkwoUGfUQbIFzIxY0x7rAExIHDUa4YjFQueOhQwfBRbwamxFF14YqOki/3Jokk/lLzv4CABh8b3mBDkUiwph4ekwhHI1BFymRwc8AwDZqI4CENObhmb5CnDHi2QapGoWVeS5qCgiRq5KbVWFEETDUSscAqBA4aAkuf20tg30FLhACH4YCGmNXtiQgZDYSZYlDAgJomMCc4gUmSUwdnxjAW02LC2ugohOwABDiYmCrISMpl4VMvjZuw4Oi1OfXAD38BwvBwpeze/93R8Othd9+VXt9sxy7fV2d1prFuzGnFJU2up03l2q3P8Vl9zc2u63njmNz91+NjhY3ecHD00sTuKhwnH9ZoN/xfn1xaX5xZu315ZnWut3lxdvd3eXK7bdD/Y6u9r+fxqd2e+017eaK9s19zXZQMS7SlWFTEuHC8FXN4CzEtqoMyX2ICHi3khrsxW7nUSjLAJ97iur3QTZmN1J/yCDBiD3CAJJibQHCYRTByTZwlB1ZeIGbSYVYpVMVNtXccx7uHrVczwbFkpDkm017ClwuonqdO3TVB3wFEBMn489PQoUCWoILD3mEVjXDE0GCOUCk1UPkJO8nxMH2TXPLIU4tt1QsaAPU7HiBuyNqyym7YISJFOyiRRamglyiVPpS8VrCqXzDNpbb6CHwxkjcI4gbgJ8MtpHHuNDaSSM2T7w5zUoxSjM/LLCZTCKbM+nnGoJBQOnv5D0nrjIayTX7WfwFQJJ6k0M20dEkhmMLgXJ4A29gYUAQNqdas0cwei0ROKwIlElGkm0WsqBm+KvXHzlg6f4b7rwfubb777+heeuG+7/56p2c7c3HhzsD4zXnPW5quX15954fbFa3Ot9ReXb5/bXtqtDU5MHn968app06VubW1h9flPfvLt99159+Gj67fnZo8fbfoY0s6F6SkHOMf1qPFtASkta/Xs+s5rYvzMmTuMD1797Od+/Xc/9Zuf+ewXn31h3gcBOz0vv3J+YmxcbdR9/dbv/vab5h/qG51diYPQ+w5Nzt6+fOPysy8PuDrP/Y/ueJYh9sn4bWtj0NdkW87y3fY67EP8zuq6qu5lf91dyrERqMyJU4Kv/st4WbujJcpU+swR6TwaPuoPfGZFV+ozH0IUa5mOziILBReTKCohkbXiPKYThSTtm+aABHNU0spep0KDCUESINCinIoTSAcIkPgCHoUTh4lDiydybOEnN+ZOgIMGmA1TOORIqABpgDLVZMTa4oIjOAQuKbPKVlqQE1sV8QGhyhx9I/HIValKGIfMg1eVtPgSRZIySVqKSDymuZc0AUBc4JAQVIkgSli9TkXwQTgBSSuzIm906V7rHPuMgw2UY6PDcPCHho/khKMY+qPI5U4YIQ2GDJrXYNO0TzSSRn1ua/eTrZubraV3Hj3dnHOU8oYzxkfnR3uaMtnts6S8trW6tLG+vrHQWr61unSrtXJrY9OrY7vf0QsNi8Aru7X5ra0Fl7p4ydCqLYdKohSw2XtGdc9OA2mLe7M/iiRthmxpM1EWnCpg3a3EMRlhB0onktbfG0BMaLLfjooxkRbmILqG2OEZuNETxH6mOFMsuhODBWWzV4cK71zAjf7BCkWBFNEiWfRIBPataiTlr3AOHvG2sL68GrY1lrJh2uVj5ixOs3NJtxaavFiy5MJvDltRjDM5ZDz97GSUcQwoSuPJUlM0SlD5CnAZJVUBBRqXlRwwiEkiSjUIrRWn6EH4HIQYA5c6kz4UAVU6AwmE5ZGPsIJn2OP/pas4w1S7+Gpa1k9RxOYSJypnFFm4ZAvOZU4zLCoDBNCjHxQDHKsklIQlykROCF8jgt/TcMCUaTFlqTTDJVochOCNbzAuHyWmV9qd4b5u3+47732ob6W1ubywttbfnJmsvXJp/bHntucXXz7/6udqazddKnnqxOHxI6Ozh04f//q5ldvT3fVnvvjY526snn/61T+13XNqZGxzq8dsY+x9XjNJPxmTpZ3yErDd8WFxfXxCi124crlfb7G29rM/+7OjR46Rf2xiyu0ZXjl8nej1fmnl9vLilaGJ4b7mipvAenb7z3356Q/cd+9jv/vppguNt3wGtjvgbVxVt4q5uz3o9Re9/XamfV0ls7KmW4jJpXA+jjRqM4KIcsjiQDZk4BLNKmxX6KkYYpUHQtHTnicqi089gSm5fBQNk8vHLCb+QVrhZJ6YaJObtKpSRk5ECGghwOeSicdkWz2m/USSnBOePDERCz/LPZnATAlhxtSNt3VpA8GGConPMqZAVRvLhPFNicVymU+EHAMqGR0mEg5Dfuou0aSX5DgcPnxY7ZR6bhmqZmmqPGCIKrMKn1T4gyQcZxBJwE/BYGLO98iRhHgeIfANSOFrvDv6eOfR1N2f1YzqX/rhUPzgQGyzaPR6IzHKHc93jrXNoyO9dkNvdFd7B4Y3d29d6dR+r7axtPTqu6ZO9nXX+pd7dzrL9o42uu3+Vmuj073Z6Vne3plfX55vry86Sa5eX3Xu5vbO4k53pbuzvFtf6W62iEdsoqUhDAMZX/N6cuSTLJV+wb6c6HfkRRb8lHhT3EZ1smFoDgYFsiNKVUfdR6m58ML6xw5PGYl+TMkGh504JS6SiYpiz5ANO2VnpjVfuzeEtYeYMGL04w2i8GMipMC0m/SJeidu3xdDpuh4/IWgkcaeb2rL69q+CQv4puMSdT91W0qCIpFDjj3XaQ2SX950HpWv02pYv7JwX9qb4pa4suJ0AKoWp1gVIi4CDs4z7C0VkyULS80h4Vz+cPBRLCcvB4HQAJMk0yqk4SUaXyKJ8AY/CSu0KrC3O6gwSmAWKJkFiu6iSzXh5pFGK5fI6HDmy6liEArVxV/p8WNpI9pIsCpCJn5krQxrtC+B1Fiitdtr9COTBROhxIPcIMn4aH5hSRVwwYq2pvGoIy9dvbizuTZuPHR7qba2Omz4f/HK1oXLOwvL7gBg/Z9y6vgfeWttcvbpz7269IXzV9pbjkq/84E73/713zx76dKLn/zsrz338oeHpoePnxnZcDpc3+BWX21nxKhfD9vn/hiiOOBkcKC73jl/5eod45NveuvbHn7wIZd5DU9PTUxO3bg17yaXead17tYnJqdnZhs7Az2f+eLntjYbtfWub17e9Ee+9eInfut4ffCIs6y7GyaXygZkRy46BLc7qN75gkQv4Pqj1rpqw045QsXBkAYooZ9SF+MgeHczaxPWe2P2N4aPqTfK5JgdJpFDwnnMAhIWSN1SI6fmcEjyEZ+qKAXwTDgEj8JYYSLgsaLCIZJ5/bHSEHCDLzkuOSRmpqhkFRwE3GDycWAJBay5IskURXGFh2MpbeBpui5z2AwZ1JhTLbOq7DLrYK+ZIxHMAgiXASZD0Gd/fLzZ65WjFkb2UKk9/PW1jmuqJiemwclkcQXnOADcZVS7CkIfpzpb+4mvzFaMljtbh4/MJg6zLJBvHpWskkhdV9pfdkr41pZHOPl2FhW69NUgouQo88zoi3JpkW31OjnOkUmt2K/pBAQ770dMhbdaKzoaWnPnV/+Ac6K88aw1ep0YOODQVRfzbq843WS33XEFR8OJoFss+3zrs+3t1asX7hwYPbU6MYmid8fFjMPKcbfnamd7cXt3ob2x5O2gVmv39C52t2/XVrdqQ8s1CwCG01YMmDinAVMci+LGVwaf4YryCT+MfnQDpWqyrapliaFoNKx6/LJ68RuGIGw0B4epxjQqVvwvTrFp4zEO3xvqlVd+Uepf2UlU2AUqelRh1eNfnJlUhvRRL7m8ms5vPhU/Pb2Mktd4Ugy+3CEt0ijrUqNiz2JpXlmyEsvA3iMjsEFbB11kB9rGup2FGEafaJY0gPp+wwv7nUudyDYDHB2AMYGXnjLsyFpRpeJ9IWixLA4VJ8in3QxU/lcGkpZv/0GGo/LvO2HJ7T+97ldUciObgLgkZAiEq4QA1XNtxnxohZOxRdIwQClwxsLPR2XYdXJ0GetkWilJpsX3qHrrP8QWgxJbJctXUCxg2eWiXHZ3WyurtGxrm7Bro50eLL163/ahQzO7uoUr17q7xnftnocfqr36ogtVbly9+kz7+lytNvvwyfbhqY9/7g/6X1n+lq/9xr/yp//c5Mnj/+Sf/6Of+ZX/9JF3vOOhd73z0uc+/8X2/OT8uEanyAaHmrXRsdrIkPWGLVdHt5fMMq6/+IrFh3tPnlxfXjED9eEPfu1//PinBodGOlu+n9+aPnZsqG/o1tXr5kiV7hNPfGlr2XtDo3en93/5i3/11M7uk5eeffPYzOFG3ZakRnfNIFbXZZORj/gblkLDZNV9hdPa3Frb7m72+FZm14sOA7Xh8xyzyoyaBc6eOHGXo7QcWKRWaZ7emB2zCAwU08m8KIVQY9n4nuWIisvSwYTOYaINfR7oA4QzCbSiODgx6CzjGFE4pBMFmTXzCM6B5EBZgClDog6A4wDTI5fWjyQEID+X3MCTIfyUJ/EbM1MTU5MTN2/OqZ8TY83FxfkYWtTqDj5jKCXKUIyOxo6ds2fvNIWiI5WuPoKtsNzmDcnh2kw9pcuv+9aaw66vcBH1FgPT3dhaMFfrkMuuLxS8jRLL3huzLtsuhp4aH9sa3l6av+2S6hNHj3g7u3btmmso5CqyFOfgsyPeE6MJ6RDdY0hrh2enM1fk660PTI5Txagj/vkga2s78/Mrx48fV4RkXnWUQp95nlKttZRGwxw0Zy+KF4EyS+LTwmGXhNr9du361RPHTkzVp+fnSb21srKqT2iM13tHG1uLsW3+0MSp9ZXFue7l3Y3Nx1ZXX95ojc5tDbhldHBwZKDfcTrrbecrxMGf5US3hkq6bmUpTHm/cYLtni799vZteOzNyJlxisQUV9QS3+JqH70xN6WoWMPeRvRHCDqddR2udixHNOP1JeuZw0p3LFCHM9aPk66j9nFRYtGkY0++zaC20TjpuVwRqEWr7ipgTLxyGFl3iAWweEAi0v/k7zEHR4HJqMe0zWsucTzHGCFsfzBO0x+jSumLi05HCcKIniXGr9GV7YtZUg1U/7z6HDiioCRT0kemhe4NtgqYF2dqR8Z317ud9bV9aPkN3rFmEN1bmRFKK0la3X8UebkGzshA3yHsM28DRGMdj50yRS6gIJSIyqOylS5mABPSALLQDbtYrDXsO1Ec/iU3ew0VZ3IkSsykpGj7Q7bIWFFPFihkHIQxcWu6oVIMR/r6SKs+A+LDZ4DAOXW4asDQyGQ6ZcvOrTLiwwoCJxCZ9QJVcrq6tAoSSqhvt9c31lqx+TsUVRbVtAhLQ8ZeSMzlDjXHraKySi4ANj8z6gNDH5EMTR0/cbJ27rwK4gTD6zvdq7WdpVrtaO/oM7//dG1+/S/9yA//7b/9d7tDg+u7W1/71T//fR/d+Ni//5Vvfe9XjZ45/cyFi0OLFzt922+fGI4PwW4O1w5NmZNb66z262wcFDHQbxzRunJt+PiJ+urqB9/znvFm46r7iscne4cHl5YWuvW+Q+78Ghx59aXLDW99W7W3nDn+Ez/0F0eWVn/h//2/Ha/tHumrjfa7HHi4s91t2fTjGN3eHnMMPghu73RbnS3W5+r68np/35Kv4mcPsxjarHGfbUhaHI35zsBrrrCipxbmnro8KgVqOXv2rDGuKPpMuEJRkbwwddxMUF6zrEa5mFJYMYE3R4aRSwjEfiiFZdF4cXFBLIX7nDPK0cgpBuO7HV9Vl/0ymEudoVcBrGkZubNVopwSH86x7nGo48DI6IhlVLKxe32D8QFWY6Bx5NgRu5Vyw5IF/aXFJaV55HhY1IsXL6pCsgnfxg7CC0uo/qHv/TNC8/PzUpqZmSEr7sqeuKIlLEBETLUTmZETieEoD+AqDRKK4MPEColsZ2ZAilE29baBrbT5aCFntSYHTHqBAEI1S0srKRz+pAeUhHSJRx78NRV6QMIXe/RoXEjEeYeVFhJRMEXJBVYKUrpZElRgRCOsLOGk2ASQLioaJ56EhCkXuZwqRTdTr62sXr58cX1llR0zS2Pyff7mXMwCst01XR2r5hxCX1U1YgRnxLprcpYViLu9/VfO9rMbUg9YArWAaXqqv29kuEk8Loq1jDtoJh8ToiqkPsWSltIENixI4HtgrBE9ASNSDCs4tBh/F3OgAAdUcR1psTgZKypscrho/8lKYA8n7PjrgBC4MPT7rjLiQVXMd0KgJYpActuneI0hYSrgwYAOpiI52PHEtND/sCvdCVnKWw1hyl9KpT7QKr0wqIqbYmkBRBsccbbr/l64yihHGZXKpg5njaV8XarhtMlj1kop86s9SIZBSlYNqCAWW+FIXcvVFSIy9iGSwnIhxxAZypFNeghI2X/DjCs8zUfE5WzWhBxxb1o+piZUvJi6dNKcIRdT1efF0Yp0jBtiBB/9jLe/Mm1XwqMjTbGxEZ+VjwkmtxYbVMSokzmhUYTyFVWhDAktcmoXaj4fXN2jpSEXRbduTl699s3dsbcN+MBlxqDOzs0vPffcE0+/8Mr2+sXBgWsjjWeWVu57+5t++7/8Bjtuc7OVrOPTbHLtoTvvvnz+4je85eHulSuDtxbeMTz6NSfOPnjq9MDZU7Uj07XBHrMF/Z1N3blM2YfXHR7sO3ak58zZztT0O//odz517XqtOdno699eXbe7XxdNvW7BVqvvm5l52+lTMxudpeeed6XM+w4fOtVsmp0xj9QpR0eMjI6PuxxsqNnXP7I5MbV8ePbKxMQzfT0vO/haTejvPzw1s7W2tuEjzbWW9mpA5iv99Y3OsFeUIZfMh/VIS+KRUx9SV+oMlyoCX5ifYzdUkjRucEQxI8ayLBg+FO6R03ncunULEDL9Y8JXxyBgjlwUVkwZ3yP9O1qGGDHyLy98CJOhR7J5zIam0oLr7Vhph/qJkhygooSDDzt2/fp10rLhMLOIiRpdgmd2kNUjCrNILCyIcuPGDcQqB8OKAIS4ILhLFbJHLJALSw9OQggnkK1O2LlmeMqGTHpEwqDThRx6JCWegBz5pGXJPV+1JGTqBi3meqbUDjQiZWGAEFuek5tcCOAJmS5OnjxJleZ/JJc9FlFxRsuHQyRooqRrQUIXSOZz584lRCl6jZD6mqkJH7M3h8empnv6+oeN9Hd2F2/PTR07TP1hdt2itRZbzIQ1AJcYDRXLrvDoxpqSxi0tZ49oot5qGYXy2HBPathLi5ZabLHXhCcDBwyHcrJ+gIMQhvBDI0PFEL22FUEHAA4Ix0Q+B58rPDX8cqFEgiKKNYjiCbziSzJpwt/vBqDnI5wwx9Vj4hQKwRA1UyzhpAEUiLF/5YQPPFXgg4HE/7/GO0jzh4YjO2XQXYSAkinHydllMG6Cox33aBZdRNbcjBa7lrU6umKUyb+nzPIOodpkiUTdC4sfx7Aa6aj3fGZdE6KINduRY2bFnvK9L2+jGOx3Hxpq+/bCR4JM9sCg0mf+QexU0WGg1DnE8gujz8TvuM9q0Ixg7Enc3dGp9O96dMfijrEqyb0HO5yQxYSvg4GpolKdPJvMKr2Ilzw1Coq1lphM9G07S68i6Qe8MBExr5BxC5eMERY/jdM96UQddl3Epg0yHR2RKZTdztpEa22ktT0x5t4RJzrgYW7FN4ONznDjpdXtG7vrV1Zs7u/7lvd98KknnvgX/+pfPfvC883xiYHeoR/9kb/6Yz/2Yz/4gz/81Csv3jE8zDrMra9eX7x9eHT0+PR4rTlkiXm7tdrT2nAlvPer2vDWwEyjtrheG18dnD16ambmuSvXu+ur3YGROJ63vLPK22lHi+5sn/JefenSrbnb47XafQN9pycnToyNtebnl91IHEeZYOnkFSf31lds8DO86++71W4tb/c7y12ZLa2u17u3tDF7Qw0ErHgMjzYNCka2u2a3vFWxZoyJOsJiUouiNyJkbRhTlcEjtWuPDCYgZEBVCDCtkyhZ8sh2gTBlTI0iML2hUYtCgomqhblURDE7HhGK4pKb2omzaoKEwxC5xk42yAjJAxN/ZlCA0UsbnkKq0lixgQw9i8e6So6hS4OJFYYN1lA0aTxLHhcEuos777yT6Kyn9CRg4C8gSZgG3RihgqC3QMJaZVZTSsNwEuBGgueee44lTXPvUVQ6HLAiH+aZOhW8/PLL99xzXwrNlz1mnWDSRSuJDGTOqYAAaMkmF5SIhABk5igCvlTA4XByS1QzUVJMdZMKAswLFy5IC77kBIyG+FI0Zh8dG7t5e05DPXL6hNdirVRjZgIYC1OHPmvRMu2cW22tgEdZDfistswYMBfGQipKTABtGftjGEejaKhD8RpkptoKoV15saW+DJllJxUoayQRTsnFcnIdkzpl5cq0nygQcOPB7B09MiWo0kEQKCff7SEnXCrpkieqPYLyE9dUxfR/WYwoiSZCWJO0+H4OBBAVQDB5QyAfg9XrHD4BqV4jUoz0/7tMXsfh/+zBm8TebqYq3QxIoIxaIokYLkcGQwrSWHAD1YNSV8KFtfNYBY2sRnr85MPXUJ0l6ax835Q2erfsJrHNZMsEY+9Wn/INtl7ZISqs4dFRYfXUgHuzrw1TOFqGuhTmWzPWyFWASIMUa7UVdSM+sDZ/aEQx6GDXuDaRL2x1yjEEq+1NK0PDQ83h5shm7CaLboBzgxE/Hs0htNbUZxVJ/2B4rS9R/axuUkO8lVqV99XvVndgyK1eYURWXcZihBfDuYaORgNxClt/uzXSbtVbnaExn3/EwSGO0nRNkh0LK50Wm97u947Sa4PNkZnpf/SP/tGZs2d/7Ef/73//7//Uv/2l//jJ3/nkX/6rf+XkqcPXLt08OzOBuaH7amettb5aW2/XvKbbj7PaqS+37VjbdTzchk08g93e5drYYmNzy54w55OzIbWtZfVRyzdcmtitnarVTo5NmiayhHDv0NB9h2YO9fcfG286/G3VQFPvpY/u73U2uobiNqWNAW9MPcs9PWYqbOazqziKx2vQxuZIo2943AIfxZjvXbEs6W1J9rN10B7Lww5oR7TxBjOipGiSthEilzs+fHD4olg5sYDMJusPmHYPAqBHyBCkxZeWQHYShw4dgpPGlnlh04wzEkIbKQYOeqaklRbktMBMPElYA1GJjLmEUKUwgLoKphtDaIGDEguU6oowqEeOAZLtrEO0wMiymxglL2Nzk0oQiMtc4o4vH5NEkIBMcjhAIxaZZEY4KmVPDw6A0Dwy37QDmQrIQCwCSJRTNWVP0lz2YGhTd/ox3TIjDtn7Cm6+XuHLHqCjsUkCkwA4Y5ICSBEcUAArtPoAYSQQcCADIP3KoFHbyJAdbF4Z+70BuDRm8fY8Fd350IPWMFgOrcJrqToy0p0KhtalrPSux3Re0166nToh9YQm7AwyZMFojnOzZCrB97hxVGcMJeONSsYRCgTS/vKOR/JgLsBpmG7GYOghqwfwdSAU6r9YDRum/AZ+OWomFhKKEwvIIeHQBrviAJMETey4Lw6QDBmVsfvo8fuaUS+m62CUZDyaaUkgDhFIoAFkeQHJqH2E+JXH9BP/QJYjX//jThYoYc8FS0Pj+InbckpxFy3svSIojUyOPmMpI3smvUMMdAtxCl+xi1e+MOHiXRjk4p542wjMWJws6w7Kkbb813fE8rdlqAoekLhXkmZ8QWpYY1CiJsir/4SO2mhCulR7+w6j25BadhL8MkRR15Qd5mUFPyf3StFLVbGSVJNRneLRkfeluD3iKVYN1AQZfYbeG6p3x56WO+IGTA2Zv15ZXmT6SeSVtL3R4btyKLbEtDsDTtF1uQvFuH1lNVZzvKMcG6jf7NvtGx10fO7C8sLlq5f+2Pd+761r1z/3yc86QQvFP/5n//TOu88ODN+0JfpIv/MW7cn0GusLgC2HkVja6d/Y8pWWvci0Kd3ahl09LpzcqBmk3bg5ap4qLjiK3QM+R54cGDpmn89q69RGR1c4NtB3yM1Lu9unJsaOHD9565WXVlvLK74zGPCJS9yCum4OTXKDfXpIp7CsGKe6FM+Uvu+/enpHBgZtI3GelB0uRuPrm6Z/Il9HJg8pCs0zyqLT0eTpkPYOzcyyDGurLcoURde+HGIlNrdiXxDdZoumf/gQWAx9Q1pUo2+CeHz11VcZMTZQy2JgERqqImF84EMGwUcSChFcITJcwhp4POBsQqmvb6zZZPLZTGmtuMikXj9x7Bi2T37xi0bbyCHH4jcxig20C56p9MkUVmjLNoB4X7E3oHH+/HlGHC9208A/JWORzZ+w13JO9MoQyCdDD6g/eOc73ynKCwWIANFZRsYUFQdTljx66zEdhptpFmzpUA71GcSFlppKPjKIM4tJGKzECtMafI4M0JCDyyHV0xqS5ABIlZQLRyalZepJdZep7JlwjmLb2cHTG4wiwVmYnKQCkREccCYYNKx0EtZphaO6m63qGzjiJE7VZtes8ZhaZCa20cO8utxVfCwSbtiFNjzUWYxTlR1kSObaYEyjjQ4bzkdpxC6G8uJCOQLd4Y3t9U3X1HHEwwEyVsqePkGIAA0kOzCvtLFNSa9mH3d5kVRp1MUkQUU2YTKnE/YKYGRrc0xMF4SZcxaQWYGyS2EfQn6vzNlhaG7EYAiYtZxTFjb7rM2EqSumMeZ3wuiFnFXSbwgT4DWIHJVMxajb0CzqcTGbB8xriOqlIE2v2GKLI0dhdf7/8FV9VHvu9Z0TvYTElatiY25nn+ogzuuwC1nZqJkh+WeyDWyKHxuK6bYsd+9BmC//7IAzcDZyp3t6D/wyfeNuCFqP7SeWHsu+uFgnMpNrRdH+swETfQaPXiP2OoyRkdGlNaNYloU1N4/c62KT5aVFJNFHlL6NryL1DOw68Z487Zh2tdxwoCK5j9oWA03V4f61XW8JrbZzenoHLXP19Uvam26siJi09IrQ2WjtbvbubIx3O94V1KMNLxXNPlcuDowMnzl0dGe788Tt+Y3NtdGxkefOvTg5M/lr//nXPvuJP7hy89aAut7bMzk7c+XKFc0nXmeXbMOJDQg+B4gelFqMg3Uv7Q3313uljo/6ZLw+FBczOkPlxq2xWm2GrdLv7TjhPw4QOtTTc8T+uY327NjIiZkpY+yH7ryrefpU5+VXLl2/cVOTVsNK1+g+M7u7rJmwgqvmw4x8G/3WuJe7nXhPLxNonVbLMh9BB0YG+kYm9ROxUqKTWFmlIk1PQauV2ZRAKBOETdMw0xCxMLY4QtBsOQ2Hi5q8u5sD+WzmHuHwkQsgjwa/PzMBjlYUCItk5IqKhfQoQwyXQMZCI4ZHJg4mSxWlX6pxcoDMiLGNxCCt+iA5JgJD1tLUDjSmlRMFKNB44IEHWM80f+wgwxd9RTHTWJvhEoWFrEpPwBgZ5OrVqxLDQgICxBXO7ElDWAKkFIAf1XptTSVIgYSxEuYgEJQKqFuYch2ELNuAUkdCHmiyLYpP1MwqDvqJU6dOEQBQ9khFSC8WZEYLmJolnnzijxwCKrqzGoOQ6QeHaepfVyEMQmBJkFknN7+0OD484zxCm1t9JOwc2tMnm96gIgsbG+ODY2b+yu7ZTcIL49k/PDISzcUx6IOM5th4lIFZGkWinRrvk4oalaLesj40vF5bjfF7GePHkmE5pAVOsdcxBueiVsXOExo1Qz2kRaWh13IsLBqLwefoPyrsfpXNwNaG+8eY1TCvDLowg+62+thxVIw4iLFeTC6VNwYPkZzBZ0wIlD1CKlPXVJVdgzEA4avFJpWE9xPcs5RSTAiftqtwyFQcscNeRUcVfCpfZPSy4JW9j4ac3ML8R/B/xMc6XBCGKxxKVxMPBYQNZYcM4SLhfeSE7Ps5Q1XFlsfArCDeK7CJDi26ATZND+9P0DgDprKTJ/McztrQPQSYSaI7k++OUogdbmEIu+4giZMJyhfaasWueRrD6w2nZsc2AkvjOOkq2MeNTefYb+swtoY2+PYLqUhqd+CV87vUc7XdyH99LeavVWP5U3+E7bWJ9jg4ANk+gq3+AXP6krIqYLO2m97VaTVBrQDZioN5NpyGu7S5uti32ROrpbbqdGpjPQPTI4NjzaOnTnRvrQ8szL/St/yYg02a259+4vPveOStGun5m7ckV7ZB1D74wQ/+wr/7NxMDPUPORt9yV52z4HrHGnHcrJcAgrS88ZvCMsMzMOQFYNv+7J2hRnezffUq4FHd5sCI3S8TXuOt/LVbE7WeicHGpIvde3uao6N3nDzePH3aa8Xnnn/2htW+bs2slJqkKLwXW5Lf7G2s2tPqK83e+oqdLM5j96bsn8uY4GmZVtG9IWodFl303w4o6iya+2ITtGj2Z3gk3pz0fhb5FDUTgTL6+hhMbrc7MbcDSPMshoxzpcn2GEwzShTClBmDQhNmJxUZfGhamXrIyBSieASPnrIUmdQTDoiWg6x6CKTBFNbEIAuQFlvJ3XvvvSyzhCBDUxkERCU5HyYqAdJmbAx4mUURjBr5WE+P8mBSBZ5Kg1HWJARYi4LGLksYBCMJMKnWDBhfVpjcuiByo2JVX3jhBcNtwmGLBK2sMvGJJoyKlOAgxgsqLaVYWiAYxenQmGx6QSshPuaklZBYVMS7dOmSIT+4YiCwLFSEaDGnJrRyzrn3ApNiSWODkFhATOQIMs6iJE0wPQHCifGJM3ec1Sk+8cQTy4uLBLOoynCglSLaNVdab2wMDY/o83G+OXfTWiBVY5KT+wxua6MVb1s6xd44H0lx6d9sPPZxLEXlGENaNEAeTkCWyUCHSiELIuqHVz9X1iuy9nq8v5de1idsBm4kQRUWbb8DQCUsv8StOgBGn6G3P0QndbADyB0j8NU8Q0/pEkN2+MIkCb7FYZtS7T2WzQyZcuULZA1OnH25IoMhSRj/+HSNH8ayOAllA+IHvPhB6AMJLlTyP+THfHrRJCaF5o0eg1r4Rx8qTh9azHOgpdGPQKkzCRGOuH0X3VS4oLZqmw/pxwJx1DV89ABKVUsLwePlKo7lDv5cUAU8OZV+N0bGZblBhM61E1dH7/FUBPoKtmbH0SEx7aMXcMMuBUV37hNcIxt7lo30DUGw7oQt0Ja1OGlpEWq1eqJid3dySLjN7JrlBA89dNmvvvHh5m3LofW6ic0bV68pYk0b1dp2Z36rZYpncXtzcq3dvzzo4/W+2YlJY6xbnbnbS3f3jC3VFtrTsy8s3nz+y099w4e+6X//h3/vZ3/+/+hubnsF/93/9ju24r/7HW/tn5/bqc0Z0Y/3DozqAOzRtMxg6bK1aqrfxZEjxkqN3fWt9kB3xCkf86111WBkpBn799dbRvOWn+maYhc6W8fvOGFOZOLsmcnTp5748pOvvPSyG5CuO6fR5ByzaFe65YoYLQ3YbLfoE/7BfrPsK1s7ToCIvZ5lXeTCKy8P2WTpyoB6jEE7+gmvAgMDc/Nz8fnZ1BQ1glORmpwOIQh7RZksITvDZ3DpWUvRRsRy2e4EKF8hUmPaSQJlQYBrrSwbCNsIyB4ylR6ZFAu5qEAgYKWxS44YmHCiAPmSg8w3rseBXeKba1G2hGFsERIbCXxRhCewAGlFEQBbdrv+jd/3/Rhp0iwaXmaEyEREUzeX7Xy8ePHMmTPeDFg3YTM5wjjKOUakxAXrzCcIs8XHgfSWf9llUbglJntNxYRLtTLTWU3pGhWVUYE6SfuZK4kilyWYOEMgMSYElgeOXX7ooYdUZfgkkQvMJYEbhRJV0noyWaMacqK9desGIPmxxU0YOT1KAr4khAmAT64i6HyggWMyPjElvOyiYPujjOGK7VPTjI6RIXF7sMEUpUtdct4lqcLMpPY5NT4hieZw5GLUnqKxMao2qjo0PQtZmXFyRHiySeX06dMvvfQSvSlarGQQyV133fXKqy/rxImtALFK/VjHU6Ie7TCRd6yyUCiEMHZ1mIOaW5hnHbzs21Ix1BwxxnSpjEkAIzEfAsaYzbGJdmPv6DNiZ4LsyCA+mCggYihTYXVIBaABLgSwVaR8xgJOfiULjhwhclLxAUlVKt+ud0lhLnGSGzQZxwcy4cWCoIrYmDCIXhCQH4Pm8irkiBYDEFUcmqL3TSfrakoudr1Ak2Kp9KhCgNJmpLjnQIs88bjXAb3WW2TH4P4dhDEuLIabJBLiyltaICda+onDP+iY+L3l6IPQ/XDV6+wD4rcIsd/fENFzeduL16OyoTMn5aLvgoWFn/x+QrcTPU90MUXPUQfojcNWiaQJE7e4sowosx9FWJzCUnaqihwrdxVAExC+tnij29fuv7r682/90P0LnaNjg4fuP1H71vfW7L/8xONXn7/w2S9++Qu1+aszzRv9O1evGTjW7vyqR6ePnfzS559YW15R80+Mjf6F7/jOx/7Tr961uXNivf3u8WOP3nVXzZbu3c3b2+1b+iqt1o1du91DZ4+3++utvvrbPvh1v/Cx//Kvf+Vj8c5rgcz7gtGxRdTe3aFGbXZ0ZNy6XNMmftcDbGhiGrLvuVzdanfSdt/g7tCwQxzdS+YC4d7ZmamHHzjv66XewfrgyLJPfxqDbjzebK+PDw5srq04+SgUpeqqNn19Q0Mjbh62m4O6UoG0p3axe6wECBXpALREdYyWNE+jP1ZOdU3Ly6dbo2Fq1Ir5igM3GgbnPFI1tppwNi4QrLIma2LUDo6zsmORzOm/+OKLkmMAAXFAiC2j8aY3vYls1hWMmHUbzAsTrREx9CoqfGKn2dS4cJaEtNgxZpPALIwBd3RcjIsEsskpeNKoFfIpjEAabChppC3nht6iKEK2QaJJlC0rzCVCFgErvSJFwIFPC7gJkEAGKJEjCjQ84SNHCDkzn/mUQz0Q/uZqSAgfJiYyTySZR6t7kO3Pfe5zdEQMqUCTVcqlYpg0gidJZM0bGRMm875lkyPkSpSmYHrM7HikGtoQS8iwxb49GR4ZHRymVubS7k8bPknVHBvH1tkGwmZ64vuRbUds1ob7h8ym2GDQV+sddTGdW6d3AX0BMWaIc3h6liRWnyyrXTl/cbhvYPzwqDl5Q3jXT5rMkTXzk3gyHAS48567nV9ocYpv4Zf2Pvv5z+mGiEd7MUVTHMwoMpu8Sz1ze6qCp1WRZnVZfwrBXF+7VSwmckmw+NMT04PHj8sabQekHBRjXyLz6a3FR1L5lmCGyiIhTVoJ0NMIx0dCtjaWF0kfUFM+cmLgICwgCWEKpNgEKkQlCE7tIJFHQ93isuwAs/hIXjIHEEqgEUoDSRIBWpK1VgkkJhKx+DCYfQND8fGY0bLVYHPwcYiFGw/012GQ0w94vMaVbw/S6kZqew4ea6pW8IE8Vvwl543FKkaihiEVX5yhewb4CQyTHCz2kKvYDFSEB+Fh1ffJ0clU5edrHLUixHGfrW7bl5KxrhJ8Sh8QHMp7G22bygM0diYKZYcO49RVL4mxmoEy7sdAbq+QzT0D/WZCLG67EDiKXu/XXqkN7440+z/56gt33fvmueu3pjaONFxHet+dzbtv9d5cODNztH27fuv2/OHD448+eub21sZvfPbJrZ4nJ5oj7eW1t957//d927dfePyxzaVlHelEbeTI5HRteDSmgHZj4+xCa62z1aMDGJoevdVaW3WJ5KGpy0tLv/vYY8uk1AwtQsDecXxErdWNvUDzrdXh7a3mFivpWFJfTFrpKHOgvQ33kamY5uR7h4bdAjZx8szYiWM3GGITsxpYc3jr1sLV85cM6U6xLTvbDgb2fSnr0d9szi0sLxmYdnfHjxy6cOWqqsi8aEcMgoaTVlEzURWFKVOU9qh6q4qahrqtthtfQmadGEP1nL3SMLUvJYMhX6VSpeEgVKkQsjbKxaPkwqSUL5k8AiLkbIxkA7HCPFsWNMNZYj///PPagjctlfJTn/oUqd761rdKF08k0mLQotWX5oOn5BhVURAMTJlHtDEnwwjKhspBXPMeHvGSBxJjgbuETbNAkCobSgUElQAECUDQk+gPiMvOQsYNB2iqIIMODifzzMdfj8JAUwpxxdIsBPwlx5gg4fCXTwkx3PjIKojuRAAh9QnrabygUBalkE2KCizNmXzpqPCUIz0kJwkqQCtpSuHE4gmehJigFUvd4DCpaXFuzkyO92qZNcNqfQzOyuLCzMyh7u1YVDApO9Qccp5+XxwJHRtnm2NDM4dnvFmvLa3O37ztdePEkeMvvPD8SBna205g7GZ4oAe2OjG/vMqkRgvULGMePNZjTVQ+/uQTYxPj9oEZ/RmwT8xOW5RbWlmemor9uGQjrZ7GG6YtCN6eFloLKTlDZ/PSVJnN01u3Wmvsga+drbHJqaLxsi3jyDc2t0aao9Mzow0X5pU6anKKyaVbtnlwfYRvispYyIy/5XhmngZ0LO3+te0VuyqiX9cZkDBMDkNrq3gZ+1sBUGQBVFplDhpOZNB5jeX7ZzGcoudUGMWt2WDISV3R5Gy6KB2dVQPdBfzYQ1N6L92kjdvCciRF2174wmyW70pyfSGWXCNJU9zyi5CJNNrXT7CiOmuEZTwdfUI4Nbb8RiAMcUys+6U25R/T6CAFJ+gjw8UQl3wUBoVN2uU9RskO5/3A638z2dfDgnOkxeGcgYDl/2C1L2URADyYxwrDfiIUF6fhyWbMJpUoVcpGNpuUy5uDdZ1ALiR+HfrGl4J9ZabjS3h7o71qTUIEJXR3R8fHPr9w6Wt27znb23NrfnnWlSmHZxtve2jthVcYzVMTR84sbTx5c6l/aPreu04evu/+663Vge0+W/FPzx558vesDnz60f6xM4Mjd45NHz18rNbvwgwrD51lI+v1Tp9hvY8Pur0b3frlhYUH77v3mYuXHr90c7VkSbln3vXk6pbVklp7x7Jbf0t7NHsWL4Tp1mypsuxh8anW6VmrjQ2srd6a69tsX15dvLK8uNvTd9d9D5w6c5cP8W9eu37h1Vff/MC9YyMjt+duPvnkk9btZo4cmxyfwura5St6Hqchra5obYuHZqcZAZWzNti/vhajSZaarT9yeBbymEtN2q6bXNYk1fOszEwc68EQsWbqc9YrAQjRKMrsDbvhUT0HZ3XTasNEC4GFFNAoILiXjck9cfQYkmeeeQbO/fff/zXvea/XgpnJKQhL8/EN7Dve+jYpvvT8C7gpfaZAc9CLIwfBCkN7lL3lW+0/dfwEBMbTYDHeAKDKEssloMmxm4BMjMSy9ZJAv0H6SG9pSQIwSamtYuQRfppmfPQEmOAmNvfX6yQA6cicEmTisunyQyY44BQnLTxBrl27QR3gFMH3EsSCyxuHECvp0rgUWZ/UKfGkS+nWcnVubL3k9M+cAsMHIaCkdVTWyeCTFhNU4HDwJIAsSxEaSThA+L7jHOxvOIxBA5cvi1WU0F5r8b0fhABbXbcIISzvqwOmeijw8txFuZienDk0O+stFZ9DMzMkwVwq3i/ZVgLbh9Q3FB86SM5Ee7ybQ3I8+uDg3ffeQ0XgYmlef0xREpFBj0rUI2QiQQAHocaoqRiUmT7k84sLvjfWo8ivd1ULX7FgwL7Xaz5tf+HllwxkpmZnpALHdz4GnTKKAzuAszcFrOLZkS/lPVfSyFUoBl7USOn++zZizocYdCiDXD4qI1pCAhM3LmpULFfE0CGbBKBSyGKFxiEHFIAMTfUs4OiWyuPeRinVOpRW1jkzRbFITIJhaUy77Upy01t22sS3tWUinX2wIhvfslqu9T9m0e3UZEoMM3OGnR8G0srAdmipLMHGlD79lC7CCgMx0MYkTE7IZI9BSBixzFt6BuHESZOa4YM+eGIe9GXhK13qYU8hoZI9F4oOa5+g0Hk6wP1g9RuQ6BK0qTxtsByvDRq5wKTkNN6P0HolECo3XMbmpe3N9eW2NH773HN/9sxD18wgXZ8/fnOudvfZt370O1pPX5u7dPM9D799bP7KcxcufPrCqwuqytT4UM/Q1lr7wm7dXNGpvubXv/9r3zVzaNr1d5s7ln/Z/1udlQUXJ4XwdtONXFtYGm7OOj92a2jk05/7zEr5aMBLAwMUeSjdgHGAfh5QN9AT5/Tm21I0GUjgnLJ25YXiWl5YuLbqS4WdwdkxbdzXc1cvXFpfjXd9m+qao0MvPP/MzIQB8khYNUshjitbM420tTB/e0YGxsdZMMjGl+qnYTifGYm2s7OjgQtH9Y7Be8zkqMBUl7YRprrtkVM/SQUzrasmrxy1XEygpVPb4cDEk01j6JgLAhBbc9bfqOoYsid33303ZHB8tCysoOHGSUIDhMw+SAs3VIwnfMisB6MnO14awCUEaJ4KZiNNpEoGxGQQJfsxlPDAZV4Uk01cBHfccUeYxfI2wEQSFwmZSEDENEZpUpkkw3Dp0csrr7yClWyDyIyRKdHlgbiYSwih8b4XiAceeFDXBGh6RzbomtAgHuHLKvGkRTx9Dyp5E5Aicy+H8kwYguEgCdmWbioLsly8+urLtCyMSslJgvweOWIg9K5Ds7oQtPMugWmOTE6MWRZdWFpcWJqXLktvFfzatSuHjx4Zn5yJ98TbC0hUArbx+tUbxJidPuSLM+qSWXCSLC0tEoPF9JUA+zY1M0N1dluPDg17Y0rlDJTpdWGjBQ3bOg7xYo9oX5+9RTIja9dvXGNuh0aGbS1kgBSKNozEujmtCoBER73tHKboMMwdObjCLib9k8G9Qbp932LZ/cOtFW8VJnNW1loxsePi4pVlu+LILM04mrrHMbomB8PmDjdHBVrr8bKooEd2o55IZmx0osy0hEGHpoijNjtfoXRRcECIwakzpmXMZTOOgenVvs/MVyxXCA8Oa4qx2iwmBCiqkA/TcGaU0ALyS22P9oOWJdalZKIyXtKwbrmmA3FcnM/7vT849To2BDpVtMHEW0IQ7PMyIsxYszAqlCklnKPDiV4h+jClCRarA/oYiYGz/NSt00h7K4bxgsDFjzeFMFUR3vPD2gc8yMTsj+H/z8OwCJguE9p7KHwxK8wLs5gdMkSPePk54LJLiOmtHObLT0lUXmCVYX4IyRVfjgkPJbYH4CX50lUEsoJxycqGTfr9A39w+9rX33Hf4d7a5qvnBz/z+PSbH8KrcXTGCK7RHD41cPLIfXfdv7zwwrlzLy/cmuhj57fsNLr7nqKyFDEAAFLfSURBVEfvPHH06z/8DS6JrD32pdpLrzqibXXbEWGdJe+JZeenHXW3Ohv9rfWRY8e/dO787z3xJcN7H235eHrXqStyEZuKbE0K1fTsNOL2ixBeFTLqr/IeEwOmLzf07yQfaHi9NoHofdfWRlP/ZptMZrIFjkI1a+v1+eq1i5q8kZDzNa5cu7my3B6fmsSZtVFvVWAm5bOf/ayKxxCriiZMWDPaBFcPVTxTnCakvXBr4GkemR2Yqg8+ORpDwiBAVj/ZHDZB8xEAhCMhJBzkrNtJDl/tCfylZckxg8kHiVE1O3nPPfek7WVekLOxkM3wGC6zSNGmyp4ffAijOUuI9fA2g63hIFMPJ9rUt/65H6Y43EmWRhy2R1qQJRiSx0I4x5hMNmvLhjKmZGUxSYA1tNRUWmf44MLMulgOJgtFfWglgZaIpAHRcXm0mgFuhonQHqlJrIB0iSuTxKAmimOayUwXppLy3QJcQHFSROY530gwpBQQ+ReFanp6kkisPPHsmpK6LoSceiY4kgOREB8tG2uj3JhDnbox20OT4LFZuddKTseeHBMOFlO1LLjIKeHw7BGiKkv6lBZNIrk9f6t0rruUJjkzPSasyMy4Ly+3GHcpyg4FIqQo3CiQfjySTZTSwodC1uNMvVinVQpm6uVIvoh9+uQpPkwQeCW5mgVuFYzp94h5Ko1PNjoRkJBCIbYioBCyGW1FqRdrSwBonABHSImKolKCqWfITVLZOkI2Eso4aWEKKHFhThRCQCTc1OQ4OQWwJW06sTIFiFBA3skGjUot0me+pIVP0sJHiDNfWCqoCMD5vCmEYS3CoMX21jLxEzcDxxi+dD8JYaE5+vQRVEqYORXGB0OxfPy5zCC4PipMEs7FBFXvDWFuyzg6IcLRgRCwmNawtcIH/DDQ5V3hoC/FOGexCJYCpAx8PSf0MNP7rnQ2UNnvMnIv8KAqkstSWvw9dKQJLysc+zxe+61kSVVE56JCOqOvDK93+7ebm90/ceTU+0+ddX7D0TtOT9x7p8N1z97xUO1Nb6k98fivfeI3NgdjOFVfXHvhqecsIpy95x6b8Zvjo9/27R+ZfM+7a88/V/vdT69++TkaX1hbPbd0+8ruZstp5dsja3ZkTg7f2u2cefvDv/rp3/n8uQvGods+0orvtLyxkMUIwYJFqLxRs7UmGkuUQumjFapSUj3iI9/YXBbHJQ0Pm3AdYvmGm8O3mazWxuzhI2fvuBvawsLt9fbq4dmZuds3VDnDquHhyaiM9QHjqv7hXt8qMzKc5sDIMu5ma1kMnGWQXaIiRgkr2yIXFpaUmLDkNA365zxqcVqZaqMhYKWKAqJlVxlATpSWrsKDq/Axjpybg8ky4K9JyiGb7lhWsYnMphEAEDkcDR9biaqWmMiLtszCJENNFXM+npk0Wi1XX8LygEDGKtbrZAwvXDgEoBoesrSS3jugSlsCgIxv9oQgkGVbW9Ur4CBMaLISAlBPBYdRJiJMepE3SdALl7mCLHWCyjA/kQ32pci4g+BJ10QitFhGCgQchxSGqBJVSGLh2KwJ4b777tMf0I6uMtVKBmlhZS5LMTzyyCMIdTn4wJRHEqYSCI+/1OVXLTI5v9gKa0VlDg3VqJeXVzsb7aPHj9lXg8SHM1MuObKCWs4eMbh26sPUzHTjdh9bePnqFckZwvtKngCsxPSOpe+OpV0DB6pXdHSFf1YR2sgKRLAonvIGp7BlVhKAsoCPPIriZHx2LdZIVDhrBr5UFECoX7W0YkeRKB1AVhScZQqEooQJJjkFwfrjQ0UC5vqLnGEkQxTGVESpkZNqbdnbY44JkNx24SRDkqDK0hcWkCLmgCFlWRYGwS8bj+xQeEoVqivbmaClKgpFmHsc5BQCuy98kD/OIFwmIQpzTkZiCsCkd9yn4JQGhiKmbyzUMw8+Lc3JGX4Zme+4M0RymVbKXNpBbG4GxBxPGuMzqbEFqGTTq4c3BknqKPiRYRjFL6PT/fcDEOnnBMvrfYbtK+GQHSZXiPb4CSdjmzTIky547jkfacY8SUoVmP4Xn+0jdkyeFLn2/NI8y6tPJAK78ukp3vgAqdSrVU/M18m27q6vMbi5vTxQr33xxqUj/X131IfWXrnS1+2dfOB+7/61oZ7aux/5tve/rbYw//ynP7v11IWP/pkPONl/Z2Rova82derI5Ie+rnbzWvfll27cvt5ZX+lZa7MmvpFt9XSXLNoMDLXs8hxsLG7tzp17+amLF7Rn2/TjvHSqoFrdQ8yneQvw6YQOwdGKett4KfQOKevxOhf57Hp5comJqiVKUa6vrTBGp08ei91+W6s3Ll9dvL2oeoyMjUjh6rXLziFT1iwv1c7MHDYxefnipcZwz/ikhVzLmbEzwrsuNJM9p0+f0vpUWpsH2XTdDTjGbLHpQQ2K0TC+pkABxaSdajdKCQQaWy8ATU1mNJg7UTQMRw2H75MmzRZ3aIDKjlHVNifLfhPZ0TSYONWysn7EY9AJoKNiMPFhYLMOo1WrycC4CcujAa6+R6KSJgMbLlb2o5g5VoNlx1H/QAj+u971Lj45ONLLM7EkLzMQUmiMpCclonOAHtl9IuKGyoQM8mztMo9cluBnT8AWs85Sh0AymDIvPyQ2y8Q8mYAjGOtAUHZZQJQ+INNCBUIqVFYXSCu3b3vb26Si6wI0wMeNkOQhG1phC+OoOOQPPvigCkEjZqhkSph4kiYJU6hUrly9PDk5bumXeLLWWov9s15IDx09pm0Ix5ikVlOiKgfzdfrESYZCYcThrjtbk5PTbD1uXmBwpt5bczeJZHuRzUi6Nh8jH5o9TDbkxJZN3GCSROoe0YoFLKUUIwtMAOmWPoVJ5XAjEFFIqEtG6Ir+KQSrsYmJVBEfQ3wyQLf0j4m0qFQWlKw6weEZWSsjA0nAx0emBOgNiYTwITAI3ZppNwbSnzV2+yUAKJaElKPFMrtepDQYFgTh4tLK2HjTXK2e0mhd5+TAauelmn5wqsygI8EsRbLqoQm7faIDqOoGkCxkToUJQ04QKeIsDNIcGyXYupMYTBMzCQwk8xizHDH9HVY/SoxNie7KzFB92AYqWFab5VuLZVIjBQ9l9TcmmXwLbxOTTOk8xQUhJsWgy2OO/dOgG5KCpB9WqlSPSO8rnEylpT/owyJiDHnLywM/6IpP43KaDkzpcAbB5aVUKUV2OGxRceRUUeQibCOXrPSFesCQPUmCKt8qwENPXJFZV+fX/Jf3N5+H1TZ72rs7GtVjVy6dfuBt6yudnXNX7zp5Z+3SldrSfO2OI7XpsZ3ezv3f8NW7E4c3by2fevBuH7nUH76/duZk7flna9evvvr8s525W77m6qwv31pxvnO33be7vNtjA/726Nh1hm986BOf+YNlfbTlSqZegdGQriDqwm7pyEkUCuHLOVnjS+uoeRpFHLOo2qoJGhccH8BaUPB46dIV9d48jwHJxmZ3cmZKjbh48drYJDsQKmUHFJQTpy29jTSHu/UYkqtLjAwriRW7Qas2bbMnPpu1u51W1TSNwjkf/PheodguJIyJlhI8y0ZMsVkiolhwyWn+Wqh2qgC0NRBt35wEI64l4sNMM7Y50g0Sp2THF8sdPJlEOSKecFZ4bZzp0waZPuQMPWTNH3NCGv6y+/KCUBSbgMrwWhIspNca6da/5y/+aOZHVjU2MiGWPXKTHirJzCtxmrTsyQCrDZlxhxDGrpwgRAiZlJIoaHKImy6rMhyyTXT8CUSnsk0CAmGIFpw9kqhs8DHhsoWjwplPAExIK//woUmajiglC4A8qOiU+iSBuSiP+KMVBYEjAM6JCQdnOLgxbfpwnGUQmrzI+9T0pBSpNctMciHYRthHSpdHzDkMQcT6BEaOyLTWbnXaPkXcm16QBWiSU2bCDLV6QxIduroCToYsCDJjC40A0R7LiEDqkHHWm6sfWUaERCVrmSNsQURxqCSXVKZ+MoNVKvSmaGRZKVA4TLRyLeDDIrE4kIEPwqfwzKCECEkqDGU2NgjZgrUa7xPUmL6o4FP2QtCJR3CE+HhnsBoh4HAEtjiWKba3RgaHTRSsLC6HPTPToW2X8bmBKqejevzxxyWlvumlcCOwwhVFJDmSEBlkRBJKMgbD5eVA0mIRIpHT1FLip3L45jiVLHOh82b0DfTLkkB8YODtXAfADpcuXH5jVzrMzIs3DKYnLrl0uqcbZbtbNsiW3HRB8itrls1biDZBElSSzvJNGYjEieITmDBwuLHmKARwOswsiAWn3shYCYNzuKF1RESyhYMwtS2sEJMk0OJzjZimdONEn+NrGcIyNZfIOEm9uL1eZO+hSGWRs91pW7lXjMNb3dla7f3Nox+8477GzfnTszNn7jx7+L5TtTedqd13rHZ4zDk8tZ7pWs+wkozDHtbWa1evdT//hVeeeHLDZyhugFqcX1xtLVl20tx2u7frjYWR6Y2RcZ81Xr598/LKLafc2dkWtx4Z+A8Ox6bVsn2L4PYmy743QR/e6pXNF5LTBhoqkVnV1TeP2o6sqQlUUaqnLy37V9fXTp08I+qVV87Z0XTq1AlGiYocqMINuhZ8YMBGkHVbkkyG28fZiglSzMH1AbTE+qtm2Vi0QYZC3YuKt7M9WT5agi95KfIlpOw0XrVUA4TGHGGSbcfggXnEXAPU6EgOOUu8qquQCQaucmrs0pJxfKSCoVjM2X2yQZCiasBcpOWUL/whINRe5BSc9WbK9AcS0qCk65EthVZ/33d8ryzhroXIoZSIKyJTok1OkpVGyI04dcECElQ+pSQgA1gLyBVyrGhQd0Q4j8L4iCKi5PiQkeiFdE3yABNOvqdAw4fcgJjb3gMnZSMtjQAiIScVZC/HfuEmLJOZN0Jy5IcpOQUDocoOHE4qkmD3FQ9NWfFWuvp5+fUqQ0JFlZVJxyA5j7Jvgoj24YR2yhw9OAVS/fTEJDlxEyubOJAWXDnBFCUAExBD80iSs3kZPtlkn5xilT2IABwcaAMhUcHNjpMHOUz4mTU89fAQoKU8uEGDY7ABTRg8CxEJ5th6hE/yTBcyHHcgJB84XFLB5KBxChGHhLNgjKAZFwJkvU84yUGUBVaqoFJASCSE284UK72asHxxGFIUTJJwKQY+Uo9UywfPuMEhbbaK5E8JIKISjtDwyDKCfgkEuSQwz+zIL1WTRBRWpM3kjBBUTgyRJwQ+UaUMMwQufRh8j6RSZ6DRJwciDCdpYQogT+apCl0IhyEgkZDzUZEHMicMIRPiQyMzODS+sNjAKzNRyRMJNCoNnjFU23OVMJ4RekyHVgAfw/quc3G29hYqUzNi4Vep5GOQpEJyMKZPVj7djdHd2ula7c19U99090MzW9vj/b1jhydm33zHzFvuqt15uNYcrY0crw1N1Hwr8MxzN5/40po99Wvtvs3uKy++4J3Pcc03O2s3Om5L3W7Xa63BocXh6Vsb3Tkfr2z41NkutaFdhRjVJCqVbxIMtn2LY/NiNDYa7omSJV7qmdipE1nQWDhwRSO/4LpkjX/2cCwxqoc0xnwhUXOyDsBRA/kgYq0TeG/sH4xz89UKdp95MfIwY4EKB1pVcLjxTRLYofD0009TrjDjwJSxQiyvUbYmr3SSs7TEqnsQ7Aixj0bWcpI5x2FMMyskCWJnWciCAHIpyhFhmFm5ZqPQZuXEkJzkz3JkZnMKCHIUXxlA45OVGR9igKvqEsJEWO7qH/4Tf06Ig0FKTrSE5RaxzgBZalye6ejZZ5818QSNCSaTtIXBIavcOELGQargSGRDkhAYWRpBlY0wm4REKYJxhyMhGYPvEaZsYAWBj0TRElIqMgaZhGTDU6vGU35IBa6rwNnLGhKPaLECQSvMee0gnkccuEwxqwuGhKFQH9wiUVrwCUMVUiGeqqAAFK2XFVEyxcZhovzIqQhpwzFtlJD9k1hAzEHScBBJr4mDjOhIjCLxNwaQKDS5IK0wZGnpC8VKUdGShz4lxJAQvkLGCk9R5CGDKFWZDjPXIMaEHsVmpZF3CJIgdsqf1VpREkx5Xbt6FTeE2OIGIlPI5QhPLlXHlwVjSuNfbzlIPMom5mTDH0l2ADjLjrTwkahPAZIWPpGgwZccyy7wlY5qbHzGkM6pAomykJyMA2KlXEglj2iN9n1Tb/wuLZJw8htKKH1h6gEJfECx6pgJMHywpWFCwgEnlQBMcA43+ALRARezC5LyA0KTSmYkkxObEEAzEsmKeJBpQAACVnAEQqf7S+4wqV1aiZyYVViKnEdonADXacdoFwluJOESLpBohWifyuH4DCjDWDIoChW0zEWh3qMKPvJlL63b2K0LsP6DsRXHYXIj27WZWu2bj5892xg52jcwaCpsuHf82PShu08emj061h3uzK8tX7/hEkXDJe/Lq7fnr9+66ZTm21vtK+utK521mz6X6W9sDfVtDg7Pb9Zvr20srccdjwNefSfHvLY7yt+2C+Z1q+Ncwu5Yc1wH4IsTBt15i96xWAPlpV6pDALMaCot8yJfVCpM2zqA6dkZ2aHw7B5omIr4mlvqjU8hVDE6PuHrGJdQqgNqfta3LBFmnUnBVn1TYbJq6dJUcq//+CMXhURCppGVrLavoqZuJYFKW3jTm95MbAGNBRAJTDjCfDJXxSctWQOBiT9WosgAgorA0pIFZ+2okzoVxgGmwatOSBJZK2DCr8wXKhZStdfYMSdGdACyKjFyZ9chgkz6FtjEAqcCiQGyj5TIYUoUYpGAWAgzq7SAFSeAXJY4OJhIDJzJxpNA/GzGzC4cedDfkltrxw1/yPhnaWWGiYSKHvlkFpBVYZhkS2FYTFoweMccnKiokItVZhyrKi1wCBzCzDj7AkhryMmTVKIgS0JFYnFE4alcVTiiMp0eZZ8Y+BAphuH1Hn2MbMqvRWYQHOSRAGTL9i936o0Ur16/9vDDDxub0ZXswIGMpwAFYktybLPmCZDBSJg8EKBJVBRJFBlRE4J5qfYxppMdW4zok/OYNZ5KkWBCcoQyBQ0Qf0AdDuaEgYNVZp9CIIvNYiWtR1HILbB4AxAFKBUiZZ3DwWNyACQSZ8J8sC/GCiApLT6S42QEAiZIcMOctPjfKFdT6H6885IQIQRFQBWyTDB84AMKE08l9umaJLCKFPfH1/DpH091QGYzUQiSoDD4xMYKk1DW/kcq0HAWm0ngSQCpcKIgcxCEISRQWABJZsdIPRHAUxiYHBmgCaQq4EOASW/CMIUTQQArsqUT5VEu+JIypV/4RZUgDB85RzmZIp9LJlYo9k8WBtirIajkK4XHHHLl+4C667x+dyvGTl3HK6gEbsDbHGrXjtVqDzcnH5k9PuNg2vaaPqI5NjI9MnZH8/B4T7+BjC05SkX1mLOhY2n+Zqd9dW35fJv131odHFodaCz5PGWrO+cGMSsxsfhdjxPvbAC2jc338MXK21dhtm1k0Gn/DcsH5HT9oSjVg94Uk9qrBFknPoWAUCz5s3KyptagWEbt0YjKkAu+aoBW66NPitI2NUbaUMccKeGzhImpaaUgLQNqdh9D2mYcVFFAJFm+mNhuBKIqVwXqVQBbLVcqooikIDQlVF4LmOm5uXkrjqJMxaiN5uIZQ8yZFKmQHFtFoFBUSLIZ/EFQ8005EFIrIA/krHhikw/jKcuSlk0mnvwy5VEgawVaTDKbgJhzMlL/tu//i0JSJStHAsCUgzZljDTyQERAqtT2hKmbuBBwlAyX0stnOsi4hXZKT4iDcypwpgUIrHB2X5TOCmPikcWEjDO2hBbgyy0gnFQoewqNwPH+VY4VyqJir2UPMlbwpcul8IBKnXhSB9H10TvxqJUTQIihRG2tlRH8pesRoZxiSGA8OWFAUbgpA5hKiAOBKQusjMsjiQQBT7UHXN4JgFwW8NcrkE3ulJA5RLWKtZAiNPxJyJEKDs2nVuWU8DjgZoSLCYYIQaqoRMAWOW6UjxtgvDWX9i+MLScgR8STfRWI6ihELtRakDOnT+Msm3CSFW7CuGEuORzIRjAQ4aHyCV7KD46PwvIoSr0nBuaoQJCEJO43LgIkf2hZT2QNeZYmNFmTHN/5IcghI08OgDQAAp8MAilSPuo08AdPscXij1BAQYuiOqrGkwa8u6SiICOXLlbpwCGQIbUnUQ4TmoGZknjEEC0nmx4FxOJAQj4mrdV1TJIVZJCsHtmGC+leAaXMmQpa6dK/R3A8CZySCKMShSfHyGR+wasosRJCK4CctB7xtEKysrSYikVFYAi4UQipMlGpVM4BsNsr3kh6Wj0+GNYBWHSOknWS88BWbdo+i/7mPZMzJ4bHRq3HeqfpbAzXdmfG3S0/5kiJaGBO1jSc7+29ZJHH6mBvY6W/b7G353Z351ZnzUGgJvuNCRxR1TPQp0NzKxvr7+QSM/KaT2wW2Nj0Vu0lzmcoOokTtgi667bMOUNQpgpUS5QXOs/iIKC8cwKnz5554aUXZVMfEM2z7PVAlRlHC4e0HrVimnW3n4kgYb0FhjDTp0Oa5DwqawnRkg5AuZBG7U3+BoWagLlr5g5PnDnKJzA9IzS5iwRbpaC8JCQWZtb8zAVMyUkIWxCYhFRG4IAKXdaolgwyXnUA7I+kwfVtGFIOzvKLFpUw4RHihtDjXkbe9uFvJYc4iTHuWBAFF1IKYMrUQqA7TOHItlQ1A3kQSz554BhWIrIdmWQ2e7FYsXSQSY+DVCGwNYkgM2wQkwEodcrSlTGU4JJIVpjIgyRwIABuHvUEkpMZmPKDA2n1T9jiI3uZBARZgw8NDl/fQwasMASXBZoC93IDkioTAMeHwFQmLRDkGi1u9Iu5Q+iogsB8k0UKDAl8tsH3VoDk5wQw5zLjfPmFhoka40YngwSSZ3mIFUCFG316pD3ZpD1wScu7OfrMLFXLnSi54GDKFFUQmMYgCwuonfDpDQQJbopYRoghFkRYioRXrKQ11KJ2tCBZB5Q+TE0FkMMnXabLSGe6JOSkhSqzICH4kgAnpzB4Zy26FrSYgAgjlwQEqXPglS/g4FmCiZWFzKNwSWpvsAIHh4QI++YdBwyFKZATJV1SJRq4cFYM2tjc6mTpZCyRlA5foUsIubKARmBhUVxQlcEaJrSNoSSQCEtarDCeHsGNYZGAQOPjQ7asLSmzdA9mGRUcyFxIX14H4YMnE1Q4CMsFZ3IxkZMJfUoOMjGIhzy1wQc0LjeAMFJURU1f5AFzhtjrcSx+3Fxt4dqXE6b1+MI+R+x3M7nupKe22m13tuPzLNL5mMuNLv3btTHT37Xe473N2f6hicbAcF+Py+7ws/MOlbc452+aAfR3c8eusOF2o3+huzPnG+BafM9lhXZmsqnfl7QvFtVmo3vFbyOq9RoNxKX2OoD4gDGWhWNYMDI+5lNK95chsWBu5z6E5dUVi/B2lFmkN00kX8JyZIrVHy2xDDRgAK5uM80gRsp8TS9rO51TKWty9NhJ+7kpnPY4NUfbly5yNVCAQ4hKtTSAO1U+EVCIOakCjkQBaaqKQKtBqCEwMorJozdCdUMhsqggDIgmI/WsBmTghHFASId8aHwkfAWqWrJy6idaIjkTAoldpFoH2aQOJ5MgTNYHWRDAB8OqRkklEnvvt30PE0AICZCPD4MThYAKRMkJuymK1vCSKhXQkTwQ1CNRsMOdQ8iXJclr/MKZB3Dy4cwXFiUbmGfzZlLxASGDdJHLg54gIfpVScshQoaJJHrULEWF+qu/+quobO3HOSbW9yfTUwzIGPLhSNT8vkc5UvaEwZ94MiU7fNvFOFEe4Rut68xTYJpNA0RdCpvRl31oyoPkcLLYHJWHZ5YraSkBWioNOZHIr0KApMZ83yshMuCDiVTAUzBwkogCITNuodWyWTPDSkcUEnCcZcojJpwAB818NjTKFMYNjjC1UzifDvEnGP2gIrniqdIChK+IQTDxKL/wVSbIqV7WjLR4QpMpaKLkGiG1IKRzvjABIDgsFQIIVsQWBsfTY1ZWPggEQM42OAqUllTkVCxFIYQACLOSSlgsIyYWEC3mqDxmFmQfFXLZFCAMIU1wZkNKMcA55LSXtKk0wEwOsKh2b04slZAk8i4t+HxJEAYfi35SpxDJSQIcGvwUBia05CwMjj/JkUgFXBY8Ug5aUR7BPWYsCMaoko9YJBhCxl+AE8uBiPLehNAVkAylbS+5l4m51wEcOXSY0Wc6GTUQfnQPNoe281AgLKIedrYdK71VVmLjMnczVr1bXey8GE7VBibtW+vv2sFPDmI7yJA97LgITHPuG3DJzPp2nbhb5nwag67YcxJDfXdzbX3ZjP+gO7ItQLpoU8ol75p/eQPY6LeyZlClQ7LQuLnuq3Vfs+sAHLJCckvEk9NTdl6R2Zftvq4ndn4nH7lwSfihQ8wFeRx+oC5p1Kq9GqvcxaoB2NKPsA7p8tUb+Ot7tA6lpg3SbRYQKo/wRWVZMOtLxex6VGRc1nPWGf/QfnkvyYamAhQLEOWLIQTlpYagAsEcsrTknZ8BBa22IISf8wdEgi85NkQT5uMAWdMwpGPcIGCLCpowTGwFyJA1UxS22eTJUP/In/4BacOjgpJuNB4YuMgMGk6sbONIZeyXsFYNjpcKDZ9eUno5EdDGUm7qzkkxzJFTsVj4OEhbuhDwBIEvPxLCUG5lDESWdN2ADC6cyjgmE9ISMvJQvi4mkl6Kmhho3YAilIvMSBaYnsa4O1ewkVABzVYcZJYk3j/ISY8wLSToVwlDWvkiD2QBJUQAPFMMgskXbeApdfvwCZbSUgtusok5KmrJjKuOIMKypvWnXZMRECJhYqJMQjlUoQpZoxYpypexK1byRTDyZIWAAwGflJNgySqKrJxq4hECASAII6cHtDAVAc60IUxg2fMoL2KhoeI8YsUnMDn5+MhykTxOnuJILl+YiBWlnlA4BFHJEIdQnS1+ZYICPogwEtxQUWM6CpRWOlNqKYAoyDAxSSrZhyktTiwOnGVCDLMIcACB7BEyYZRLPmKiQJVCqQNhFsWmVlMeCcHEVhRyfHDwiCcEvjAcLuWEnFWRMICYo6JqVhcmziUcOMiJIe8QUKUTlhCnvYgteYqOBDLMpPWIc6oRnxxJ6NNDiPKaC1laEHAgVTJMJqIExHpZ0txJb6SKnb1EXhiNdyz0MZbgek5wfslhZHdzvUPiYVbFuZzxXuAT3cZ2f30pDPBqzNsrwfbG1uq6o8Epy/idLZEgTtE3+XOViisP3aHpWy1nmkzPjDTHjfO9fs0eMVPR0aPIkWG7uSqjnVSRauMoj7iQUgdg0b7k1DUa5Bw1BnUa89KST3UNoU+cOjV386YuThM1NmHOVDWfNC4sLXmP13wUhzaiiBW3AOOQex8qgy516vKxnwG6dwi6gkzt8RYyMGB6AAf2AYRTbbICKAIzxVoQfLWU2JCxUhwQ+Cq/5JQme0L58K0kauC4kUqjU/q4IdHcsj4rPgF8yENaVPSAPya4oYVpJQBhho1QkRuPEgCyWN0PSVBlRYoi7OmxnsF6oGJLJZHL1LEj5rt/+K9KT2J0Ic9SyrqOXq3lMAXhMs8QIPMxTXWQlWoAM8+ynfhi8ZSerOIDTULSziT4XGpZBqiGcNl4kGPOpUaQsyzkkf/MIR83PMFRUbHHFMYjbjjQAkkoF5qOGis6UpxoqRUQDrGVBJGIoTD0HCCoUhVyBFmD9DYHiJxyMSQ2ZMLQOD7kREjXqIhhT5I6R1r7w0DM0EkOISr4eUeCTUqY48BEah3kz9pAcgnJiABVkBBVNmb5EiU59lIqxKZtsSQERAIC8w2lAFMvkZpMZWJLKiJhjgQCckCycVEBip3NdJObpHFAQmDZF5acHKGCgIlHTJDgmXKCUwLZPHJi4dOzsKMjBEThk5lFSDb8AWUKE04UYTjbPwgpafi0pLEJeJQEHAyJTV3yrjIoF5qnz5QqK5vUMVfB8EdVEUrF3LJcSLRycDicsywIxuEDjRiaHAHEwk/5Mwk4lICzR5JkjsgAvr4WbQpyJFd6LDhcpgiCrSg45ORgSksAubyIxTDLNxOVZQFCgnPQFIpHgnmkmVS4UgbncE5NEhtzV4EZaRnjj08aX/c4LtB7gKlIkPJRXsMkTL4HxHcMtd3R6SlD71qr47jOESP7nnrL9ofW8vDM5MLG2tWbV300fMQX/vWe1fnFfmcAO7/WooI6ubWpZ8CZJo3rndvvS3VfIngnoA/F4VJ7Iq1vtnz9wV6TzdtSSNINK0Zml7761Mtsj0fVAB84N2/PeVcw4WOMnxNW+iPhPO2KGN5jvA0YxcuFc67MHOSkK1XQT2pPVdHSJaHIaBhnWqJkCF5DdFtSzIJWBGKpN0uEAFFIpbYnK28tik9YXqBBwApbVImQtUVBKzVhHQB8aFU9zNJESyQyqOQZC43xNBg1yZP2mqhqDrZp8VIS5DCzAqj/TBw+AuRXXbUOeYGJVivgkFO+fAHCiQ6AWHKerNUnHAlHO1CxBhEAyfQIl/mssioge1LKKGhUgARaKLSYFQE4IFKBRjse5Ray5CADCnASShnISoZkxZcBJBUmfECScwKoMCctNBBsJYGDdDmtQpR2pRJIIoECyQ0tCGHwTwEwJANWUqEjrORCFJxKSymwZiY5bDHhaPyxL3xBn+FsCcJTPT7SJYARB7iCVHhKSP8EKIrR0n9gLlF8UOmoJQQZRCrY4gOTGGHFytAbEGex5CEAyfnJRIBLWghsdkpCJx5lCh/4HuU685iKAsQWf2hYJR+B1JJHsUiy9CFzMDEHSQeZE5Y6KiQeBVK9gEqBoZE0HPLjgGdKKwyhMAhVgGeU7wA8whelFAgsy9QuAAEcIbYCVEQYzmyyiSMXIRicOjWa7fCtMj7xXW45wye/3U3fAqNzgthUKovhMZn1E+qSfot5ZUnYL+ZVQRtWG69ZxzOI0dr1AeSUERLYTFWOy8ZHmfHFJk9TH4a3JLECyzc6Zk8dHhD58smYmQ3Kto/KeLh8Rey6nsmZaQcAkN9Jv/yJ0TGHlDlwyf29vhtkTF3gw3cUPogcmT+R37wcVNjR96MT4y72AnF6eaz8msmpu5k4Wpn5eyVCmdQuwKlsKpgaK6AmcDQsT+pJ79DAzdWYWR6wOLva7ll30YXWHksCLfagr+4elU2nRThNc2uzf6dngvms920SbG1tu2eX8m0NMnfk4BMdZjm+L/o5JtulxIoUfHS8qVtRfBJV38njCzAlG6Y83heJEI5Nz2rpjGaSc0gSIi9Zc1QDEHwQklkYmrqnO1VGSsSblPKy5UM5euNRjkowOhYrhaX0xUb+iqXKqo5nslWvMpDpklOigVNsRYhdqmimK6wVq654p5BEol5V1EcFAriBa+9wANPoC8tLyo9zIkhFbYeDMwEgcMKKSRQcYRD8kYTG9k6l3FtVrvhggjNM7Y54ZOBHGxSCpFTERV7LFCdUAbwAheGkxj2mlNIG4UNDizs5OED4UcZl8ZpeGNBMGHI6aEpU8pwwHYHTiEfMMUSFDw4pQymgGGZmDjMDKTA+VIOKAxGGBgEhHwRbOAg5ZpckHM5ZYMKSlimP7DIBsuqg5bLM4GCiR5UESWCCg6T5FkDOJVtRb3nrW70rnL9wgbF2lHhE6V1MqSm8Yo4FYuO/pcIymtAVyyyx0QrAl5DUBcgvudQP2QRkwaxkZidxUMmCsDqEkD7FpmLBceAqZeKW6hUQS12iZAR+ZoRmfHgmiiMAJyofZTDFIwaVCit0hsPBRxLVNUMG5LRHYZUxl6/KgaJhLyVqqGYXqBFWCMkUlj+rkZgTQ+osveMHMlNF2hh8gNMPHBaNKZQjR1uzm+p/GHY13zEGyrS/z+F8zfEJisVRd2284KpOr0v6mXZtXWac4aO54Ei4aDFKJq4Nd6KAfY76vjD9cVaEi5Ompi0txl3Qu20T0NpZGPZety9EvRduWEmN8woIgkHv5PSM9UY5hFM4xCHSMtheC9uHANcthjhg/jmlNWb/NDCKill1EjgTI6aSKc4Kq9bsEHtHazjectvwWY2xDd4LhjM4pW+MCw8VC9vXZcgc2RQbZizTBpeB/rN33en7ZJBc7JUqHEWpyGziI4wRemO31hy0atvb3ti8cu16lDfX29BlZguq+7K3s7rrVi5I7uEdKTfo2vpCgVsbrmmcHnKW0s7q/PJ2vTM+OOqyI5ccb/aP9Q2Z7nGzfX/fcL+zPfRyFh68ILmXIcb+hiAqvzvoMVbbh+KtRQ0kG+26QNtros4dhG4haM32gKqK6vnYROzL5FSVUihh8VUJVTCuAXYrpF5e9nZ2LXWbCzDSKl24Ci2tYbl2fwwBqMAideikpw7iXUFGlB1JLJuVKh0jEuVFJG3WQCobAr+qk1oxRUU9Kk7lF0WFRE1bAZyVOep2edOVR+2O/IkGgfDRjsrIRiuQNGCmxewgx4p1Km0rTC7m2XKlRSEcDtE6ihFjb5mCfHeUin4CT7QpiVTSVGq8WEVyKHEkHyTNLJPBEbt0SQzbo9x6lKRHkiEkLloBiUEQkBKeUZP2e2YBcIQwObRZZhU5VgU90OgCB8g4k4/EyVPSGYiyL6nDoYhMlI8ztqk7EnrLSwkxoQWYJoKoBn+ccUtJpOsReUoLKJXkjwShVHTUgGgpV1hslh+IFOkaeeqXWg3nOZqUEHzI+Cs/ehdrzodswpJDAscyA27wpSVAWrGKnPweyYMcJHPnNcIoQr4AcSZbig2CXKZIksAMSEIFFMaWnyQKF2cc8OQAEZJQWDY1fRw4YQ5nTioyJYl0co2Ek3fHCkBACyc5eEQoNvnwq1hpVQ1DOB1MCImMMIG4ccJKQR0gvKzQJ+FhAtKJWPCKRFim2MTkMFB+iCqz8ImqakJOQWU+BFP4DiIqTnIggVDGB+yCAD/420lSPl+QBG6OJchChECeFMlslx4luvGSfdzEcgw6KhrEXBZe408/JbPgApHZkl9VUz3R8iVBV7JJ5/Y+YxKJlt5aLfdHLVGlWzHrJePqEluPRG6Es4UTQFSy4gubGyGhyZM4Z7t0e2A+lTKfL4rxNcBn8xhK2mYUG0PxltZ1+fDw4PDkkH6MBog0MT0ZE5ibO144+kZG+4bGhnpj72bXLE9zbLCv4Yst4xzv4LTXGB7SX3Y7O7pQLchkrlvbnNXMIhuDpJCyE4IZkQzGuHhxcVmdJA/NaGirTizv6TVBNNrXJKFsBlu3u+/G676M0090dfH2FhrVndc3rRbsmC+ScTh8L+gk14g8UhrOHFzAujeZqA0NUzoyGAyim4+3kAwkJCXkI0xrg4+kpcvBBEclLDlhmAkHVC6A6oDGSAlJTkfgJpkVmTAEMqDCExwOZAHkCD2KEoaT9V8UTNkRW+p7bGtkOqpWI8t4Yp6x0CAjyR6FhJEYXjiKQAZDtEdcSAmPrqu04VBWWpNMEi0hYIqiI8Ih56SHiYA6KvlKp6luBUovqKBhiBVCEHABIpEMLQ4CSFKJciJATeqKjEFTR2WYXgRgYsgHV/vxRI6EeKhS3VhhCycZCksuSbAlTOYUUK6lonSt3hh3yyZkOsEZ3COf5EgSU2zS+sqDrZS0LNOJWDIQjx7QZorEgJBSAXqUBFXDx9AjYQ5mR7kkMp7GszCRA8IX4MSSmUOFg0dM6IFITEjyFAbnPEJDmxknACDVUZSSEoaJHLckzHBVTKg4UZm0U2KCaTFhCcGZQwWt0jB8OICyUCSNUk7OqhPCLCBAsR7Rpvz0nBCahIMzPvQPIZPzCI4Vh8TVV0a7XIzzUyGOBe3tsSHEX/KHQLBAiNOGTZDkwDxWK/OPZE5RkQSDSwCBLFxmVyPGXC2Phl58HLAlRCVDakPFRTg8EpsFkIhVRUR5zPwSJzHzlNGyiWWLzTJ+1yBJmFQex+NAyr0vKgBTveoV2ebmb+kzDBAIRh7MOWzHCwdhhKrK/MKCANo92crYVnVBAiS/wt6rMqyc5C4k8LLuCh2H/Zm96jW4t0TsHaO7ZcKsr8ebWxzYoLEYqzkoych0Z7PriM1hr6Ri+3bi5myDcvNPO3Yvxoms5qIM57d2LFvZ1++zL5Y2xjSlysXZfQ5JjY+/QjNK3FAtKp4jlayUlgUtPZPyIlx2sF7A9ApxqapV3DD7u5ZTyK+kFAqLFrWr9LVZWFm+iszgnXLUeT494qaw6FPVAqHhbLmYKLisAFFniukgG8I0AjCzutItBHCPwt48cEuHCiRrr24djrLTxtOAoIImlSwafohUdngjxD/tBnkQpjDC4JHB0or5CtcjTHZGLCb489NWsD8IqQJncGGspEukaHgIMm+Z28yGRTw5EcYajTRSPkD08pO+KLxSQbgLpDoyG8g5cPiccGoHT2GEoiTKIUQiFekCioXvkb2AxjxlQKJJS2WocEs7CJ6pC3C4JQdMGDVCQs5OghYgSEsUHxxDjh6UaKrCIziHP7a+1lMeJuWtyWCCG2BGYZXKyeSUKDiBSYt5Fr+AZbeUQRJi5UvqmEjOWE9AfyZK/weNJMhx1rfhgKdylSPhKMLy0YPYaBhlGJiq0IUIYEUSkmcWPMJEm06ima5HAT7ZUpiESFppIQcnJ5ccZIqc+BNSGE9UBIDfHB2v1AU5+SCXEZJwICkVKvibGzEWA0HlUaAIFcIIIORgCuPAzZTPMkHkXX8cHEqlV6xJmPi4CbDpjCerE+Hi8CczByETBSZVFhM0syQgslxxk4TkZBYOl7EwUVFINl0yIMEQJicgKhGSBFCKfOWcnOFwKZgAIA7JJB9TIfiXZPfSlToIzgghq+2QU35yKgLtBVBsblUwKoem5hjnEknGIYPs6ad8B4dEVA7CqFRejHJURWlhzhEgy3qgv+/y+QtWKhoD/aaZzBS1u5ss3NjMjMXW8eZof61nqOHWsN04i7neaB6ebMepzVud9gYm42OxQGr3jsLy2DM4ZM7PVJdFEB8BxCGeJquMuspsnNRD1GJtZE2YzPHdSFm3tJpAMDnVNFKffBD86cdCrSjZBARRTnKCXPHwsUpu5uWRS0hdSnx6C/xibTL7RK1IEk4Y9ZAmJScJLor8QLNCKF2sOLQQBJLWozBCj3xKAMnmDC2zTBKJ0j9JICsOPv7ShU9gJEnLFy6JR75ClP0XFBZSLDGUO4XgnIR4Jlus9A2ilDUcj2FMiJRJYiQ9rJML7oax/BRO/qEhRiYlmKKEAQVInJKBCEgbkIMvV+pZthbCiUomfClKDgeqAReAoNpB9pjqCwNQ7AhuiZz4aLFNhlkhkHiETDa00k2RhLP/JDYts5LJBzJWKQPmAvCz0ntM20oSYWrKVyq0mHjEQXK4CcgyHFqSokxJPaYYGr1W4dwTYDHg0tUreo6Zw4f0HMFt1Atsw4FcBDP88QGkyU2OkGSQLp5YiZUvDv8sQpxJqD/XAuCTLVMnCUJO6iAC6UtLFNqc0BTwKIqTcS7fOuGr2R6R00nFJHVLDAjCArl7TNI0jwkIdVGI12+Lq/FnQBj36MbIIIZ8ZUpDTTaoLtMuccOiyfrse/lRG1TZao2k9CtIZUB5EEnSUOg5MyXLcpEiZSWBHAovDpyuzINvdLZiHLjvyENvYmUtlZlZK4mLsaEo9v9hFQ+lCeFJe6kWYVmGkPnFAU4mGrksrtBFy0xFSVkg04eTDoSDzgeBHNIeGBvBTwg58VcTsJVfQFEgCZdxHCoxPNocRzxVRXGIEsAfgtaeyYmVHA6cMD7Q8Kxi4UtIfsnDiYUm1zTP4I03zBQpqT4Lv1ZnlWp/vafZ6661zbHRMe3W8jD7tNbtbPfGl1l9K23LC5qretl00H9vY6N3x5JFfcMLAO3FpHvNVFPZHSsoCYtCoGQmksYfN3Ya7vQPZEdOYKqIpRp3A1h5KVaSzJmFzIWwPALCFBbg5EVToiKOcoJJ0Z4mLK3s+aDhAJNPP3KtDksRgiodS024WVdwHnV/jL4log6TFsRGJwyPHT6CHJowDpFwccxFSgVOn1LHlhiMSkooiUwIFeHZLo9IhSF7JAwIZEWTAZiiiJo4OIDgD6gl8oWNAFgJVBxdZTkqU0JiThIBhGI9Ylv/xu/7fg8iMg4NbAlkGhLjQHBPJw9MgIQpt5IgE8COcuGrvkQhk16EactcSUXa+OMDAoFwCGUPiQzz8SRGhpFjKCGPhEECATmXDAXg8OVZvUfrEUNsMZcWqqwBxtdE9ZUAq0f4VAExiMQhwVm6khMmfFpeVYRsUpcEEpKkwOBU7AMFHAQQ6iFkHLL3PmfP4ibKwRKiXnrpJVEEMygjp7AU6YRgcDC0GwQ5WmylKyE40tL8YCKUhIygxc2jKGhKT23ywkL6aN++WjKJxxoacupNKajM5sOBjw9aWJxEZZNTjrbHQZQuBGjCfFH4K3KzH3h6U1ZrVBn1TlrgrCl42G51yEg/1iT3jBr+wpKQCzwF8JS0xyw1+XUfrKQVB8wKTslJSHUCaAXEcjo8ElqMs/3DkqYpXTO/luzyyGUyMfemA/oHB0aGhmnkytXrqLLIJM1lQpKumOPPEa9AItfkRCXvIB7Jk+EUhg+OBDflKFZAFjiEcn2AG9xwmZaAvgwOBBBJ8EOm0rcRgEu24MlQFEjqjQ9BXkQlBz7xMkVwzkIVIIeDR5gSTamwEgBR2UTB8ShW+YoC9ygvpFKvBHDgEo0P05WM431uGO3u2l4/PLjT6PGZFUxzRlaP7cWMAmWahwdWttzBsGUH4vBadyBIYzumaThOAZBYPVFnvKKVkUHcnGyw1t3sGJjo8KERUsnKHUK5VkPJELbKjpeNGPi7NHR60kJUy8YnUZW0tCE7KlXmThSpODyzuXl5xVyY5IVzzInLMp5osy2gEiv1Ad+jFWMKBxOpU538iIXMsAhLCxUIW2FHViKIRS6WMJzkwMmAM0dawMid8/X24aGm0kbACa9qJQ7mZMMcE2IYTepH1zptE1tDzRGLLjohA0evZTYxLK2u2E7QHB/TJiHjgD/ZMGH3MGFeZB//FIMkwqQlm4zUv+lP/oBMek6VsUTwJE+yzHwlOhyUuKfqSX/QZZRY5IkpARyYDlojlsfMrTDChER0GXalcMFw/44a8OSQCPImXeHCM+oureGstLDyKEqexeKRMoALYAKOllTF7a1vJxo/E6IyOBVb8CzmfEnymBxSbAyN6KWVnKkOOXzGWlgqKU/mjpwgYgkjzEkx1Yjb2sqyMMwqdyk8Pjmrg7OwWBkRRd5oQkozLhWMgXb6qgjI4u1579aHpmecaa6KnDh9Sp9EGE4WOBzyka+s8VTWyV8tSQXKmm7J24ktkgZB+MQIiPEv2xa93winDOCERy5H8i4XpJVZQDVPlqWCv0RxljpM1lypQQOUOky0GQXfI52I5Qur68LQmAYTBSwR68D064LsXmdNwC0G6gZeiy3NNbJaMiuVdGQTyLwnJHGiFRUHSJIURpiQBOCgiSdPFlBChDlRlY8EDv4gBOYLJ1XCIxeltqcMGicclYGipPWaKuwBKk5sypPcyCCJ5MlPHL59opki5jBBEkcg8QXA6Z+Dox2VOhhvA/gnFQ5cSptMMjk2ZXggBqEhs6l1eQyusZsWYeSfBpgw73b1XbVchofqltVDEiW1x8TnWf0x40R1MKWClmnDMDbv99Zjwn7/hZVIKb/04KtsHvf4lOaGXKKJk+HUktyFZKXfAiEAJ4C2Qq5iZTZ5lhzsKQq3SGtjk2xpBlVXuoJMErSJgCf5+ckWgoRSpMTkQ4YgACfREgIIWVhUhhGShFMHEgJBLDg0zo0/WcNzT5eO08K4ZSG9pkVvLUIr0CL4wpw7LCrmKQDO4Fo3+TOMbZVWvETA47IqSB6ex0o1GUAAAWU2ALlKeCENr+Q0tmeAJxAfCRsniIqs7De/KufSEq44CHNx7VvBBMcqmYDkY0YBCnCAFfPIfalGgKJS2uTAiGQAoSJOUUEE+JmuMBK542dlEuDUHzgYQqCrLCcJabfQpJUlCgEws48heLJNBBwQ8j2mnRXAQas4evgwEymMv5pX1eOsguASxSr7j+CvhG3/4yiVitg+srl+rOxHMhDAmVHrbRt5xSdvsiDX0EmYAkDAkBhEQiVFOALgsg9ZIDaP021M48QGc71TZsojF6wkqnykvm+Y5IIqPOKAW6YFko1HQAbRQsBK7jzCSQfCCScww3xJkA0tQm8c9qJIkWVR6mo8MbQKVAIQtBPfDWVmAQNSnMDBMG4VXAClhKQCh58B8DRYWdtFwUk/0+JzySf9im0+ViTUS6TMezIRBtHLehRWCilz8oxV6f3kUhvJUBg+V0mY+CYSIWRUKir5q0vY0jYHwmVxY54lXklVMh01P8XABGclyMfWT5To3iTGgO5aGE/lCkHSGEb1IJ4uxJhEE/ZaE2829Z3yjm0ZWDlOlTOZsU1WUsGq0Syf2cfgInJtfUBNtYnTpZ6kMs6txz77yF1E74/hBFIn4AJYCRAms8mvBBOLTyIXBnuEEIgBUxRaHJIJYAytSvYTnmkJi6o0nwyRgGAikJD0kzk/aTMgjAnnMSUUxhMJnz4FMkogCQWi/lOLgHrP2ZPGCtnsFLYknJEQPlgL6xugwY9wSQWfShsKnfIlBB8CPwN7L4wIKmmQyZhHxHyPYpMmo8AzDY/JiI+EneUAVSZKkVhWbuSASZJ8UpVJDnLQJXNRHHgKBoihMCfMzyi+VAp4r0SFEZKn8uHIeUWV/AG5BEZK+5oiuXBGZYPRHSRPcDJwAvgzoIwyQyYvHEhKlWiF/V4xJHmqN2khQyA5g65gIJCEkIDCYokh9eQpipOEpME1EjgcZNz4Yj3Ch6DZZxvLhBQH/sm2IskAycWiMiRHmDj8TB0kM1WlS1qx6ZJD5WdfBYEkySrDJMmcohJFA5woucAWUBgEH47AGQYXTj4g1J2J8nHLfGVAbJVZ+Njy5Qi3JIGc+HzI5WnPSw4eWBnhFAA55xF5WklyJrfE55O5kkegSiupqiicE0IqgcxaQpBw+OSjFFPJmR1z30nLx43eOPhyCpNUlYTwRZmMKPxCgemwFcAzA8KpZz5MlTajkKeuSJiVEGbKnwwx9wgoABk3hJDxAfQILRH4HgmW5GK5BMLJMPklh5VH3NT8jMIQBHk6VIkjLQE44JllYZBMAtAjl4/p45MOGpcIAoDJXCAxRYETQyALSHJSiUIpLDMqk04+IHBw8Jia9MglTsVWoMLPdEEEMiyJVAIcAqBNfAGPwnxRFb5ASGKYV1ylhyyC5MkXCY3LtDwmH4+Vy7Q8wseHDwdJ5AEURyUU+S/WJ3WRfMUKJCUyaHwOZvrJWh1KjjBB0uEDCE0qwtKTBATOIxxRwgnPVGxAS7YQMjb9QhRelU9hHMiTfKClQyg56QpwmQu+2CLVXnkgB4EmKmP5mPNTGxk2CQ8t5U9dYSKzOV8hEDIVFcFPhvwMgCR/CCDJH4TDBBC5yX2zWJbsmGOtglMjJeSRYWXQoZnElE2WOt7jTL8Uh2EykYoAHybJjfrRCpMwxRBOzJQhyWEmhywRCJlxyOCpN1HJvOIjNhESRxiChPCEjAPhAT1CEACpnEdsK6AAHA5CpiKQhIRJeETtW4EkB49CLfUKBD6fo7HUm3Dy4QtjBTm5Bd5+oplEcIs5jL3mhyS1Aa2SoSKBLJx1IIH8ykk9c5FZgJwcAFONMFPahCj6ZChREmKbSeOT8OScfIShYchlGCt8+C5JFyUMLrbi6Q2j4iOQSkicwmav+uGQPBmmZAIz9cDnUqtwwDPpFCmRQfIxmQhjyE9X4WcAjlyr0th6wcpaCt8j5ukQCtBGpph8hAWg4cNVj6kB8NDD/sgMAkjlNJyEpGBBX1yWY+bioLSYJwIOB/NSlUsKLBYtv6JF6DH9xBGF1UHJIXAVXGzmRSC5JUJSZdT6xqYOQJjLPGKeGU/OGc4ULbFDE87H5AMNIW1nEecjHyHI3uISdSQ7EmRLFsAlgclOOLlD5mgEX2kkJkULJAIOSeJRtecniUAiSxs3LrMEKLyXK5/mF54pvah0Hrn9p8qah+ErnEI2CMIpmxkJMqSEhTSiPKpvAomZPjROvQTHPx+rrIFAq9JNIZMQMNt2+okDgSSZBFZJno8EQwiBA5dErkTRJIeKyyiEwhC4Ao6siZJQ3f0bpfIdzAUI5mKVaNZ4nQeESGl/XIAPSOaOr5/QGjldDkIBsQJYia3kTEkqIHg63ACFVSxCCme6OgNR4ClAshKbqUtFFGBKBUjsfKQBaBwxwDnhQr7Xl4BXDhOxfGiAGUjOyRAQbeKkn0ImYXJOwpzswgd+RQKNqx7hcyB8fJKQXzlR5BdFgbKWyGKx9Zh8KuRkAh9VIoNwiZ/AKmkc0un7RcFJ5MSvhBEFggqyMEeSJISTwCQUhsbBSQRwZVeJB19UJpT8qTQfUSnuxEQVyewzwQoyoBooDEdUQgpWMATHioOWxQ0inFGQ8xE+CM3ASWRhTiwcELFcCiCQ/JOqxOxBIHAgJbvh5SM+gKqiALYIwbPg4CjdRChpli62JGr4RUvZQCAkFfwMYFgxr6KSDziXqfMzR4mT8JQZXCwHCII2Hcww67X46g3EY8jrsdhJ+CknKOVwqY9IsvBJVsKaOUwBCaXyU+b4/osutFvE2Mlk5nM/sZLivocel4xCD1xJ4JHDRGxmQ4BjlKAh5CdEbLqEJEmWK7R8A8AqqfZx4xcEPFlVtBUmeIZhykISkhamsFiuCiR5RQuenOGISpEybPtAQpIPTDyregAnk0j5xdInVnKKSfLJVHJoT9UHxRDV3xtztcb44JhkOye/vgE3ZjoLKO2Fx4HhERCOPAdbiEdUGOIg3crUZtbEvsHJgiTIiRVCAamTJIWHTB7h9A8CQbjUALRUyEEEQKzIICqRM+nEEYWWA0z9pAJTM/DBYXLCUWHiQ6VwFTeBZAiYmPmIp0c8C/rrPAjS5YOmn7QRjlWAcJLyyOVjSngQkmH+a7SFW8KTs9Q9Zo4SnhAyR1ZK5yHMkScTpfzE9AgIrRKyggOK9YiwYptAK/8J4SdDARzUjUSoCEuyUc+rwB6HotvUD0glGD4eIRNbQKbS4QDCpZyihPngIFkKwlwKBphwvmGZLkQAqyTMdCEHUpFEihngJwfI2ErFo1iECUdVJQ0h6PddlTQ9pNgHC1QsQuRYvSG5BKY8CPf57bUFkBQgEcSmMBWaRy5FFYAGX3IQBDxmfkFSKn6KmgMmCB75GRDODKa0mPz/6rqDJUmSGgjDBsaj8RBcef8Tx8UA44v8s7xja3ZloFG4XC5FZGZV9Ux3bwOQwrcjARC5pmj+WwZx4MDEERoDEljJeQFpDumGVsakY8S+QXjT1LtyHvMpegsXCzC9yhBJLabJVOWlBOF+X0pD55U3GJFpShUrYVJJBco2j6DJC4CPyNHH5NWWgrs1wydSikIIbxLWRponEWAvuLsL4YHxkVOrCkjNPOxvvqX6mX+HUEezCbw60Kx1CJ3xE5cthemKmoSsQnGN8EkBMdm6w6l1R0aQguA0LYUCWeJ3Sm2GozvzGQLt6XD+EQg/Qgq6W8bE2WMARFhfKSKBH7VzjUIEDM7aRUhgXiNZcZN8EbaULcYnZTDL+ZCnz3s3jo+Wfn6DCeoYnjgkzVLidOJYMsxqW57fEPT8ZSkQbQriLOXFWJsh8QhOuKZjvvWPphaWFeo78i2OMIVdvghNtb5Tlq3kDtqIFjV1Z+K7W7pzxMh5zMiQRmqZptjLSCIIS6ntGAVsCvck7VFWYWZH7cKyeyZO32Ma0wzsiF6foMWr7QFR2PmQ0p3HqQu/McI9F/gsnI/cDGIWSKogpnKcaIkjtIyg0Nn67XxwFijQqzGqmgK+wzx3CcjnU4eLDVXg8tCSwuCrTKXReUx8tUzQS3wlqiI8PY5+yk4TQaosQaluiBX6GhqOAGEP9zwTfZMJpGGWskx8iKZk6xWfZw1sQ4KJFPAuTDS9Aomw3377F6T7VSMcynH4egncCun7WK0K0+Td4pSlxEDnTNxrNGtrfrbRm3nv55iOEU5Q4LO8KiV93U3Zt1p6g0RzaHTqi0//XPvntU+XzgpZF2B8HMPXVKEgWYEuOJi2pi8acT6aQilWLZzpwqQw88iB1X4pSIXQ7wBVacrglAVkxeFpnk7PtwWvPBFZIpFj5iHmPFWfV15IlsKP7GeP53cdX4aQdb3EkgkKWkZos8W883cCDDlaquKY8KSeszwXxdUZH+ctPL9L9H3uKtwRTVZAJDVfAYRXnlcIFM9uzjPm+Qe5Hj3LbTY+ctZUmJZSLhOyGF73GolDopVKSpy5J/0tq/IPcK6UO1DrEApsjfQSM1lV1JwDc2iQmB1CTAQ4fn2BTIzDt3z03ncIUmTjNIDleRD8Qr3HWiJgOihejCCpO02TMFvYPPSlGiNOyjx+sfufSCO5h2mW1ULQfkMq8T2clmiJkxWbzTwZnA5vaTa/ZAnHEo0CayRLAQJaWQj7y9//8U9rPRh2KO91h+9ZFciiMfEje267OlVVPLClKt9cXi3Pqi2ILKZpS/XycwDOgtVrrc/eHiYksCvhpRmObMmLSTGNAuHMEqgQnE4EnAwHoUsi1WHxLqglq2m9lLj24WIkviUFw7vMkDPHZ5J+jsHyboHjp4Ih7gk+8dPyeSHTAp+ah4dHgDgfjVxFLdAgcDoIcAizzAu8tTwH8J4enL7yw/tYk+fbi8JZrG1/5OcwzyT1zavCr5YUs5yypWnHHA3HTms0hZbnWwR/b5WTMgCTFFe1lGXZybZleGRZk7Dzm4ofS2qt0MDAsgqZLEQgy0KAMVd7Bw7/Xo7ZYIkc6Udc1ifQ8c/yEecx+eYZ4QR+tOqxZVOztTThNVXLyvJV8SHn1vojk73HsMTi3bHUpGzQ2fJ1qd3ixPMV1iQdMZGQL0/QETWw2Jxpet7FNU0WzuwXbhKelNqs2nxNNzYQorC9pOm7gEajQBnOaFJeShUjVTYfgWfOEznb1qhBIggstUjHM442RGwvzAmtvEChQGHi1AqAj+bJFksJaCbLQ2h6rRB0PudFJ3tor4MYq4U4oRrbaie4qpY8BEfQQPnhN4ipPa9FOrK68H5hVEg+At8MXyn4c0Y/OjdBjMCawZK+hhBBS0GGA68cUsDDZxXGNw98cSUhqjARnBXcTi2dZ2pTrh0Cpl20QSUC1g1UiVq0NH0BoAu8AyzeEochzxJEgDRP+hUCS1WYh8xSsxQMFCiks6qlbpq4LoF3fAuWbZKU50/g/x8bJ8AyZAGc2mx7RCiOYBnH0sPPpyOYjSAA5tE6Q0EWXzx9iOWtU5zCspZoeeCykSeeLN+ct1Ql/foNMbtnMCck5QIxWVetoJSSpsUpyJfNT8dyhnYz6aBtAPEaxYRkFCoM7y6abAFm5ZHXyBJeavd/rX0eCo/cZeoQ7vIEeeVwBNbYlmdCuWfCT3iW4rJJadQDq1AMzJ/yxxIUnuLPfltGCExNPFAhg2en+Pc2ZvCHeP4M6dVG/KXQawiQghYRjP3zMaHcyjpfPKSkJ4pDgtBwMdAycEvI9hM5mvhXvitxOM+X/NMBNG7+ED6Gw7ybSS0LkU98LbaXT+n5U3ZmmUjlZQ/puVGkHB8vq6SLbdqvXsuqKuUuaTDlkEAK704f/R0vHGApyyPzjIKH3zLcj3elf+Qes2wjH+D8qTCwOSGWj965mtuLmK1cbFQe/yT+xPDLCNrgF7HyiQhYexF8kSkkeMt+caTKzlfV8iZPTVCvdu0eCBFAlFjyPRhxUjuzPkMumD7k/kormiq2eGSgOJH8Q/x24xdgVljtfPuqeCByexEgMCkcF73rDpEChkvFD4m/uEPg0RJcbZzbR6NwkyeYlBSbfpqWQAQTluVrdHuEmMCJhCQ4suCOGwknhY0UbR3dBlVBTJLmkz3HJSV+lmXOzDeu5A8/eirs1Ub3ldco3+0nphBHUMqoTQXP4H7RXtnXP18Qi1Udff/zj6YO8DnVJpRlzU0HLUsT3jMugL8/JloNhiF4uZ0jkmWK061YChI/D/+y4bcOTstdHktM/q/nr8rPAHdHcfMgZF9ZSyaVclJNUoov5XL/ikN2Q0xHoOls1waZ/vipTbPWa+c6UUg/zmbDYenguCox7SJ9/MrLtnx/ZvLzJCeCH1MtBDOEV6sFz2QLIN1AEIZfoFaJ5WxZSMql4vOB0UoNiXNX3YTFOuIklU7Ll3D9FdBXFzQWjW+Zt7RTMXFVvC2PIwCyJzgxAhthIpA/tMRLKaQAsfxo+vOcTF4Q3zLyHYjvFmfoy5btep0pP48nTYaAToG3FCCI+ZaJbbbKA2+fDp/FR1gAF7fkzSNbrwd+U4Hw6STCn3GvizJcpfhrCVzHstWKw7Woy13+dPj5PDEFeIJNxaslFS5ICn5+wcpnp+1xJRQYMh+oquf3yfw4sukHTdDSh7lSdL6eQVkgMrzUM957F5VFYOKvqdZCYZx8ajr2JUsDm6H3ANn3O/9iN3edUCcqK8VviE3QZvJl+TvwThmSn85XiV6ZDdx8tB7dZrOU5S2j9brZbKXCcRJUfr+2Ogh4fCJM3LJCWUHIcGrFsl2biQjqtXLMWVI4/u4SaIm8q6u7/x4eUNCcOBFwBExtQ3aruUFxfA5tI7LwaPl1aRmt690w1Jh4kwsYhHX+iViW4iuBfKXqsvIIOCuE/JlFS/CWjZ+mX/Q2qQJZwbOJn40AKWSViwvirzZwS/fCvYWq8jjVTkfgtHWtEY9zlwypFp94BPGC8GYY880+z5rr1eV2ORgRhlmg/KsW8mV3L+QtKRTPC9jGSCeQx/9SjtkAUjgdyJCCaMsKphNIWaFtrmNqLZ3ArXCu9HPsgXxHwYeUnQfqwrPJDgE6VXiHDE8N+HldeU94tQiNPZFSA1OonRQ7vR/bslpLQV5+WfHGaLzD8Zb0R1fnLkwhzafh0Tzn9Xw+gFBLPBxTSgz8OeVUQCVaomaBsom2NC4kwv13lNXmExRPp0DtTQOm/FyDs2dZnILuElJZIG+pSlCcJjDEkon5xCtf36nFgYekYAlvDAiRZQXNmVSpmu58urcQILzzETDk3o3xD+d/78t3vWqHw9YuEbVPi/dDXyOhAcWyaIlYViLon6OjPeXvIx2z2hUKYt4IETaFpcLzsoJSTSIO4esFGXgjzTCkJeaND6xdWWAWKO6Ixjn9Hp17JNmmFSjpSRPHfCrO5FJiAQsM2WUty8Nv2k0unkIBvnl+LYmcIM4sXF8lwO3lJXzKZO3LKuXmxClf7Yf7/hmzks5k+gV6wRPJp8PTr2T6qTUecvwFsjV6e3+eCzpTWEowfQo02w7cRx++MYA7Dfc5ZviaTrDuLcvSUZ6C7BehFgPXBTJxYEtBrS13JuLZxhDseYwZB16LlRNsBn/gbPmCzxBwy1o/wCnx42K93JclS1NWwOIjAJN6/246xlRq2ZKPCmRJBIq3LJUPz9/MkKNyneNomPB+nKP4Ib6PX59hIe1HFQ7bUpBsW223QLtFq4vYxRKnnBpmhJaJQD7ndUrpsFUNwQk8pGekAt691Ztihb6ryhYYvjeApjqp/5xv3xSQktVXljVAs4lVpVwQWVV3cOUIR/DDVMXqGBiCo6PZgOGbeUHMlmLBc3TavmcFCV/JVzAFQVW10/2L+TVDy4EL6Ign206/yJT1ulN1D692JZbw+QIIAqNTkI85haXgGUTwpdbyVogDNyT/VSXrN/1JuQEceMptx3U82afL7/znXkaLX/aL3yQIguJoVUEWPPkftyt+V6l14ylZVbNZwmNuGGTWeSIsm/ItmwiygA6/Q0iN79FQlREptTkrD8Q5vT8GhFTyK79HyXcBpax15ZUEUkisIMFSke/sp+375FbSjqQs2WrNc07zuYgmYe/yIY6/oNpH49UpTrDa4vB2DZHy5seTsjyvOHJZBSUgLXlIipVFvvtB7o1tSoEf+MAUzAhClKQwHcHpdX1fdiUv/qk3w9dgCZZvbN4D0CVsciIIEPMILOEpL/h0OOfSeLwPGSnkq62j8hTyq4rjEvYQauqu9d8A8Jrby64li//ff59ffawE33f+8PG1RrZkG0wj7xWQNghvzjryhoycOE+TIHxItDGr3Ua2F3xxSz7ZkZ/MTxa5lGBmNuCWAk2T4i0X37LFQ36entPtraoQ54f2NLJMNkIxPzsSj0H8eU7v3eWL71h2sE+TnylaosWcWoJrVLnsJixGKMU3bYQKD+e8Ox8rO0GBbD4phMP5/aVBCO+2+XXIKUwk2SP1i0mZM1icpd/zFYIALI5/M5sBZ+DdJzAfMynzj38Ha3SDYg8L32yC2jUYkDKD7/A350pexH8a/rEbl2LppyPbskbi2V0+kbJSyiuJNo8QGdLeo33+yfK9keqL3PWdrCC+QAv3T8rGThaoJI7Y608l/wcLJeOsV2soygAAAABJRU5ErkJggg==", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import base64\n", - "import mimetypes\n", - "\n", - "from PIL import Image\n", - "\n", - "# We define a simple utility function to take a local image and\n", - "# convert it to as base64 encoded data url\n", - "# that can be passed to the server.\n", - "def data_url_from_image(file_path):\n", - " mime_type, _ = mimetypes.guess_type(file_path)\n", - " if mime_type is None:\n", - " raise ValueError(\"Could not determine MIME type of the file\")\n", - "\n", - " with open(file_path, \"rb\") as image_file:\n", - " encoded_string = base64.b64encode(image_file.read()).decode(\"utf-8\")\n", - "\n", - " data_url = f\"data:{mime_type};base64,{encoded_string}\"\n", - " return data_url\n", - "\n", - "with open(\"dog.jpg\", \"rb\") as f:\n", - " img = Image.open(f).convert(\"RGB\")\n", - "\n", - "img.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "A puppy on a skateboard,\n", - "Paws gripping the board with care,\n", - "Learning to ride with grace." - ] - } - ], - "source": [ - "# we can reuse the same chat_completion interface for multimodal inference too\n", - "# Use path to local file\n", - "data_url = data_url_from_image(\"dog.jpg\")\n", - "iterator = client.inference.chat_completion(\n", - " model=model,\n", - " messages=[\n", - " {\n", - " \"role\": \"user\",\n", - " \"content\": [\n", - " { \"image\": { \"uri\": data_url } },\n", - " \"Write a haiku describing the image\"\n", - " ]\n", - " }\n", - " ],\n", - " stream=True\n", - ")\n", - "\n", - "for chunk in iterator:\n", - " print(chunk.event.delta, end=\"\", flush=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.14" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb b/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb new file mode 100644 index 0000000000..4810425d22 --- /dev/null +++ b/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb @@ -0,0 +1,4485 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "hTIfyoGtjoWD" + }, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1UvR9m2KTinvlDXeOWfS2HBU4X72LAjTz?usp=sharing)\n", + "\n", + "# Llama Stack Benchmark Evals\n", + "\n", + "This notebook will walk you through the main sets of APIs we offer with Llama Stack for supporting running benchmark evaluations of your with working examples to explore the possibilities that Llama Stack opens up for you.\n", + "\n", + "Read more about Llama Stack: https://llama-stack.readthedocs.io/en/latest/index.html" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bxs0FJ1ckGa6" + }, + "source": [ + "## 0. Bootstrapping Llama Stack Library\n", + "\n", + "##### 0.1. Prerequisite: Create TogetherAI account\n", + "\n", + "In order to run inference for the llama models, you will need to use an inference provider. Llama stack supports a number of inference [providers](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/remote/inference).\n", + "\n", + "In this showcase, we will use [together.ai](https://www.together.ai/) as the inference provider. So, you would first get an API key from Together if you dont have one already.\n", + "You can also use Fireworks.ai or even Ollama if you would like to.\n", + "\n", + "\n", + "> **Note:** Set the API Key in the Secrets of this notebook as `TOGETHER_API_KEY`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "O9pGVlPIjpix", + "outputId": "e1fbe723-ae31-4630-eb80-4c4f6476d56f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: llama-stack in /usr/local/lib/python3.10/dist-packages (0.0.61)\n", + "Requirement already satisfied: blobfile in /usr/local/lib/python3.10/dist-packages (from llama-stack) (3.0.0)\n", + "Requirement already satisfied: fire in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.7.0)\n", + "Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.28.1)\n", + "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.26.5)\n", + "Requirement already satisfied: llama-models>=0.0.61 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.0.61)\n", + "Requirement already satisfied: llama-stack-client>=0.0.61 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.0.61)\n", + "Requirement already satisfied: prompt-toolkit in /usr/local/lib/python3.10/dist-packages (from llama-stack) (3.0.48)\n", + "Requirement already satisfied: python-dotenv in /usr/local/lib/python3.10/dist-packages (from llama-stack) (1.0.1)\n", + "Requirement already satisfied: pydantic>=2 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.10.3)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.32.3)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from llama-stack) (13.9.4)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from llama-stack) (75.1.0)\n", + "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.5.0)\n", + "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (6.0.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (3.1.4)\n", + "Requirement already satisfied: tiktoken in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (0.8.0)\n", + "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (10.4.0)\n", + "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (3.7.1)\n", + "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (8.1.7)\n", + "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (1.9.0)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (2.2.2)\n", + "Requirement already satisfied: pyaml in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (24.12.1)\n", + "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (1.3.1)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (4.66.6)\n", + "Requirement already satisfied: typing-extensions<5,>=4.7 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (4.12.2)\n", + "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (2024.8.30)\n", + "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (1.0.7)\n", + "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (3.10)\n", + "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx->llama-stack) (0.14.0)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.27.1 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (2.27.1)\n", + "Requirement already satisfied: pycryptodomex>=3.8 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (3.21.0)\n", + "Requirement already satisfied: urllib3<3,>=1.25.3 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (2.2.3)\n", + "Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (5.3.0)\n", + "Requirement already satisfied: filelock>=3.0 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (3.16.1)\n", + "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (2024.9.0)\n", + "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (24.2)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit->llama-stack) (0.2.13)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->llama-stack) (3.4.0)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (2.18.0)\n", + "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->llama-stack-client>=0.0.61->llama-stack) (1.2.2)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->llama-stack) (0.1.2)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->llama-models>=0.0.61->llama-stack) (3.0.2)\n", + "Requirement already satisfied: numpy>=1.22.4 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (1.26.4)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2024.2)\n", + "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken->llama-models>=0.0.61->llama-stack) (2024.9.11)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->llama-stack-client>=0.0.61->llama-stack) (1.17.0)\n" + ] + } + ], + "source": [ + "!pip install -U llama-stack" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "JQpLUSNjlGAM", + "outputId": "2f7fec97-5511-4cae-d51e-6d262fbca19c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: llama-stack in /usr/local/lib/python3.10/dist-packages (0.0.61)\r\n", + "Requirement already satisfied: blobfile in /usr/local/lib/python3.10/dist-packages (from llama-stack) (3.0.0)\r\n", + "Requirement already satisfied: fire in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.7.0)\r\n", + "Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.28.1)\r\n", + "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.26.5)\r\n", + "Requirement already satisfied: llama-models>=0.0.61 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.0.61)\r\n", + "Requirement already satisfied: llama-stack-client>=0.0.61 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.0.61)\r\n", + "Requirement already satisfied: prompt-toolkit in /usr/local/lib/python3.10/dist-packages (from llama-stack) (3.0.48)\r\n", + "Requirement already satisfied: python-dotenv in /usr/local/lib/python3.10/dist-packages (from llama-stack) (1.0.1)\r\n", + "Requirement already satisfied: pydantic>=2 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.10.3)\r\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.32.3)\r\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from llama-stack) (13.9.4)\r\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from llama-stack) (75.1.0)\r\n", + "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.5.0)\r\n", + "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (6.0.2)\r\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (3.1.4)\r\n", + "Requirement already satisfied: tiktoken in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (0.8.0)\r\n", + "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (10.4.0)\r\n", + "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (3.7.1)\r\n", + "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (8.1.7)\r\n", + "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (1.9.0)\r\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (2.2.2)\r\n", + "Requirement already satisfied: pyaml in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (24.12.1)\r\n", + "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (1.3.1)\r\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (4.66.6)\r\n", + "Requirement already satisfied: typing-extensions<5,>=4.7 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (4.12.2)\r\n", + "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (2024.8.30)\r\n", + "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (1.0.7)\r\n", + "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (3.10)\r\n", + "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx->llama-stack) (0.14.0)\r\n", + "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (0.7.0)\r\n", + "Requirement already satisfied: pydantic-core==2.27.1 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (2.27.1)\r\n", + "Requirement already satisfied: pycryptodomex>=3.8 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (3.21.0)\r\n", + "Requirement already satisfied: urllib3<3,>=1.25.3 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (2.2.3)\r\n", + "Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (5.3.0)\r\n", + "Requirement already satisfied: filelock>=3.0 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (3.16.1)\r\n", + "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (2024.9.0)\r\n", + "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (24.2)\r\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit->llama-stack) (0.2.13)\r\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->llama-stack) (3.4.0)\r\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (3.0.0)\r\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (2.18.0)\r\n", + "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->llama-stack-client>=0.0.61->llama-stack) (1.2.2)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->llama-stack) (0.1.2)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->llama-models>=0.0.61->llama-stack) (3.0.2)\n", + "Requirement already satisfied: numpy>=1.22.4 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (1.26.4)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2024.2)\n", + "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken->llama-models>=0.0.61->llama-stack) (2024.9.11)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->llama-stack-client>=0.0.61->llama-stack) (1.17.0)\n", + "Installing pip dependencies\n", + "Requirement already satisfied: blobfile in /usr/local/lib/python3.10/dist-packages (3.0.0)\n", + "Requirement already satisfied: chardet in /usr/local/lib/python3.10/dist-packages (5.2.0)\n", + "Requirement already satisfied: opentelemetry-sdk in /usr/local/lib/python3.10/dist-packages (1.28.2)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (1.13.1)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (2.2.2)\n", + "Requirement already satisfied: autoevals in /usr/local/lib/python3.10/dist-packages (0.0.109)\n", + "Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (0.2.0)\n", + "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.5.2)\n", + "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (10.4.0)\n", + "Requirement already satisfied: pypdf in /usr/local/lib/python3.10/dist-packages (5.1.0)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (4.66.6)\n", + "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (3.9.1)\n", + "Requirement already satisfied: aiosqlite in /usr/local/lib/python3.10/dist-packages (0.20.0)\n", + "Requirement already satisfied: psycopg2-binary in /usr/local/lib/python3.10/dist-packages (2.9.10)\n", + "Requirement already satisfied: faiss-cpu in /usr/local/lib/python3.10/dist-packages (1.9.0.post1)\n", + "Requirement already satisfied: opentelemetry-exporter-otlp-proto-http in /usr/local/lib/python3.10/dist-packages (1.28.2)\n", + "Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.46.3)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (1.26.4)\n", + "Requirement already satisfied: chromadb-client in /usr/local/lib/python3.10/dist-packages (0.5.23)\n", + "Requirement already satisfied: openai in /usr/local/lib/python3.10/dist-packages (1.54.5)\n", + "Requirement already satisfied: redis in /usr/local/lib/python3.10/dist-packages (5.2.1)\n", + "Requirement already satisfied: datasets in /usr/local/lib/python3.10/dist-packages (3.2.0)\n", + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (3.8.0)\n", + "Requirement already satisfied: together in /usr/local/lib/python3.10/dist-packages (1.3.5)\n", + "Requirement already satisfied: fastapi in /usr/local/lib/python3.10/dist-packages (0.115.6)\n", + "Requirement already satisfied: fire in /usr/local/lib/python3.10/dist-packages (0.7.0)\n", + "Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (0.28.1)\n", + "Requirement already satisfied: uvicorn in /usr/local/lib/python3.10/dist-packages (0.32.1)\n", + "Requirement already satisfied: pycryptodomex>=3.8 in /usr/local/lib/python3.10/dist-packages (from blobfile) (3.21.0)\n", + "Requirement already satisfied: urllib3<3,>=1.25.3 in /usr/local/lib/python3.10/dist-packages (from blobfile) (2.2.3)\n", + "Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.10/dist-packages (from blobfile) (5.3.0)\n", + "Requirement already satisfied: filelock>=3.0 in /usr/local/lib/python3.10/dist-packages (from blobfile) (3.16.1)\n", + "Requirement already satisfied: opentelemetry-api==1.28.2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-sdk) (1.28.2)\n", + "Requirement already satisfied: opentelemetry-semantic-conventions==0.49b2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-sdk) (0.49b2)\n", + "Requirement already satisfied: typing-extensions>=3.7.4 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-sdk) (4.12.2)\n", + "Requirement already satisfied: deprecated>=1.2.6 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-api==1.28.2->opentelemetry-sdk) (1.2.15)\n", + "Requirement already satisfied: importlib-metadata<=8.5.0,>=6.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-api==1.28.2->opentelemetry-sdk) (8.5.0)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.2)\n", + "Requirement already satisfied: chevron in /usr/local/lib/python3.10/dist-packages (from autoevals) (0.14.0)\n", + "Requirement already satisfied: levenshtein in /usr/local/lib/python3.10/dist-packages (from autoevals) (0.26.1)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from autoevals) (6.0.2)\n", + "Requirement already satisfied: braintrust_core==0.0.54 in /usr/local/lib/python3.10/dist-packages (from autoevals) (0.0.54)\n", + "Requirement already satisfied: jsonschema in /usr/local/lib/python3.10/dist-packages (from autoevals) (4.23.0)\n", + "Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.4.2)\n", + "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.5.0)\n", + "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk) (8.1.7)\n", + "Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.10/dist-packages (from nltk) (2024.9.11)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from faiss-cpu) (24.2)\n", + "Requirement already satisfied: googleapis-common-protos~=1.52 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-http) (1.66.0)\n", + "Requirement already satisfied: opentelemetry-exporter-otlp-proto-common==1.28.2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-http) (1.28.2)\n", + "Requirement already satisfied: opentelemetry-proto==1.28.2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-http) (1.28.2)\n", + "Requirement already satisfied: requests~=2.7 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-http) (2.32.3)\n", + "Requirement already satisfied: protobuf<6.0,>=5.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-proto==1.28.2->opentelemetry-exporter-otlp-proto-http) (5.29.1)\n", + "Requirement already satisfied: huggingface-hub<1.0,>=0.23.2 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.26.5)\n", + "Requirement already satisfied: tokenizers<0.21,>=0.20 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.20.3)\n", + "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.4.5)\n", + "Requirement already satisfied: opentelemetry-exporter-otlp-proto-grpc>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (1.28.2)\n", + "Requirement already satisfied: overrides>=7.3.1 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (7.7.0)\n", + "Requirement already satisfied: posthog>=2.4.0 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (3.7.4)\n", + "Requirement already satisfied: pydantic>=1.9 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (2.10.3)\n", + "Requirement already satisfied: tenacity>=8.2.3 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (9.0.0)\n", + "Requirement already satisfied: orjson>=3.9.12 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (3.10.12)\n", + "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from openai) (3.7.1)\n", + "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from openai) (1.9.0)\n", + "Requirement already satisfied: jiter<1,>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from openai) (0.8.2)\n", + "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from openai) (1.3.1)\n", + "Requirement already satisfied: async-timeout>=4.0.3 in /usr/local/lib/python3.10/dist-packages (from redis) (4.0.3)\n", + "Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (17.0.0)\n", + "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.3.8)\n", + "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets) (3.5.0)\n", + "Requirement already satisfied: multiprocess<0.70.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.70.16)\n", + "Requirement already satisfied: fsspec<=2024.9.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets) (2024.9.0)\n", + "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.11.10)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.3.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (4.55.2)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.4.7)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (3.2.0)\n", + "Requirement already satisfied: eval-type-backport<0.3.0,>=0.1.3 in /usr/local/lib/python3.10/dist-packages (from together) (0.2.0)\n", + "Requirement already satisfied: rich<14.0.0,>=13.8.1 in /usr/local/lib/python3.10/dist-packages (from together) (13.9.4)\n", + "Requirement already satisfied: tabulate<0.10.0,>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from together) (0.9.0)\n", + "Requirement already satisfied: typer<0.14,>=0.9 in /usr/local/lib/python3.10/dist-packages (from together) (0.13.1)\n", + "Requirement already satisfied: starlette<0.42.0,>=0.40.0 in /usr/local/lib/python3.10/dist-packages (from fastapi) (0.41.3)\n", + "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from fire) (2.5.0)\n", + "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx) (2024.8.30)\n", + "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx) (1.0.7)\n", + "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx) (3.10)\n", + "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx) (0.14.0)\n", + "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (2.4.4)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (24.2.0)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.5.0)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.1.0)\n", + "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (0.2.1)\n", + "Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.18.3)\n", + "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->openai) (1.2.2)\n", + "Requirement already satisfied: wrapt<2,>=1.10 in /usr/local/lib/python3.10/dist-packages (from deprecated>=1.2.6->opentelemetry-api==1.28.2->opentelemetry-sdk) (1.17.0)\n", + "Requirement already satisfied: grpcio<2.0.0,>=1.63.2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb-client) (1.68.1)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from posthog>=2.4.0->chromadb-client) (1.17.0)\n", + "Requirement already satisfied: monotonic>=1.5 in /usr/local/lib/python3.10/dist-packages (from posthog>=2.4.0->chromadb-client) (1.6)\n", + "Requirement already satisfied: backoff>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from posthog>=2.4.0->chromadb-client) (2.2.1)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=1.9->chromadb-client) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.27.1 in /usr/local/lib/python3.10/dist-packages (from pydantic>=1.9->chromadb-client) (2.27.1)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests~=2.7->opentelemetry-exporter-otlp-proto-http) (3.4.0)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich<14.0.0,>=13.8.1->together) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich<14.0.0,>=13.8.1->together) (2.18.0)\n", + "Requirement already satisfied: shellingham>=1.3.0 in /usr/local/lib/python3.10/dist-packages (from typer<0.14,>=0.9->together) (1.5.4)\n", + "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema->autoevals) (2024.10.1)\n", + "Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema->autoevals) (0.35.1)\n", + "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema->autoevals) (0.22.3)\n", + "Requirement already satisfied: rapidfuzz<4.0.0,>=3.9.0 in /usr/local/lib/python3.10/dist-packages (from levenshtein->autoevals) (3.10.1)\n", + "Requirement already satisfied: zipp>=3.20 in /usr/local/lib/python3.10/dist-packages (from importlib-metadata<=8.5.0,>=6.0->opentelemetry-api==1.28.2->opentelemetry-sdk) (3.21.0)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich<14.0.0,>=13.8.1->together) (0.1.2)\n", + "sentence-transformers --no-deps\n", + "Requirement already satisfied: sentence-transformers in /usr/local/lib/python3.10/dist-packages (3.2.1)\n", + "torch --index-url https://download.pytorch.org/whl/cpu\n", + "Looking in indexes: https://download.pytorch.org/whl/cpu\n", + "Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (2.5.1+cu121)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch) (3.16.1)\n", + "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch) (4.12.2)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch) (3.4.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.4)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch) (2024.9.0)\n", + "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.10/dist-packages (from torch) (1.13.1)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy==1.13.1->torch) (1.3.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch) (3.0.2)\n", + "\u001b[32mBuild Successful!\u001b[0m\n" + ] + } + ], + "source": [ + "!llama stack build --template together --image-type venv" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "KkT2qVeTlI-b", + "outputId": "9198fbfc-a126-4409-e2f5-5f5bf5cdf9a7" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: `bwrap` is not available. Code interpreter tool will not work correctly.\n" + ] + }, + { + "data": { + "text/html": [ + "
Using config together:\n",
+              "
\n" + ], + "text/plain": [ + "Using config \u001b[34mtogether\u001b[0m:\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
apis:\n",
+              "- agents\n",
+              "- datasetio\n",
+              "- eval\n",
+              "- inference\n",
+              "- memory\n",
+              "- safety\n",
+              "- scoring\n",
+              "- telemetry\n",
+              "conda_env: together\n",
+              "datasets: []\n",
+              "docker_image: null\n",
+              "eval_tasks: []\n",
+              "image_name: together\n",
+              "memory_banks: []\n",
+              "metadata_store:\n",
+              "  db_path: /root/.llama/distributions/together/registry.db\n",
+              "  namespace: null\n",
+              "  type: sqlite\n",
+              "models:\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-3.1-8B-Instruct\n",
+              "  model_type: &id001 !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+              "  - llm\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-3.1-70B-Instruct\n",
+              "  model_type: *id001\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-3.1-405B-Instruct-FP8\n",
+              "  model_type: *id001\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-3.2-3B-Instruct\n",
+              "  model_type: *id001\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-3.2-11B-Vision-Instruct\n",
+              "  model_type: *id001\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-3.2-90B-Vision-Instruct\n",
+              "  model_type: *id001\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-Guard-3-8B\n",
+              "  model_type: *id001\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Meta-Llama-Guard-3-8B\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-Guard-3-11B-Vision\n",
+              "  model_type: *id001\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo\n",
+              "providers:\n",
+              "  agents:\n",
+              "  - config:\n",
+              "      persistence_store:\n",
+              "        db_path: /root/.llama/distributions/together/agents_store.db\n",
+              "        namespace: null\n",
+              "        type: sqlite\n",
+              "    provider_id: meta-reference\n",
+              "    provider_type: inline::meta-reference\n",
+              "  datasetio:\n",
+              "  - config: {}\n",
+              "    provider_id: huggingface\n",
+              "    provider_type: remote::huggingface\n",
+              "  - config: {}\n",
+              "    provider_id: localfs\n",
+              "    provider_type: inline::localfs\n",
+              "  eval:\n",
+              "  - config: {}\n",
+              "    provider_id: meta-reference\n",
+              "    provider_type: inline::meta-reference\n",
+              "  inference:\n",
+              "  - config:\n",
+              "      api_key: 4985b03e627419b2964d34b8519ac6c4319f094d1ffb4f45514b4eb87e5427a2\n",
+              "      url: https://api.together.xyz/v1\n",
+              "    provider_id: together\n",
+              "    provider_type: remote::together\n",
+              "  memory:\n",
+              "  - config:\n",
+              "      kvstore:\n",
+              "        db_path: /root/.llama/distributions/together/faiss_store.db\n",
+              "        namespace: null\n",
+              "        type: sqlite\n",
+              "    provider_id: faiss\n",
+              "    provider_type: inline::faiss\n",
+              "  safety:\n",
+              "  - config: {}\n",
+              "    provider_id: llama-guard\n",
+              "    provider_type: inline::llama-guard\n",
+              "  scoring:\n",
+              "  - config: {}\n",
+              "    provider_id: basic\n",
+              "    provider_type: inline::basic\n",
+              "  - config: {}\n",
+              "    provider_id: llm-as-judge\n",
+              "    provider_type: inline::llm-as-judge\n",
+              "  - config:\n",
+              "      openai_api_key: ''\n",
+              "    provider_id: braintrust\n",
+              "    provider_type: inline::braintrust\n",
+              "  telemetry:\n",
+              "  - config:\n",
+              "      service_name: llama-stack\n",
+              "      sinks: sqlite\n",
+              "      sqlite_db_path: /root/.llama/distributions/together/trace_store.db\n",
+              "    provider_id: meta-reference\n",
+              "    provider_type: inline::meta-reference\n",
+              "scoring_fns: []\n",
+              "shields:\n",
+              "- params: null\n",
+              "  provider_id: null\n",
+              "  provider_shield_id: null\n",
+              "  shield_id: meta-llama/Llama-Guard-3-8B\n",
+              "version: '2'\n",
+              "\n",
+              "
\n" + ], + "text/plain": [ + "apis:\n", + "- agents\n", + "- datasetio\n", + "- eval\n", + "- inference\n", + "- memory\n", + "- safety\n", + "- scoring\n", + "- telemetry\n", + "conda_env: together\n", + "datasets: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", + "docker_image: null\n", + "eval_tasks: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", + "image_name: together\n", + "memory_banks: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", + "metadata_store:\n", + " db_path: \u001b[35m/root/.llama/distributions/together/\u001b[0m\u001b[95mregistry.db\u001b[0m\n", + " namespace: null\n", + " type: sqlite\n", + "models:\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct\n", + " model_type: &id001 !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct\n", + " model_type: *id001\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-FP8\n", + " model_type: *id001\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct\n", + " model_type: *id001\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct\n", + " model_type: *id001\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct\n", + " model_type: *id001\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", + " model_type: *id001\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision\n", + " model_type: *id001\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n", + "providers:\n", + " agents:\n", + " - config:\n", + " persistence_store:\n", + " db_path: \u001b[35m/root/.llama/distributions/together/\u001b[0m\u001b[95magents_store.db\u001b[0m\n", + " namespace: null\n", + " type: sqlite\n", + " provider_id: meta-reference\n", + " provider_type: inline::meta-reference\n", + " datasetio:\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: huggingface\n", + " provider_type: remote::huggingface\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: localfs\n", + " provider_type: inline::localfs\n", + " eval:\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: meta-reference\n", + " provider_type: inline::meta-reference\n", + " inference:\n", + " - config:\n", + " api_key: 4985b03e627419b2964d34b8519ac6c4319f094d1ffb4f45514b4eb87e5427a2\n", + " url: \u001b[4;94mhttps://api.together.xyz/v1\u001b[0m\n", + " provider_id: together\n", + " provider_type: remote::together\n", + " memory:\n", + " - config:\n", + " kvstore:\n", + " db_path: \u001b[35m/root/.llama/distributions/together/\u001b[0m\u001b[95mfaiss_store.db\u001b[0m\n", + " namespace: null\n", + " type: sqlite\n", + " provider_id: faiss\n", + " provider_type: inlin\u001b[1;92me::fa\u001b[0miss\n", + " safety:\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: llama-guard\n", + " provider_type: inline::llama-guard\n", + " scoring:\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: basic\n", + " provider_type: inlin\u001b[1;92me::ba\u001b[0msic\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: llm-as-judge\n", + " provider_type: inline::llm-as-judge\n", + " - config:\n", + " openai_api_key: \u001b[32m''\u001b[0m\n", + " provider_id: braintrust\n", + " provider_type: inlin\u001b[1;92me::b\u001b[0mraintrust\n", + " telemetry:\n", + " - config:\n", + " service_name: llama-stack\n", + " sinks: sqlite\n", + " sqlite_db_path: \u001b[35m/root/.llama/distributions/together/\u001b[0m\u001b[95mtrace_store.db\u001b[0m\n", + " provider_id: meta-reference\n", + " provider_type: inline::meta-reference\n", + "scoring_fns: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", + "shields:\n", + "- params: null\n", + " provider_id: null\n", + " provider_shield_id: null\n", + " shield_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", + "version: \u001b[32m'2'\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "Model(identifier='meta-llama/Llama-3.1-405B-Instruct', metadata={}, provider_id='together', provider_resource_id='meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo', type='model', model_type='llm')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "from google.colab import userdata\n", + "\n", + "os.environ['TOGETHER_API_KEY'] = userdata.get('TOGETHER_API_KEY')\n", + "\n", + "from llama_stack.distribution.library_client import LlamaStackAsLibraryClient\n", + "client = LlamaStackAsLibraryClient(\"together\")\n", + "_ = client.initialize()\n", + "\n", + "# register 405B as LLM Judge model\n", + "client.models.register(\n", + " model_id=\"meta-llama/Llama-3.1-405B-Instruct\",\n", + " provider_model_id=\"meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\",\n", + " provider_id=\"together\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qwXHwHq4lS1s" + }, + "source": [ + "## 1. Open Benchmark Model Evaluation\n", + "\n", + "The first example walks you through how to evaluate a model candidate served by Llama Stack on open benchmarks. We will use the following benchmark:\n", + "\n", + "- [MMMU](https://arxiv.org/abs/2311.16502) (A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI)]: Benchmark designed to evaluate multimodal models.\n", + "- [SimpleQA](https://openai.com/index/introducing-simpleqa/): Benchmark designed to access models to answer short, fact-seeking questions." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dqXLFtcao1oI" + }, + "source": [ + "#### 1.1 Running MMMU\n", + "- We will use a pre-processed MMMU dataset from [llamastack/mmmu](https://huggingface.co/datasets/llamastack/mmmu). The preprocessing code is shown in in this [Github Gist](https://gist.github.com/yanxi0830/118e9c560227d27132a7fd10e2c92840). The dataset is obtained by transforming the original [MMMU/MMMU](https://huggingface.co/datasets/MMMU/MMMU) dataset into correct format by `inference/chat-completion` API." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "TC_IwIAQo4q-" + }, + "outputs": [], + "source": [ + "name = \"llamastack/mmmu\"\n", + "subset = \"Agriculture\"\n", + "split = \"dev\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 305, + "referenced_widgets": [ + "feb82e061ee44283b4a46be858ef4cd7", + "78a2d2d4ee3f42f3be42ef4baa298561", + "ba5e6ca09f174ef3a348453cf5cfc24a", + "74b58e4647644c9daf9af488942fdaf4", + "d56e218958a041e286e80f24e400ab0b", + "cab80632b7564a9eb59583e09573c1ee", + "10c0d50d7c204de0b4c8e8f4d3ec0af5", + "626ef2f811ae4e119a0e85cebe92b91d", + "aef4172d916f40b0ab4ed09104e10f24", + "25529e7fd57049d2816d31f696eab1fd", + "093bdcb608cf4b4fa37b0032a3915187", + "c788d4e9e1e24dca9b6503689df9b631", + "d1587e2144bf46299c1bdec3ea96e4e7", + "500a072c09da41759cb2c942a16d8429", + "9785009392934e3bbb229e8781667cbc", + "84570fe2c2a54a068fb9b8cbc8b041a1", + "f9e579c58e3f4ae0bbb721dffa33bf0a", + "737116977f474ec0b68d88a40fd1086c", + "e6d6e516cd03452297d80c36376855dd", + "6ae0fadb3aeb4be18a9ab3279fb23145", + "fa4800a506ac480984d58933580df086", + "117468099dbc42fdaafc08207eaac7ab", + "44f585990aa244d8ba61f892dc1ccc1c", + "4fc59928a0544f95a4438b37d19ca437", + "fb644d47049f495397d0e60597c86ea3", + "78632694ff694442bc3fefc2cac2cbf5", + "083fd2549abd4b03bd41d8b92ec28f42", + "611d6472a58d419583acc416767a4c90", + "98c5ce434cff454eaaa3f0fd3498183a", + "3d0344a9cc744e369da1b6b7ea1b3be8", + "c452ccbf47a44073aee710175f707a7d", + "0218397c573e4b28bfb4ffa66464d50f", + "9b01bcd6e5174be2af19f457047017c8", + "4fed5720f30b4b3cbbc606a4f25e223b", + "6fa866b9971542739b0ed26d90ceac80", + "fe7553b513954cc68c427b5d9d260b33", + "4bc266d49a6741a88350e029d101425b", + "da57445f98e7427589962836c2b4287e", + "ad1fb86cc1f94fd9911eda03cf4a3783", + "fdefb51ad4c4418b98c5826126558011", + "179d41b80dc841e8a440482516b8bca5", + "22b1ecd2eff14770bcfb0c62d3d4213f", + "47f876cf41484d55b645e1e99337423a", + "340fbbb4982c460992c88885e79b47db", + "9659140487ca4d3ea799196d2c1ecf61", + "52150fd494d24eea89b5232077509355", + "04acde771d0a46699e1de07d9733d1a3", + "7b98103300814f3caea84266263b95a2", + "75f06408071c494f934bb909b84110d1", + "b09b2690894749339a9172e5ad0a9b75", + "cbed38801163438d891879b756f5baab", + "399a6417b23e4593bb244ec3abb6b46d", + "53a321f36b0d4e08a74a5bcfbd04434b", + "b8c0c8aaac0d4032bf5c673a43d084ab", + "d1f32499fa3f4795b92361637e23a9bb", + "c06f9a090fb54c74b947634bf6d11fa8", + "82991dcc80f14af9bd2e95f705980676", + "cd832e3842b945aabbb327856053f261", + "93ee645d54f34acdb0d15092d4a6f0d1", + "b77fe05bbcf84cdc8ef85b264ccd35f6", + "e17d286a965a49cfb8d5bf885865cb1e", + "ca015c1a0c1449e68edb282462435a3f", + "2932b06afde9468a976eb6bfb072b80e", + "d027c807ddc04f89bec41dc05fde7718", + "4ff3a6aaf706460bbba01b248b93000e", + "bfd75a39f0154c30adbaad1e2ca0f1e2", + "4f788a7920c346f3b42900825bd6711a", + "8e9358ec7d474808bb96c13e13489c67", + "f0dfeee2a8d64dedbc8ef55ad4e69932", + "9437b707bf1a4847a50aafeb4252dab5", + "f255707788704a76bd1651f26a22402d", + "3b70fa4e43ef4951862e119378c3c501", + "6c0a6a7fa8ca4e1c961a36305f0e7638", + "201bd914f9884e46b8e6df9d9900a6e8", + "f53b7ada01084e73bba6e14a95e2a534", + "d2029292327b488db02fd123ee2b75af", + "3e26bc24a3e44b4582f57913bdf98de4", + "9d2b6eabf7e14436b72bbf374b4a2a0a", + "b5d7cb5a6157449a850ef0e12e3d3eb7", + "c245d316bf9e44dabe5bfd1e47fc8d2e", + "963cf422ca894d82b0dd94c6165d41bf", + "78d0e2aa93674bbeb42bff87a23cce9b", + "12c6f1180eeb4e9eb9037ea5dd24ec8e", + "017a81d7160240a398947545963856f5", + "1cf8eeb8d81c4e8a8e95dd43296a78b9", + "5b0b5a3f79e94c51aae48fe0dd34ba0e", + "f5b34a743ce54fb591f25b04a2651d65", + "dec6399e2c5341aead66e1674d3e6c72", + "24e48376a72940679989a39a40bbe7f6", + "484df732051540859bc7ac9cecadc83c", + "4b33b1db50c34a2fa957d81a71a2a47f", + "e51d501e2f994baba40345ad632eabee", + "631a85e420b64e8cb6915af59c5ce08a", + "70af9cb2838c4a92bd67f8cb5c98d97f", + "158115266c284c4f8dbce3586151cbf1", + "ce5019b36cde44c58c5f596dbb59a2f8", + "b90d660ca8584ba1815a3c66b420c079", + "7c4d1de626784a59a7e0a33c24086186", + "21cf0e35ecd845a8b5e7c5ce241cf177" + ] + }, + "collapsed": true, + "id": "DJkmoG2kq1_P", + "outputId": "8493ee59-c6ff-4bb6-d787-f295944db1cf" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "feb82e061ee44283b4a46be858ef4cd7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "README.md: 0%| | 0.00/36.0k [00:00EvaluateResponse(\n", + "generations=[\n", + "│ │ {\n", + "│ │ │ 'generated_answer': 'The Colorado potato beetle (Leptinotarsa decemlineata) is a significant pest of potatoes, causing damage to the leaves and stems of potato plants. The insect with black-colored antennae in the image is a Colorado potato beetle, which is known for its distinctive black and yellow stripes. On the other hand, the insect with tan-colored antennae is not a Colorado potato beetle and does not appear to be a pest of potatoes.\\n\\n*Answer*: B) The one with black coloured antennae'\n", + "│ │ },\n", + "│ │ {\n", + "│ │ │ 'generated_answer': 'To determine the count of pathogens infecting this sunflower leaf, we need to analyze the image carefully. The image shows a sunflower leaf with several brown spots and patches on its surface. These brown spots and patches are indicative of fungal infections, which are common pathogens that affect sunflowers.\\n\\nUpon closer inspection, we can see that there are two distinct types of brown spots and patches on the leaf. One type is smaller and more circular in shape, while the other type is larger and more irregular in shape. This suggests that there may be two different pathogens infecting the leaf.\\n\\nHowever, without further information or testing, it is difficult to say for certain whether these two types of brown spots and patches are caused by different pathogens or if they are just different stages of the same infection. Therefore, based on the available information, the most likely answer is:\\n\\nAnswer: B) Two pathogens'\n", + "│ │ },\n", + "│ │ {\n", + "│ │ │ 'generated_answer': 'Based on the image, the most likely reason for the massive gum production on the trunks of these grapefruit trees in Cyprus is a fungal infection. The gummosis, or the production of gum, is a common symptom of fungal diseases in citrus trees, and it can be caused by various factors such as root damage, water stress, or nutrient deficiencies. However, in this case, the presence of the gum on the trunks of the trees suggests that the cause is more likely related to a fungal infection.\\n\\nAnswer: E) Fungal gummosis'\n", + "│ │ },\n", + "│ │ {\n", + "│ │ │ 'generated_answer': 'The correct answer is D) Most viruses have a specific relationship with their vectors.\\n\\nExplanation:\\n\\n* Laboratory work with micro manipulators can mimic the transmission of viruses, but this is not the primary method of virus transmission in nature.\\n* Not all plant-feeding insects can transmit viruses; only specific species that have evolved to transmit particular viruses are capable of doing so.\\n* Similarly, not all plant viruses can be transmitted by insects; some are transmitted through other means such as mechanical transmission or nematodes.\\n* The correct assertion is that most viruses have a specific relationship with their vectors, meaning that each virus is typically transmitted by a specific type of insect or vector.\\n\\nAnswer: D'\n", + "│ │ },\n", + "│ │ {\n", + "│ │ │ 'generated_answer': \"The petioles of this rhubarb are splitting, and we need to determine which of the listed issues would not be the cause. \\n\\nFirst, let's consider physiological problems (A). Rhubarb is a hardy plant, but it can still experience physiological issues due to factors like temperature fluctuations, water stress, or nutrient deficiencies. These issues could potentially cause the petioles to split.\\n\\nNext, let's look at phytoplasma infection (B). Phytoplasmas are bacteria-like organisms that can infect plants, causing a range of symptoms including yellowing or browning of leaves, stunted growth, and distorted or split petioles. So, phytoplasma infection could also be a possible cause.\\n\\nNow, let's consider animal damage (D). Animals like rabbits, deer, or rodents might feed on the rhubarb leaves, causing damage to the petioles and potentially leading to splitting.\\n\\nFinally, let's think about bacteria (E). Bacterial infections can cause a range of symptoms in plants, including soft rot, leaf spot, and petiole splitting. So, bacteria could also be a potential cause.\\n\\nBased on this analysis, it seems that all of the listed issues could potentially cause the petioles of this rhubarb to split. Therefore, the correct answer is:\\n\\nAnswer: C\"\n", + "│ │ }\n", + "],\n", + "scores={\n", + "│ │ 'basic::regex_parser_multiple_choice_answer': ScoringResult(\n", + "│ │ │ aggregated_results={'accuracy': 0.2, 'num_correct': 1.0, 'num_total': 5.0},\n", + "│ │ │ score_rows=[{'score': 0.0}, {'score': 0.0}, {'score': 0.0}, {'score': 1.0}, {'score': 0.0}]\n", + "│ │ )\n", + "}\n", + ")\n", + "\n" + ], + "text/plain": [ + "\u001b[1;35mEvaluateResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mgenerations\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The Colorado potato beetle \u001b[0m\u001b[32m(\u001b[0m\u001b[32mLeptinotarsa decemlineata\u001b[0m\u001b[32m)\u001b[0m\u001b[32m is a significant pest of potatoes, causing damage to the leaves and stems of potato plants. The insect with black-colored antennae in the image is a Colorado potato beetle, which is known for its distinctive black and yellow stripes. On the other hand, the insect with tan-colored antennae is not a Colorado potato beetle and does not appear to be a pest of potatoes.\\n\\n*Answer*: B\u001b[0m\u001b[32m)\u001b[0m\u001b[32m The one with black coloured antennae'\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'To determine the count of pathogens infecting this sunflower leaf, we need to analyze the image carefully. The image shows a sunflower leaf with several brown spots and patches on its surface. These brown spots and patches are indicative of fungal infections, which are common pathogens that affect sunflowers.\\n\\nUpon closer inspection, we can see that there are two distinct types of brown spots and patches on the leaf. One type is smaller and more circular in shape, while the other type is larger and more irregular in shape. This suggests that there may be two different pathogens infecting the leaf.\\n\\nHowever, without further information or testing, it is difficult to say for certain whether these two types of brown spots and patches are caused by different pathogens or if they are just different stages of the same infection. Therefore, based on the available information, the most likely answer is:\\n\\nAnswer: B\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Two pathogens'\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'Based on the image, the most likely reason for the massive gum production on the trunks of these grapefruit trees in Cyprus is a fungal infection. The gummosis, or the production of gum, is a common symptom of fungal diseases in citrus trees, and it can be caused by various factors such as root damage, water stress, or nutrient deficiencies. However, in this case, the presence of the gum on the trunks of the trees suggests that the cause is more likely related to a fungal infection.\\n\\nAnswer: E\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Fungal gummosis'\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The correct answer is D\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Most viruses have a specific relationship with their vectors.\\n\\nExplanation:\\n\\n* Laboratory work with micro manipulators can mimic the transmission of viruses, but this is not the primary method of virus transmission in nature.\\n* Not all plant-feeding insects can transmit viruses; only specific species that have evolved to transmit particular viruses are capable of doing so.\\n* Similarly, not all plant viruses can be transmitted by insects; some are transmitted through other means such as mechanical transmission or nematodes.\\n* The correct assertion is that most viruses have a specific relationship with their vectors, meaning that each virus is typically transmitted by a specific type of insect or vector.\\n\\nAnswer: D'\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"The petioles of this rhubarb are splitting, and we need to determine which of the listed issues would not be the cause. \\n\\nFirst, let's consider physiological problems \u001b[0m\u001b[32m(\u001b[0m\u001b[32mA\u001b[0m\u001b[32m)\u001b[0m\u001b[32m. Rhubarb is a hardy plant, but it can still experience physiological issues due to factors like temperature fluctuations, water stress, or nutrient deficiencies. These issues could potentially cause the petioles to split.\\n\\nNext, let's look at phytoplasma infection \u001b[0m\u001b[32m(\u001b[0m\u001b[32mB\u001b[0m\u001b[32m)\u001b[0m\u001b[32m. Phytoplasmas are bacteria-like organisms that can infect plants, causing a range of symptoms including yellowing or browning of leaves, stunted growth, and distorted or split petioles. So, phytoplasma infection could also be a possible cause.\\n\\nNow, let's consider animal damage \u001b[0m\u001b[32m(\u001b[0m\u001b[32mD\u001b[0m\u001b[32m)\u001b[0m\u001b[32m. Animals like rabbits, deer, or rodents might feed on the rhubarb leaves, causing damage to the petioles and potentially leading to splitting.\\n\\nFinally, let's think about bacteria \u001b[0m\u001b[32m(\u001b[0m\u001b[32mE\u001b[0m\u001b[32m)\u001b[0m\u001b[32m. Bacterial infections can cause a range of symptoms in plants, including soft rot, leaf spot, and petiole splitting. So, bacteria could also be a potential cause.\\n\\nBased on this analysis, it seems that all of the listed issues could potentially cause the petioles of this rhubarb to split. Therefore, the correct answer is:\\n\\nAnswer: C\"\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mscores\u001b[0m=\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'basic::regex_parser_multiple_choice_answer'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m0.2\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m5.0\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m\u001b[1m]\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from tqdm import tqdm\n", + "from rich.pretty import pprint\n", + "\n", + "SYSTEM_PROMPT_TEMPLATE = \"\"\"\n", + "You are an expert in {subject} whose job is to answer questions from the user using images.\n", + "\n", + "First, reason about the correct answer.\n", + "\n", + "Then write the answer in the following format where X is exactly one of A,B,C,D:\n", + "\n", + "Answer: X\n", + "\n", + "Make sure X is one of A,B,C,D.\n", + "\n", + "If you are uncertain of the correct answer, guess the most likely one.\n", + "\"\"\"\n", + "\n", + "system_message = {\n", + " \"role\": \"system\",\n", + " \"content\": SYSTEM_PROMPT_TEMPLATE.format(subject=subset),\n", + "}\n", + "\n", + "client.eval_tasks.register(\n", + " eval_task_id=\"meta-reference::mmmu\",\n", + " dataset_id=f\"mmmu-{subset}-{split}\",\n", + " scoring_functions=[\"basic::regex_parser_multiple_choice_answer\"]\n", + ")\n", + "\n", + "response = client.eval.evaluate_rows(\n", + " task_id=\"meta-reference::mmmu\",\n", + " input_rows=eval_rows,\n", + " scoring_functions=[\"basic::regex_parser_multiple_choice_answer\"],\n", + " task_config={\n", + " \"type\": \"benchmark\",\n", + " \"eval_candidate\": {\n", + " \"type\": \"model\",\n", + " \"model\": \"meta-llama/Llama-3.2-90B-Vision-Instruct\",\n", + " \"sampling_params\": {\n", + " \"temperature\": 0.0,\n", + " \"max_tokens\": 4096,\n", + " \"top_p\": 0.9,\n", + " \"repeat_penalty\": 1.0,\n", + " },\n", + " \"system_message\": system_message\n", + " }\n", + " }\n", + ")\n", + "pprint(response)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vYlb9wKzwg-s" + }, + "source": [ + "#### 1.2. Running SimpleQA\n", + "- We will use a pre-processed SimpleQA dataset from [llamastack/evals](https://huggingface.co/datasets/llamastack/evals/viewer/evals__simpleqa) which is obtained by transforming the input query into correct format accepted by `inference/chat-completion` API.\n", + "- Since we will be using this same dataset in our next example for Agentic evaluation, we will register it using the `/datasets` API, and interact with it through `/datasetio` API." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "HXmZf3Ymw-aX" + }, + "outputs": [], + "source": [ + "simpleqa_dataset_id = \"huggingface::simpleqa\"\n", + "\n", + "_ = client.datasets.register(\n", + " dataset_id=simpleqa_dataset_id,\n", + " provider_id=\"huggingface\",\n", + " url={\"uri\": \"https://huggingface.co/datasets/llamastack/evals\"},\n", + " metadata={\n", + " \"path\": \"llamastack/evals\",\n", + " \"name\": \"evals__simpleqa\",\n", + " \"split\": \"train\",\n", + " },\n", + " dataset_schema={\n", + " \"input_query\": {\"type\": \"string\"},\n", + " \"expected_answer\": {\"type\": \"string\"},\n", + " \"chat_completion_input\": {\"type\": \"chat_completion_input\"},\n", + " }\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Gc8azb4Rxr5J" + }, + "outputs": [], + "source": [ + "eval_rows = client.datasetio.get_rows_paginated(\n", + " dataset_id=simpleqa_dataset_id,\n", + " rows_in_page=5,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 506 + }, + "id": "zSYAUnBUyRaG", + "outputId": "038cf42f-4e3c-4053-b3c4-cf16547483dd" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 5/5 [00:48<00:00, 9.68s/it]\n" + ] + }, + { + "data": { + "text/html": [ + "
EvaluateResponse(\n",
+              "generations=[\n",
+              "│   │   {'generated_answer': 'The recipient of the IEEE Frank Rosenblatt Award in 2010 was Vladimir Vapnik'},\n",
+              "│   │   {\n",
+              "│   │   │   'generated_answer': \"I am unable to verify who was awarded the Oceanography Society's Jerlov Award in 2018.\"\n",
+              "│   │   },\n",
+              "│   │   {\n",
+              "│   │   │   'generated_answer': \"Radcliffe College was a women's liberal arts college, but it has since been integrated into Harvard University.\"\n",
+              "│   │   },\n",
+              "│   │   {\n",
+              "│   │   │   'generated_answer': \"The Leipzig 1877 tournament was organized in the honor of 50th anniversary of the first chess club in Germany (the Leipzig Chess Club's) founding and of the 50th anniversary of Paul Morphy's birth\"\n",
+              "│   │   },\n",
+              "│   │   {\n",
+              "│   │   │   'generated_answer': \"Karl Küchler's 1908 guidebook states that Empress Elizabeth of Austria's favorite sculpture, which was made for her villa Achilleion at Corfu, depicted 'Dying Achilles'.\"\n",
+              "│   │   }\n",
+              "],\n",
+              "scores={\n",
+              "│   │   'llm-as-judge::405b-simpleqa': ScoringResult(\n",
+              "│   │   │   aggregated_results={},\n",
+              "│   │   │   score_rows=[\n",
+              "│   │   │   │   {'score': 'B', 'judge_feedback': 'B'},\n",
+              "│   │   │   │   {'score': 'C', 'judge_feedback': 'C'},\n",
+              "│   │   │   │   {'score': 'A', 'judge_feedback': 'A'},\n",
+              "│   │   │   │   {'score': 'B', 'judge_feedback': 'B'},\n",
+              "│   │   │   │   {'score': 'B', 'judge_feedback': 'B'}\n",
+              "│   │   │   ]\n",
+              "│   │   )\n",
+              "}\n",
+              ")\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1;35mEvaluateResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mgenerations\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The recipient of the IEEE Frank Rosenblatt Award in 2010 was Vladimir Vapnik'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"I am unable to verify who was awarded the Oceanography Society's Jerlov Award in 2018.\"\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"Radcliffe College was a women's liberal arts college, but it has since been integrated into Harvard University.\"\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"The Leipzig 1877 tournament was organized in the honor of 50th anniversary of the first chess club in Germany \u001b[0m\u001b[32m(\u001b[0m\u001b[32mthe Leipzig Chess Club's\u001b[0m\u001b[32m)\u001b[0m\u001b[32m founding and of the 50th anniversary of Paul Morphy's birth\"\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"Karl Küchler's 1908 guidebook states that Empress Elizabeth of Austria's favorite sculpture, which was made for her villa Achilleion at Corfu, depicted 'Dying Achilles'.\"\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mscores\u001b[0m=\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'llm-as-judge::405b-simpleqa'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'B'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'A'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'A'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'B'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'B'\u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1m]\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "client.eval_tasks.register(\n", + " eval_task_id=\"meta-reference::simpleqa\",\n", + " dataset_id=simpleqa_dataset_id,\n", + " scoring_functions=[\"llm-as-judge::405b-simpleqa\"]\n", + ")\n", + "\n", + "response = client.eval.evaluate_rows(\n", + " task_id=\"meta-reference::simpleqa\",\n", + " input_rows=eval_rows.rows,\n", + " scoring_functions=[\"llm-as-judge::405b-simpleqa\"],\n", + " task_config={\n", + " \"type\": \"benchmark\",\n", + " \"eval_candidate\": {\n", + " \"type\": \"model\",\n", + " \"model\": \"meta-llama/Llama-3.2-90B-Vision-Instruct\",\n", + " \"sampling_params\": {\n", + " \"temperature\": 0.0,\n", + " \"max_tokens\": 4096,\n", + " \"top_p\": 0.9,\n", + " \"repeat_penalty\": 1.0,\n", + " },\n", + " }\n", + " }\n", + ")\n", + "pprint(response)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eyziqe_Em6d6" + }, + "source": [ + "## 2. Agentic Evaluation\n", + "\n", + "- In this example, we will demonstrate how to evaluate a agent candidate served by Llama Stack via `/agent` API.\n", + "\n", + "- We will continue to use the SimpleQA dataset we used in previous example.\n", + "\n", + "- Instead of running evaluation on model, we will run the evaluation on a Search Agent with access to search tool. We will define our agent evaluation candidate through `AgentConfig`.\n", + "\n", + "> You will need to set the `TAVILY_SEARCH_API_KEY` in Secrets of this notebook." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 538 + }, + "id": "mxLCsP4MvFqP", + "outputId": "8be2a32f-2a47-4443-8992-0000c23ca678" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "5it [00:26, 5.29s/it]\n" + ] + }, + { + "data": { + "text/html": [ + "
EvaluateResponse(\n",
+              "generations=[\n",
+              "│   │   {\n",
+              "│   │   │   'generated_answer': \"I'm sorry but I cannot find the recipient of the IEEE Frank Rosenblatt Award in 2010.\"\n",
+              "│   │   },\n",
+              "│   │   {\n",
+              "│   │   │   'generated_answer': \"I'm not sure who was awarded the Oceanography Society's Jerlov Award in 2018. Let me search for the information.\"\n",
+              "│   │   },\n",
+              "│   │   {\n",
+              "│   │   │   'generated_answer': \"The women's liberal arts college in Cambridge, Massachusetts is called Radcliffe College. However, in 1999, it merged with Harvard University and is now known as the Radcliffe Institute for Advanced Study at Harvard University.\"\n",
+              "│   │   },\n",
+              "│   │   {\n",
+              "│   │   │   'generated_answer': 'The 1877 Leipzig tournament was organized in honor of Anderssen, a German chess master.'\n",
+              "│   │   },\n",
+              "│   │   {\n",
+              "│   │   │   'generated_answer': \"Empress Elizabeth of Austria's favorite sculpture, made for her villa Achilleion at Corfu, depicted Achilles.\"\n",
+              "│   │   }\n",
+              "],\n",
+              "scores={\n",
+              "│   │   'llm-as-judge::405b-simpleqa': ScoringResult(\n",
+              "│   │   │   aggregated_results={},\n",
+              "│   │   │   score_rows=[\n",
+              "│   │   │   │   {'score': 'C', 'judge_feedback': 'C.'},\n",
+              "│   │   │   │   {'score': 'C', 'judge_feedback': 'C'},\n",
+              "│   │   │   │   {'score': 'A', 'judge_feedback': 'A'},\n",
+              "│   │   │   │   {'score': 'A', 'judge_feedback': 'A'},\n",
+              "│   │   │   │   {'score': 'B', 'judge_feedback': 'B'}\n",
+              "│   │   │   ]\n",
+              "│   │   )\n",
+              "}\n",
+              ")\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1;35mEvaluateResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mgenerations\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"I'm sorry but I cannot find the recipient of the IEEE Frank Rosenblatt Award in 2010.\"\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"I'm not sure who was awarded the Oceanography Society's Jerlov Award in 2018. Let me search for the information.\"\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"The women's liberal arts college in Cambridge, Massachusetts is called Radcliffe College. However, in 1999, it merged with Harvard University and is now known as the Radcliffe Institute for Advanced Study at Harvard University.\"\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The 1877 Leipzig tournament was organized in honor of Anderssen, a German chess master.'\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"Empress Elizabeth of Austria's favorite sculpture, made for her villa Achilleion at Corfu, depicted Achilles.\"\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mscores\u001b[0m=\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'llm-as-judge::405b-simpleqa'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C.'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'A'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'A'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'A'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'A'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'B'\u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1m]\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agent_config = {\n", + " \"model\": \"meta-llama/Llama-3.1-405B-Instruct\",\n", + " \"instructions\": \"You are a helpful assistant\",\n", + " \"sampling_params\": {\n", + " \"strategy\": \"greedy\",\n", + " \"temperature\": 0.0,\n", + " \"top_p\": 0.95,\n", + " },\n", + " \"tools\": [\n", + " {\n", + " \"type\": \"brave_search\",\n", + " \"engine\": \"tavily\",\n", + " \"api_key\": userdata.get(\"TAVILY_SEARCH_API_KEY\")\n", + " }\n", + " ],\n", + " \"tool_choice\": \"auto\",\n", + " \"tool_prompt_format\": \"json\",\n", + " \"input_shields\": [],\n", + " \"output_shields\": [],\n", + " \"enable_session_persistence\": False\n", + "}\n", + "\n", + "response = client.eval.evaluate_rows(\n", + " task_id=\"meta-reference::simpleqa\",\n", + " input_rows=eval_rows.rows,\n", + " scoring_functions=[\"llm-as-judge::405b-simpleqa\"],\n", + " task_config={\n", + " \"type\": \"benchmark\",\n", + " \"eval_candidate\": {\n", + " \"type\": \"agent\",\n", + " \"config\": agent_config,\n", + " }\n", + " }\n", + ")\n", + "pprint(response)" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [ + "bxs0FJ1ckGa6", + "eyziqe_Em6d6" + ], + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "017a81d7160240a398947545963856f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0218397c573e4b28bfb4ffa66464d50f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "04acde771d0a46699e1de07d9733d1a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_399a6417b23e4593bb244ec3abb6b46d", + "max": 453677660, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_53a321f36b0d4e08a74a5bcfbd04434b", + "value": 453677660 + } + }, + "083fd2549abd4b03bd41d8b92ec28f42": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "093bdcb608cf4b4fa37b0032a3915187": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "10c0d50d7c204de0b4c8e8f4d3ec0af5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "117468099dbc42fdaafc08207eaac7ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "12c6f1180eeb4e9eb9037ea5dd24ec8e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "158115266c284c4f8dbce3586151cbf1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "179d41b80dc841e8a440482516b8bca5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1cf8eeb8d81c4e8a8e95dd43296a78b9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "201bd914f9884e46b8e6df9d9900a6e8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "21cf0e35ecd845a8b5e7c5ce241cf177": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "22b1ecd2eff14770bcfb0c62d3d4213f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "24e48376a72940679989a39a40bbe7f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_484df732051540859bc7ac9cecadc83c", + "IPY_MODEL_4b33b1db50c34a2fa957d81a71a2a47f", + "IPY_MODEL_e51d501e2f994baba40345ad632eabee" + ], + "layout": "IPY_MODEL_631a85e420b64e8cb6915af59c5ce08a" + } + }, + "25529e7fd57049d2816d31f696eab1fd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2932b06afde9468a976eb6bfb072b80e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "340fbbb4982c460992c88885e79b47db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "399a6417b23e4593bb244ec3abb6b46d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3b70fa4e43ef4951862e119378c3c501": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3d0344a9cc744e369da1b6b7ea1b3be8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3e26bc24a3e44b4582f57913bdf98de4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "44f585990aa244d8ba61f892dc1ccc1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4fc59928a0544f95a4438b37d19ca437", + "IPY_MODEL_fb644d47049f495397d0e60597c86ea3", + "IPY_MODEL_78632694ff694442bc3fefc2cac2cbf5" + ], + "layout": "IPY_MODEL_083fd2549abd4b03bd41d8b92ec28f42" + } + }, + "47f876cf41484d55b645e1e99337423a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "484df732051540859bc7ac9cecadc83c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_70af9cb2838c4a92bd67f8cb5c98d97f", + "placeholder": "​", + "style": "IPY_MODEL_158115266c284c4f8dbce3586151cbf1", + "value": "Generating test split: 100%" + } + }, + "4b33b1db50c34a2fa957d81a71a2a47f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ce5019b36cde44c58c5f596dbb59a2f8", + "max": 287, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b90d660ca8584ba1815a3c66b420c079", + "value": 287 + } + }, + "4bc266d49a6741a88350e029d101425b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_47f876cf41484d55b645e1e99337423a", + "placeholder": "​", + "style": "IPY_MODEL_340fbbb4982c460992c88885e79b47db", + "value": " 461M/461M [00:11<00:00, 31.2MB/s]" + } + }, + "4f788a7920c346f3b42900825bd6711a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e9358ec7d474808bb96c13e13489c67", + "IPY_MODEL_f0dfeee2a8d64dedbc8ef55ad4e69932", + "IPY_MODEL_9437b707bf1a4847a50aafeb4252dab5" + ], + "layout": "IPY_MODEL_f255707788704a76bd1651f26a22402d" + } + }, + "4fc59928a0544f95a4438b37d19ca437": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_611d6472a58d419583acc416767a4c90", + "placeholder": "​", + "style": "IPY_MODEL_98c5ce434cff454eaaa3f0fd3498183a", + "value": "validation-00000-of-00001.parquet: 100%" + } + }, + "4fed5720f30b4b3cbbc606a4f25e223b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6fa866b9971542739b0ed26d90ceac80", + "IPY_MODEL_fe7553b513954cc68c427b5d9d260b33", + "IPY_MODEL_4bc266d49a6741a88350e029d101425b" + ], + "layout": "IPY_MODEL_da57445f98e7427589962836c2b4287e" + } + }, + "4ff3a6aaf706460bbba01b248b93000e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "500a072c09da41759cb2c942a16d8429": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e6d6e516cd03452297d80c36376855dd", + "max": 29453850, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6ae0fadb3aeb4be18a9ab3279fb23145", + "value": 29453850 + } + }, + "52150fd494d24eea89b5232077509355": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b09b2690894749339a9172e5ad0a9b75", + "placeholder": "​", + "style": "IPY_MODEL_cbed38801163438d891879b756f5baab", + "value": "test-00001-of-00003.parquet: 100%" + } + }, + "53a321f36b0d4e08a74a5bcfbd04434b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5b0b5a3f79e94c51aae48fe0dd34ba0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "611d6472a58d419583acc416767a4c90": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "626ef2f811ae4e119a0e85cebe92b91d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "631a85e420b64e8cb6915af59c5ce08a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6ae0fadb3aeb4be18a9ab3279fb23145": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6c0a6a7fa8ca4e1c961a36305f0e7638": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6fa866b9971542739b0ed26d90ceac80": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ad1fb86cc1f94fd9911eda03cf4a3783", + "placeholder": "​", + "style": "IPY_MODEL_fdefb51ad4c4418b98c5826126558011", + "value": "test-00000-of-00003.parquet: 100%" + } + }, + "70af9cb2838c4a92bd67f8cb5c98d97f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "737116977f474ec0b68d88a40fd1086c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "74b58e4647644c9daf9af488942fdaf4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_25529e7fd57049d2816d31f696eab1fd", + "placeholder": "​", + "style": "IPY_MODEL_093bdcb608cf4b4fa37b0032a3915187", + "value": " 36.0k/36.0k [00:00<00:00, 1.29MB/s]" + } + }, + "75f06408071c494f934bb909b84110d1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "78632694ff694442bc3fefc2cac2cbf5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0218397c573e4b28bfb4ffa66464d50f", + "placeholder": "​", + "style": "IPY_MODEL_9b01bcd6e5174be2af19f457047017c8", + "value": " 165M/165M [00:03<00:00, 42.9MB/s]" + } + }, + "78a2d2d4ee3f42f3be42ef4baa298561": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cab80632b7564a9eb59583e09573c1ee", + "placeholder": "​", + "style": "IPY_MODEL_10c0d50d7c204de0b4c8e8f4d3ec0af5", + "value": "README.md: 100%" + } + }, + "78d0e2aa93674bbeb42bff87a23cce9b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7b98103300814f3caea84266263b95a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b8c0c8aaac0d4032bf5c673a43d084ab", + "placeholder": "​", + "style": "IPY_MODEL_d1f32499fa3f4795b92361637e23a9bb", + "value": " 454M/454M [00:11<00:00, 40.4MB/s]" + } + }, + "7c4d1de626784a59a7e0a33c24086186": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "82991dcc80f14af9bd2e95f705980676": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e17d286a965a49cfb8d5bf885865cb1e", + "placeholder": "​", + "style": "IPY_MODEL_ca015c1a0c1449e68edb282462435a3f", + "value": "test-00002-of-00003.parquet: 100%" + } + }, + "84570fe2c2a54a068fb9b8cbc8b041a1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8e9358ec7d474808bb96c13e13489c67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3b70fa4e43ef4951862e119378c3c501", + "placeholder": "​", + "style": "IPY_MODEL_6c0a6a7fa8ca4e1c961a36305f0e7638", + "value": "Generating dev split: 100%" + } + }, + "93ee645d54f34acdb0d15092d4a6f0d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4ff3a6aaf706460bbba01b248b93000e", + "placeholder": "​", + "style": "IPY_MODEL_bfd75a39f0154c30adbaad1e2ca0f1e2", + "value": " 471M/471M [00:11<00:00, 41.5MB/s]" + } + }, + "9437b707bf1a4847a50aafeb4252dab5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d2029292327b488db02fd123ee2b75af", + "placeholder": "​", + "style": "IPY_MODEL_3e26bc24a3e44b4582f57913bdf98de4", + "value": " 5/5 [00:00<00:00,  8.03 examples/s]" + } + }, + "963cf422ca894d82b0dd94c6165d41bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f5b34a743ce54fb591f25b04a2651d65", + "placeholder": "​", + "style": "IPY_MODEL_dec6399e2c5341aead66e1674d3e6c72", + "value": " 30/30 [00:03<00:00,  8.23 examples/s]" + } + }, + "9659140487ca4d3ea799196d2c1ecf61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_52150fd494d24eea89b5232077509355", + "IPY_MODEL_04acde771d0a46699e1de07d9733d1a3", + "IPY_MODEL_7b98103300814f3caea84266263b95a2" + ], + "layout": "IPY_MODEL_75f06408071c494f934bb909b84110d1" + } + }, + "9785009392934e3bbb229e8781667cbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fa4800a506ac480984d58933580df086", + "placeholder": "​", + "style": "IPY_MODEL_117468099dbc42fdaafc08207eaac7ab", + "value": " 29.5M/29.5M [00:00<00:00, 36.5MB/s]" + } + }, + "98c5ce434cff454eaaa3f0fd3498183a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9b01bcd6e5174be2af19f457047017c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9d2b6eabf7e14436b72bbf374b4a2a0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b5d7cb5a6157449a850ef0e12e3d3eb7", + "IPY_MODEL_c245d316bf9e44dabe5bfd1e47fc8d2e", + "IPY_MODEL_963cf422ca894d82b0dd94c6165d41bf" + ], + "layout": "IPY_MODEL_78d0e2aa93674bbeb42bff87a23cce9b" + } + }, + "ad1fb86cc1f94fd9911eda03cf4a3783": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aef4172d916f40b0ab4ed09104e10f24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b09b2690894749339a9172e5ad0a9b75": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b5d7cb5a6157449a850ef0e12e3d3eb7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_12c6f1180eeb4e9eb9037ea5dd24ec8e", + "placeholder": "​", + "style": "IPY_MODEL_017a81d7160240a398947545963856f5", + "value": "Generating validation split: 100%" + } + }, + "b77fe05bbcf84cdc8ef85b264ccd35f6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b8c0c8aaac0d4032bf5c673a43d084ab": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b90d660ca8584ba1815a3c66b420c079": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ba5e6ca09f174ef3a348453cf5cfc24a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_626ef2f811ae4e119a0e85cebe92b91d", + "max": 36030, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_aef4172d916f40b0ab4ed09104e10f24", + "value": 36030 + } + }, + "bfd75a39f0154c30adbaad1e2ca0f1e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c06f9a090fb54c74b947634bf6d11fa8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_82991dcc80f14af9bd2e95f705980676", + "IPY_MODEL_cd832e3842b945aabbb327856053f261", + "IPY_MODEL_93ee645d54f34acdb0d15092d4a6f0d1" + ], + "layout": "IPY_MODEL_b77fe05bbcf84cdc8ef85b264ccd35f6" + } + }, + "c245d316bf9e44dabe5bfd1e47fc8d2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1cf8eeb8d81c4e8a8e95dd43296a78b9", + "max": 30, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5b0b5a3f79e94c51aae48fe0dd34ba0e", + "value": 30 + } + }, + "c452ccbf47a44073aee710175f707a7d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c788d4e9e1e24dca9b6503689df9b631": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d1587e2144bf46299c1bdec3ea96e4e7", + "IPY_MODEL_500a072c09da41759cb2c942a16d8429", + "IPY_MODEL_9785009392934e3bbb229e8781667cbc" + ], + "layout": "IPY_MODEL_84570fe2c2a54a068fb9b8cbc8b041a1" + } + }, + "ca015c1a0c1449e68edb282462435a3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cab80632b7564a9eb59583e09573c1ee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cbed38801163438d891879b756f5baab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cd832e3842b945aabbb327856053f261": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2932b06afde9468a976eb6bfb072b80e", + "max": 470745176, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d027c807ddc04f89bec41dc05fde7718", + "value": 470745176 + } + }, + "ce5019b36cde44c58c5f596dbb59a2f8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d027c807ddc04f89bec41dc05fde7718": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d1587e2144bf46299c1bdec3ea96e4e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f9e579c58e3f4ae0bbb721dffa33bf0a", + "placeholder": "​", + "style": "IPY_MODEL_737116977f474ec0b68d88a40fd1086c", + "value": "dev-00000-of-00001.parquet: 100%" + } + }, + "d1f32499fa3f4795b92361637e23a9bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d2029292327b488db02fd123ee2b75af": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d56e218958a041e286e80f24e400ab0b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "da57445f98e7427589962836c2b4287e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dec6399e2c5341aead66e1674d3e6c72": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e17d286a965a49cfb8d5bf885865cb1e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e51d501e2f994baba40345ad632eabee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7c4d1de626784a59a7e0a33c24086186", + "placeholder": "​", + "style": "IPY_MODEL_21cf0e35ecd845a8b5e7c5ce241cf177", + "value": " 287/287 [00:23<00:00, 12.48 examples/s]" + } + }, + "e6d6e516cd03452297d80c36376855dd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f0dfeee2a8d64dedbc8ef55ad4e69932": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_201bd914f9884e46b8e6df9d9900a6e8", + "max": 5, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f53b7ada01084e73bba6e14a95e2a534", + "value": 5 + } + }, + "f255707788704a76bd1651f26a22402d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f53b7ada01084e73bba6e14a95e2a534": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f5b34a743ce54fb591f25b04a2651d65": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f9e579c58e3f4ae0bbb721dffa33bf0a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fa4800a506ac480984d58933580df086": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fb644d47049f495397d0e60597c86ea3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3d0344a9cc744e369da1b6b7ea1b3be8", + "max": 165333397, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c452ccbf47a44073aee710175f707a7d", + "value": 165333397 + } + }, + "fdefb51ad4c4418b98c5826126558011": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fe7553b513954cc68c427b5d9d260b33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_179d41b80dc841e8a440482516b8bca5", + "max": 461411018, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_22b1ecd2eff14770bcfb0c62d3d4213f", + "value": 461411018 + } + }, + "feb82e061ee44283b4a46be858ef4cd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_78a2d2d4ee3f42f3be42ef4baa298561", + "IPY_MODEL_ba5e6ca09f174ef3a348453cf5cfc24a", + "IPY_MODEL_74b58e4647644c9daf9af488942fdaf4" + ], + "layout": "IPY_MODEL_d56e218958a041e286e80f24e400ab0b" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/docs/notebooks/Llama_Stack_Building_AI_Applications.ipynb b/docs/notebooks/Llama_Stack_Building_AI_Applications.ipynb new file mode 100644 index 0000000000..f036bfe6b2 --- /dev/null +++ b/docs/notebooks/Llama_Stack_Building_AI_Applications.ipynb @@ -0,0 +1,4658 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "c1e7571c", + "metadata": { + "id": "c1e7571c" + }, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1F2ksmkoGQPa4pzRjMOE6BXWeOxWFIW6n?usp=sharing)\n", + "\n", + "# Llama Stack - Building AI Applications\n", + "\n", + "\"drawing\"\n", + "\n", + "[Llama Stack](https://github.com/meta-llama/llama-stack) defines and standardizes the set of core building blocks needed to bring generative AI applications to market. These building blocks are presented in the form of interoperable APIs with a broad set of Service Providers providing their implementations.\n", + "\n", + "Read more about the project: https://llama-stack.readthedocs.io/en/latest/index.html\n", + "\n", + "In this guide, we will showcase how you can build LLM-powered agentic applications using Llama Stack.\n" + ] + }, + { + "cell_type": "markdown", + "id": "4CV1Q19BDMVw", + "metadata": { + "id": "4CV1Q19BDMVw" + }, + "source": [ + "## 1. Getting started with Llama Stack" + ] + }, + { + "cell_type": "markdown", + "id": "K4AvfUAJZOeS", + "metadata": { + "id": "K4AvfUAJZOeS" + }, + "source": [ + "### 1.1. Create TogetherAI account\n", + "\n", + "\n", + "In order to run inference for the llama models, you will need to use an inference provider. Llama stack supports a number of inference [providers](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/remote/inference).\n", + "\n", + "\n", + "In this showcase, we will use [together.ai](https://www.together.ai/) as the inference provider. So, you would first get an API key from Together if you dont have one already.\n", + "\n", + "Steps [here](https://docs.google.com/document/d/1Vg998IjRW_uujAPnHdQ9jQWvtmkZFt74FldW2MblxPY/edit?usp=sharing).\n", + "\n", + "You can also use Fireworks.ai or even Ollama if you would like to.\n", + "\n", + "\n", + "\n", + "> **Note:** Set the API Key in the Secrets of this notebook\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "oDUB7M_qe-Gs", + "metadata": { + "id": "oDUB7M_qe-Gs" + }, + "source": [ + "### 1.2. Install Llama Stack\n", + "\n", + "We will now start with installing the [llama-stack pypi package](https://pypi.org/project/llama-stack).\n", + "\n", + "In addition, we will install [bubblewrap](https://github.com/containers/bubblewrap), a low level light-weight container framework that runs in the user namespace. We will use it to execute code generated by Llama in one of the examples." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "J2kGed0R5PSf", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "J2kGed0R5PSf", + "outputId": "7d543c6f-623d-4911-b9a7-4ed24d5b82f2" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reading package lists... Done\n", + "Building dependency tree... Done\n", + "Reading state information... Done\n", + "bubblewrap is already the newest version (0.6.1-1ubuntu0.1).\n", + "0 upgraded, 0 newly installed, 0 to remove and 49 not upgraded.\n", + "Requirement already satisfied: llama-stack in /usr/local/lib/python3.10/dist-packages (0.0.61)\n", + "Requirement already satisfied: blobfile in /usr/local/lib/python3.10/dist-packages (from llama-stack) (3.0.0)\n", + "Requirement already satisfied: fire in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.7.0)\n", + "Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.28.1)\n", + "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.26.5)\n", + "Requirement already satisfied: llama-models>=0.0.61 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.0.61)\n", + "Requirement already satisfied: llama-stack-client>=0.0.61 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.0.61)\n", + "Requirement already satisfied: prompt-toolkit in /usr/local/lib/python3.10/dist-packages (from llama-stack) (3.0.48)\n", + "Requirement already satisfied: python-dotenv in /usr/local/lib/python3.10/dist-packages (from llama-stack) (1.0.1)\n", + "Requirement already satisfied: pydantic>=2 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.10.3)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.32.3)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from llama-stack) (13.9.4)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from llama-stack) (75.1.0)\n", + "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.5.0)\n", + "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (6.0.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (3.1.4)\n", + "Requirement already satisfied: tiktoken in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (0.8.0)\n", + "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (10.4.0)\n", + "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (3.7.1)\n", + "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (8.1.7)\n", + "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (1.9.0)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (2.2.2)\n", + "Requirement already satisfied: pyaml in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (24.12.1)\n", + "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (1.3.1)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (4.66.6)\n", + "Requirement already satisfied: typing-extensions<5,>=4.7 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (4.12.2)\n", + "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (2024.8.30)\n", + "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (1.0.7)\n", + "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (3.10)\n", + "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx->llama-stack) (0.14.0)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.27.1 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (2.27.1)\n", + "Requirement already satisfied: pycryptodomex>=3.8 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (3.21.0)\n", + "Requirement already satisfied: urllib3<3,>=1.25.3 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (2.2.3)\n", + "Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (5.3.0)\n", + "Requirement already satisfied: filelock>=3.0 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (3.16.1)\n", + "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (2024.9.0)\n", + "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (24.2)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit->llama-stack) (0.2.13)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->llama-stack) (3.4.0)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (2.18.0)\n", + "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->llama-stack-client>=0.0.61->llama-stack) (1.2.2)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->llama-stack) (0.1.2)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->llama-models>=0.0.61->llama-stack) (3.0.2)\n", + "Requirement already satisfied: numpy>=1.22.4 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (1.26.4)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2024.2)\n", + "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken->llama-models>=0.0.61->llama-stack) (2024.9.11)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->llama-stack-client>=0.0.61->llama-stack) (1.17.0)\n" + ] + } + ], + "source": [ + "!apt-get install -y bubblewrap\n", + "!pip install -U llama-stack" + ] + }, + { + "cell_type": "markdown", + "id": "414301dc", + "metadata": { + "id": "414301dc" + }, + "source": [ + "### 1.3. Configure Llama Stack for Together\n", + "\n", + "\n", + "Llama Stack is architected as a collection of lego blocks which can be assembled as needed.\n", + "\n", + "\n", + "Typically, llama stack is available as a server with an endpoint that you can hit. We call this endpoint a [Distribution](https://llama-stack.readthedocs.io/en/latest/concepts/index.html#distributions). Partners like Together and Fireworks offer their own Llama Stack Distribution endpoints.\n", + "\n", + "In this showcase, we are going to use llama stack inline as a library. So, given a particular set of providers, we must first package up the right set of dependencies. We have a template to use Together as an inference provider and [faiss](https://ai.meta.com/tools/faiss/) for memory/RAG.\n", + "\n", + "We will run `llama stack build` to deploy all dependencies." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "HaepEZXCDgif", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "HaepEZXCDgif", + "outputId": "9c268d26-7444-4741-f14d-3911eea8e4eb" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: llama-stack in /usr/local/lib/python3.10/dist-packages (0.0.61)\r\n", + "Requirement already satisfied: blobfile in /usr/local/lib/python3.10/dist-packages (from llama-stack) (3.0.0)\r\n", + "Requirement already satisfied: fire in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.7.0)\r\n", + "Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.28.1)\r\n", + "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.26.5)\r\n", + "Requirement already satisfied: llama-models>=0.0.61 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.0.61)\r\n", + "Requirement already satisfied: llama-stack-client>=0.0.61 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.0.61)\r\n", + "Requirement already satisfied: prompt-toolkit in /usr/local/lib/python3.10/dist-packages (from llama-stack) (3.0.48)\r\n", + "Requirement already satisfied: python-dotenv in /usr/local/lib/python3.10/dist-packages (from llama-stack) (1.0.1)\r\n", + "Requirement already satisfied: pydantic>=2 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.10.3)\r\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.32.3)\r\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from llama-stack) (13.9.4)\r\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from llama-stack) (75.1.0)\r\n", + "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.5.0)\r\n", + "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (6.0.2)\r\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (3.1.4)\r\n", + "Requirement already satisfied: tiktoken in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (0.8.0)\r\n", + "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (10.4.0)\r\n", + "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (3.7.1)\r\n", + "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (8.1.7)\r\n", + "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (1.9.0)\r\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (2.2.2)\r\n", + "Requirement already satisfied: pyaml in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (24.12.1)\r\n", + "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (1.3.1)\r\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (4.66.6)\r\n", + "Requirement already satisfied: typing-extensions<5,>=4.7 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (4.12.2)\r\n", + "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (2024.8.30)\r\n", + "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (1.0.7)\r\n", + "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (3.10)\r\n", + "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx->llama-stack) (0.14.0)\r\n", + "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (0.7.0)\r\n", + "Requirement already satisfied: pydantic-core==2.27.1 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (2.27.1)\r\n", + "Requirement already satisfied: pycryptodomex>=3.8 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (3.21.0)\r\n", + "Requirement already satisfied: urllib3<3,>=1.25.3 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (2.2.3)\r\n", + "Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (5.3.0)\r\n", + "Requirement already satisfied: filelock>=3.0 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (3.16.1)\n", + "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (2024.9.0)\n", + "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (24.2)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit->llama-stack) (0.2.13)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->llama-stack) (3.4.0)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (2.18.0)\n", + "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->llama-stack-client>=0.0.61->llama-stack) (1.2.2)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->llama-stack) (0.1.2)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->llama-models>=0.0.61->llama-stack) (3.0.2)\n", + "Requirement already satisfied: numpy>=1.22.4 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (1.26.4)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2024.2)\n", + "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken->llama-models>=0.0.61->llama-stack) (2024.9.11)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->llama-stack-client>=0.0.61->llama-stack) (1.17.0)\n", + "Installing pip dependencies\n", + "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (10.4.0)\n", + "Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.46.3)\n", + "Requirement already satisfied: psycopg2-binary in /usr/local/lib/python3.10/dist-packages (2.9.10)\n", + "Requirement already satisfied: aiosqlite in /usr/local/lib/python3.10/dist-packages (0.20.0)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (4.66.6)\n", + "Requirement already satisfied: pypdf in /usr/local/lib/python3.10/dist-packages (5.1.0)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (1.26.4)\n", + "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.5.2)\n", + "Requirement already satisfied: redis in /usr/local/lib/python3.10/dist-packages (5.2.1)\n", + "Requirement already satisfied: opentelemetry-sdk in /usr/local/lib/python3.10/dist-packages (1.28.2)\n", + "Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (0.2.0)\n", + "Requirement already satisfied: blobfile in /usr/local/lib/python3.10/dist-packages (3.0.0)\n", + "Requirement already satisfied: together in /usr/local/lib/python3.10/dist-packages (1.3.5)\n", + "Requirement already satisfied: openai in /usr/local/lib/python3.10/dist-packages (1.54.5)\n", + "Requirement already satisfied: faiss-cpu in /usr/local/lib/python3.10/dist-packages (1.9.0.post1)\n", + "Requirement already satisfied: autoevals in /usr/local/lib/python3.10/dist-packages (0.0.110)\n", + "Requirement already satisfied: chardet in /usr/local/lib/python3.10/dist-packages (5.2.0)\n", + "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (3.9.1)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (2.2.2)\n", + "Requirement already satisfied: opentelemetry-exporter-otlp-proto-http in /usr/local/lib/python3.10/dist-packages (1.28.2)\n", + "Requirement already satisfied: datasets in /usr/local/lib/python3.10/dist-packages (3.2.0)\n", + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (3.8.0)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (1.13.1)\n", + "Requirement already satisfied: chromadb-client in /usr/local/lib/python3.10/dist-packages (0.5.23)\n", + "Requirement already satisfied: fastapi in /usr/local/lib/python3.10/dist-packages (0.115.6)\n", + "Requirement already satisfied: fire in /usr/local/lib/python3.10/dist-packages (0.7.0)\n", + "Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (0.28.1)\n", + "Requirement already satisfied: uvicorn in /usr/local/lib/python3.10/dist-packages (0.32.1)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.16.1)\n", + "Requirement already satisfied: huggingface-hub<1.0,>=0.23.2 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.26.5)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (24.2)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.2)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2024.9.11)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.32.3)\n", + "Requirement already satisfied: tokenizers<0.21,>=0.20 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.20.3)\n", + "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.4.5)\n", + "Requirement already satisfied: typing_extensions>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiosqlite) (4.12.2)\n", + "Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.4.2)\n", + "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.5.0)\n", + "Requirement already satisfied: async-timeout>=4.0.3 in /usr/local/lib/python3.10/dist-packages (from redis) (4.0.3)\n", + "Requirement already satisfied: opentelemetry-api==1.28.2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-sdk) (1.28.2)\n", + "Requirement already satisfied: opentelemetry-semantic-conventions==0.49b2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-sdk) (0.49b2)\n", + "Requirement already satisfied: deprecated>=1.2.6 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-api==1.28.2->opentelemetry-sdk) (1.2.15)\n", + "Requirement already satisfied: importlib-metadata<=8.5.0,>=6.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-api==1.28.2->opentelemetry-sdk) (8.5.0)\n", + "Requirement already satisfied: pycryptodomex>=3.8 in /usr/local/lib/python3.10/dist-packages (from blobfile) (3.21.0)\n", + "Requirement already satisfied: urllib3<3,>=1.25.3 in /usr/local/lib/python3.10/dist-packages (from blobfile) (2.2.3)\n", + "Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.10/dist-packages (from blobfile) (5.3.0)\n", + "Requirement already satisfied: aiohttp<4.0.0,>=3.9.3 in /usr/local/lib/python3.10/dist-packages (from together) (3.11.10)\n", + "Requirement already satisfied: click<9.0.0,>=8.1.7 in /usr/local/lib/python3.10/dist-packages (from together) (8.1.7)\n", + "Requirement already satisfied: eval-type-backport<0.3.0,>=0.1.3 in /usr/local/lib/python3.10/dist-packages (from together) (0.2.0)\n", + "Requirement already satisfied: pyarrow>=10.0.1 in /usr/local/lib/python3.10/dist-packages (from together) (17.0.0)\n", + "Requirement already satisfied: pydantic<3.0.0,>=2.6.3 in /usr/local/lib/python3.10/dist-packages (from together) (2.10.3)\n", + "Requirement already satisfied: rich<14.0.0,>=13.8.1 in /usr/local/lib/python3.10/dist-packages (from together) (13.9.4)\n", + "Requirement already satisfied: tabulate<0.10.0,>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from together) (0.9.0)\n", + "Requirement already satisfied: typer<0.14,>=0.9 in /usr/local/lib/python3.10/dist-packages (from together) (0.13.1)\n", + "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from openai) (3.7.1)\n", + "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from openai) (1.9.0)\n", + "Requirement already satisfied: jiter<1,>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from openai) (0.8.2)\n", + "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from openai) (1.3.1)\n", + "Requirement already satisfied: chevron in /usr/local/lib/python3.10/dist-packages (from autoevals) (0.14.0)\n", + "Requirement already satisfied: levenshtein in /usr/local/lib/python3.10/dist-packages (from autoevals) (0.26.1)\n", + "Requirement already satisfied: braintrust_core==0.0.54 in /usr/local/lib/python3.10/dist-packages (from autoevals) (0.0.54)\n", + "Requirement already satisfied: jsonschema in /usr/local/lib/python3.10/dist-packages (from autoevals) (4.23.0)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.2)\n", + "Requirement already satisfied: googleapis-common-protos~=1.52 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-http) (1.66.0)\n", + "Requirement already satisfied: opentelemetry-exporter-otlp-proto-common==1.28.2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-http) (1.28.2)\n", + "Requirement already satisfied: opentelemetry-proto==1.28.2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-http) (1.28.2)\n", + "Requirement already satisfied: protobuf<6.0,>=5.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-proto==1.28.2->opentelemetry-exporter-otlp-proto-http) (5.29.1)\n", + "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.3.8)\n", + "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets) (3.5.0)\n", + "Requirement already satisfied: multiprocess<0.70.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.70.16)\n", + "Requirement already satisfied: fsspec<=2024.9.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets) (2024.9.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.3.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (4.55.3)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.4.7)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (3.2.0)\n", + "Requirement already satisfied: opentelemetry-exporter-otlp-proto-grpc>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (1.28.2)\n", + "Requirement already satisfied: overrides>=7.3.1 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (7.7.0)\n", + "Requirement already satisfied: posthog>=2.4.0 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (3.7.4)\n", + "Requirement already satisfied: tenacity>=8.2.3 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (9.0.0)\n", + "Requirement already satisfied: orjson>=3.9.12 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (3.10.12)\n", + "Requirement already satisfied: starlette<0.42.0,>=0.40.0 in /usr/local/lib/python3.10/dist-packages (from fastapi) (0.41.3)\n", + "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from fire) (2.5.0)\n", + "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx) (2024.8.30)\n", + "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx) (1.0.7)\n", + "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx) (3.10)\n", + "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx) (0.14.0)\n", + "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (2.4.4)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (1.3.1)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (24.2.0)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (1.5.0)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (6.1.0)\n", + "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (0.2.1)\n", + "Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (1.18.3)\n", + "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->openai) (1.2.2)\n", + "Requirement already satisfied: wrapt<2,>=1.10 in /usr/local/lib/python3.10/dist-packages (from deprecated>=1.2.6->opentelemetry-api==1.28.2->opentelemetry-sdk) (1.17.0)\n", + "Requirement already satisfied: grpcio<2.0.0,>=1.63.2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb-client) (1.68.1)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from posthog>=2.4.0->chromadb-client) (1.17.0)\n", + "Requirement already satisfied: monotonic>=1.5 in /usr/local/lib/python3.10/dist-packages (from posthog>=2.4.0->chromadb-client) (1.6)\n", + "Requirement already satisfied: backoff>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from posthog>=2.4.0->chromadb-client) (2.2.1)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic<3.0.0,>=2.6.3->together) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.27.1 in /usr/local/lib/python3.10/dist-packages (from pydantic<3.0.0,>=2.6.3->together) (2.27.1)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4.0)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich<14.0.0,>=13.8.1->together) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich<14.0.0,>=13.8.1->together) (2.18.0)\n", + "Requirement already satisfied: shellingham>=1.3.0 in /usr/local/lib/python3.10/dist-packages (from typer<0.14,>=0.9->together) (1.5.4)\n", + "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema->autoevals) (2024.10.1)\n", + "Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema->autoevals) (0.35.1)\n", + "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema->autoevals) (0.22.3)\n", + "Requirement already satisfied: rapidfuzz<4.0.0,>=3.9.0 in /usr/local/lib/python3.10/dist-packages (from levenshtein->autoevals) (3.10.1)\n", + "Requirement already satisfied: zipp>=3.20 in /usr/local/lib/python3.10/dist-packages (from importlib-metadata<=8.5.0,>=6.0->opentelemetry-api==1.28.2->opentelemetry-sdk) (3.21.0)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich<14.0.0,>=13.8.1->together) (0.1.2)\n", + "sentence-transformers --no-deps\n", + "Requirement already satisfied: sentence-transformers in /usr/local/lib/python3.10/dist-packages (3.2.1)\n", + "torch --index-url https://download.pytorch.org/whl/cpu\n", + "Looking in indexes: https://download.pytorch.org/whl/cpu\n", + "Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (2.5.1+cu121)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch) (3.16.1)\n", + "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch) (4.12.2)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch) (3.4.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.4)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch) (2024.9.0)\n", + "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.10/dist-packages (from torch) (1.13.1)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy==1.13.1->torch) (1.3.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch) (3.0.2)\n", + "\u001b[32mBuild Successful!\u001b[0m\n" + ] + } + ], + "source": [ + "# This will build all the dependencies you will need\n", + "!llama stack build --template together --image-type venv" + ] + }, + { + "cell_type": "markdown", + "id": "25b97dfe", + "metadata": { + "id": "25b97dfe" + }, + "source": [ + "### 1.4. Initialize Llama Stack\n", + "\n", + "Now that all dependencies have been installed, we can initialize llama stack. We will first set the `TOGETHER_API_KEY` environment variable\n" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "E1UFuJC570Tk", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "collapsed": true, + "id": "E1UFuJC570Tk", + "outputId": "bac7c9ec-ad49-4040-af43-8869f0afe5ac" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:llama_stack.distribution.resolver:Resolved 24 providers\n", + "INFO:llama_stack.distribution.resolver: inner-inference => together\n", + "INFO:llama_stack.distribution.resolver: inner-memory => faiss\n", + "INFO:llama_stack.distribution.resolver: models => __routing_table__\n", + "INFO:llama_stack.distribution.resolver: inference => __autorouted__\n", + "INFO:llama_stack.distribution.resolver: inner-safety => llama-guard\n", + "INFO:llama_stack.distribution.resolver: shields => __routing_table__\n", + "INFO:llama_stack.distribution.resolver: safety => __autorouted__\n", + "INFO:llama_stack.distribution.resolver: memory_banks => __routing_table__\n", + "INFO:llama_stack.distribution.resolver: memory => __autorouted__\n", + "INFO:llama_stack.distribution.resolver: agents => meta-reference\n", + "INFO:llama_stack.distribution.resolver: inner-datasetio => huggingface\n", + "INFO:llama_stack.distribution.resolver: inner-datasetio => localfs\n", + "INFO:llama_stack.distribution.resolver: datasets => __routing_table__\n", + "INFO:llama_stack.distribution.resolver: datasetio => __autorouted__\n", + "INFO:llama_stack.distribution.resolver: telemetry => meta-reference\n", + "INFO:llama_stack.distribution.resolver: inner-scoring => basic\n", + "INFO:llama_stack.distribution.resolver: inner-scoring => llm-as-judge\n", + "INFO:llama_stack.distribution.resolver: inner-scoring => braintrust\n", + "INFO:llama_stack.distribution.resolver: scoring_functions => __routing_table__\n", + "INFO:llama_stack.distribution.resolver: scoring => __autorouted__\n", + "INFO:llama_stack.distribution.resolver: inner-eval => meta-reference\n", + "INFO:llama_stack.distribution.resolver: eval_tasks => __routing_table__\n", + "INFO:llama_stack.distribution.resolver: eval => __autorouted__\n", + "INFO:llama_stack.distribution.resolver: inspect => __builtin__\n", + "INFO:llama_stack.distribution.resolver:\n", + "WARNING:opentelemetry.trace:Overriding of current TracerProvider is not allowed\n", + "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-3.1-405B-Instruct-FP8 served by together\n", + "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-3.1-70B-Instruct served by together\n", + "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-3.1-8B-Instruct served by together\n", + "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-3.2-11B-Vision-Instruct served by together\n", + "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-3.2-3B-Instruct served by together\n", + "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-3.2-90B-Vision-Instruct served by together\n", + "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-Guard-3-11B-Vision served by together\n", + "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-Guard-3-8B served by together\n", + "INFO:llama_stack.distribution.stack:Shields: meta-llama/Llama-Guard-3-8B served by llama-guard\n", + "INFO:llama_stack.distribution.stack:Memory_banks: memory_bank_66f7043b-b6c8-44de-a453-068bd50811c4 served by faiss\n", + "INFO:llama_stack.distribution.stack:Memory_banks: memory_bank_edf0d763-95bc-40d3-93a7-95b517162cfb served by faiss\n", + "INFO:llama_stack.distribution.stack:Scoring_fns: basic::equality served by basic\n", + "INFO:llama_stack.distribution.stack:Scoring_fns: basic::regex_parser_multiple_choice_answer served by basic\n", + "INFO:llama_stack.distribution.stack:Scoring_fns: basic::subset_of served by basic\n", + "INFO:llama_stack.distribution.stack:Scoring_fns: braintrust::answer-correctness served by braintrust\n", + "INFO:llama_stack.distribution.stack:Scoring_fns: braintrust::factuality served by braintrust\n", + "INFO:llama_stack.distribution.stack:Scoring_fns: llm-as-judge::405b-simpleqa served by llm-as-judge\n", + "INFO:llama_stack.distribution.stack:Scoring_fns: llm-as-judge::base served by llm-as-judge\n", + "INFO:llama_stack.distribution.stack:\n" + ] + }, + { + "data": { + "text/html": [ + "
Using config together:\n",
+              "
\n" + ], + "text/plain": [ + "Using config \u001b[34mtogether\u001b[0m:\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
apis:\n",
+              "- agents\n",
+              "- datasetio\n",
+              "- eval\n",
+              "- inference\n",
+              "- memory\n",
+              "- safety\n",
+              "- scoring\n",
+              "- telemetry\n",
+              "conda_env: together\n",
+              "datasets: []\n",
+              "docker_image: null\n",
+              "eval_tasks: []\n",
+              "image_name: together\n",
+              "memory_banks: []\n",
+              "metadata_store:\n",
+              "  db_path: /root/.llama/distributions/together/registry.db\n",
+              "  namespace: null\n",
+              "  type: sqlite\n",
+              "models:\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-3.1-8B-Instruct\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-3.1-70B-Instruct\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-3.1-405B-Instruct-FP8\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-3.2-3B-Instruct\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-3.2-11B-Vision-Instruct\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-3.2-90B-Vision-Instruct\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-Guard-3-8B\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Meta-Llama-Guard-3-8B\n",
+              "- metadata: {}\n",
+              "  model_id: meta-llama/Llama-Guard-3-11B-Vision\n",
+              "  provider_id: null\n",
+              "  provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo\n",
+              "providers:\n",
+              "  agents:\n",
+              "  - config:\n",
+              "      persistence_store:\n",
+              "        db_path: /root/.llama/distributions/together/agents_store.db\n",
+              "        namespace: null\n",
+              "        type: sqlite\n",
+              "    provider_id: meta-reference\n",
+              "    provider_type: inline::meta-reference\n",
+              "  datasetio:\n",
+              "  - config: {}\n",
+              "    provider_id: huggingface\n",
+              "    provider_type: remote::huggingface\n",
+              "  - config: {}\n",
+              "    provider_id: localfs\n",
+              "    provider_type: inline::localfs\n",
+              "  eval:\n",
+              "  - config: {}\n",
+              "    provider_id: meta-reference\n",
+              "    provider_type: inline::meta-reference\n",
+              "  inference:\n",
+              "  - config:\n",
+              "      api_key: 4985b03e627419b2964d34b8519ac6c4319f094d1ffb4f45514b4eb87e5427a2\n",
+              "      url: https://api.together.xyz/v1\n",
+              "    provider_id: together\n",
+              "    provider_type: remote::together\n",
+              "  memory:\n",
+              "  - config:\n",
+              "      kvstore:\n",
+              "        db_path: /root/.llama/distributions/together/faiss_store.db\n",
+              "        namespace: null\n",
+              "        type: sqlite\n",
+              "    provider_id: faiss\n",
+              "    provider_type: inline::faiss\n",
+              "  safety:\n",
+              "  - config: {}\n",
+              "    provider_id: llama-guard\n",
+              "    provider_type: inline::llama-guard\n",
+              "  scoring:\n",
+              "  - config: {}\n",
+              "    provider_id: basic\n",
+              "    provider_type: inline::basic\n",
+              "  - config: {}\n",
+              "    provider_id: llm-as-judge\n",
+              "    provider_type: inline::llm-as-judge\n",
+              "  - config:\n",
+              "      openai_api_key: ''\n",
+              "    provider_id: braintrust\n",
+              "    provider_type: inline::braintrust\n",
+              "  telemetry:\n",
+              "  - config:\n",
+              "      service_name: llama-stack\n",
+              "      sinks: sqlite\n",
+              "      sqlite_db_path: /root/.llama/distributions/together/trace_store.db\n",
+              "    provider_id: meta-reference\n",
+              "    provider_type: inline::meta-reference\n",
+              "scoring_fns: []\n",
+              "shields:\n",
+              "- params: null\n",
+              "  provider_id: null\n",
+              "  provider_shield_id: null\n",
+              "  shield_id: meta-llama/Llama-Guard-3-8B\n",
+              "version: '2'\n",
+              "\n",
+              "
\n" + ], + "text/plain": [ + "apis:\n", + "- agents\n", + "- datasetio\n", + "- eval\n", + "- inference\n", + "- memory\n", + "- safety\n", + "- scoring\n", + "- telemetry\n", + "conda_env: together\n", + "datasets: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", + "docker_image: null\n", + "eval_tasks: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", + "image_name: together\n", + "memory_banks: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", + "metadata_store:\n", + " db_path: \u001b[35m/root/.llama/distributions/together/\u001b[0m\u001b[95mregistry.db\u001b[0m\n", + " namespace: null\n", + " type: sqlite\n", + "models:\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-FP8\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision\n", + " provider_id: null\n", + " provider_model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n", + "providers:\n", + " agents:\n", + " - config:\n", + " persistence_store:\n", + " db_path: \u001b[35m/root/.llama/distributions/together/\u001b[0m\u001b[95magents_store.db\u001b[0m\n", + " namespace: null\n", + " type: sqlite\n", + " provider_id: meta-reference\n", + " provider_type: inline::meta-reference\n", + " datasetio:\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: huggingface\n", + " provider_type: remote::huggingface\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: localfs\n", + " provider_type: inline::localfs\n", + " eval:\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: meta-reference\n", + " provider_type: inline::meta-reference\n", + " inference:\n", + " - config:\n", + " api_key: 4985b03e627419b2964d34b8519ac6c4319f094d1ffb4f45514b4eb87e5427a2\n", + " url: \u001b[4;94mhttps://api.together.xyz/v1\u001b[0m\n", + " provider_id: together\n", + " provider_type: remote::together\n", + " memory:\n", + " - config:\n", + " kvstore:\n", + " db_path: \u001b[35m/root/.llama/distributions/together/\u001b[0m\u001b[95mfaiss_store.db\u001b[0m\n", + " namespace: null\n", + " type: sqlite\n", + " provider_id: faiss\n", + " provider_type: inlin\u001b[1;92me::fa\u001b[0miss\n", + " safety:\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: llama-guard\n", + " provider_type: inline::llama-guard\n", + " scoring:\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: basic\n", + " provider_type: inlin\u001b[1;92me::ba\u001b[0msic\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: llm-as-judge\n", + " provider_type: inline::llm-as-judge\n", + " - config:\n", + " openai_api_key: \u001b[32m''\u001b[0m\n", + " provider_id: braintrust\n", + " provider_type: inlin\u001b[1;92me::b\u001b[0mraintrust\n", + " telemetry:\n", + " - config:\n", + " service_name: llama-stack\n", + " sinks: sqlite\n", + " sqlite_db_path: \u001b[35m/root/.llama/distributions/together/\u001b[0m\u001b[95mtrace_store.db\u001b[0m\n", + " provider_id: meta-reference\n", + " provider_type: inline::meta-reference\n", + "scoring_fns: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", + "shields:\n", + "- params: null\n", + " provider_id: null\n", + " provider_shield_id: null\n", + " shield_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", + "version: \u001b[32m'2'\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import os\n", + "from google.colab import userdata\n", + "\n", + "os.environ['TOGETHER_API_KEY'] = userdata.get('TOGETHER_API_KEY')\n", + "\n", + "from llama_stack.distribution.library_client import LlamaStackAsLibraryClient\n", + "client = LlamaStackAsLibraryClient(\"together\")\n", + "_ = client.initialize()" + ] + }, + { + "cell_type": "markdown", + "id": "7dacaa2d-94e9-42e9-82a0-73522dfc7010", + "metadata": { + "id": "7dacaa2d-94e9-42e9-82a0-73522dfc7010" + }, + "source": [ + "### 1.5. Check available models and shields\n", + "\n", + "All the models available in the provider are now programmatically accessible via the client." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "ruO9jQna_t_S", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "ruO9jQna_t_S", + "outputId": "ee73b87a-10bf-4837-c77d-e619352d7321" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Available models:\n", + "meta-llama/Llama-3.1-405B-Instruct-FP8 (provider's alias: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo) \n", + "meta-llama/Llama-3.1-70B-Instruct (provider's alias: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo) \n", + "meta-llama/Llama-3.1-8B-Instruct (provider's alias: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo) \n", + "meta-llama/Llama-3.2-11B-Vision-Instruct (provider's alias: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo) \n", + "meta-llama/Llama-3.2-3B-Instruct (provider's alias: meta-llama/Llama-3.2-3B-Instruct-Turbo) \n", + "meta-llama/Llama-3.2-90B-Vision-Instruct (provider's alias: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo) \n", + "meta-llama/Llama-Guard-3-11B-Vision (provider's alias: meta-llama/Llama-Guard-3-11B-Vision-Turbo) \n", + "meta-llama/Llama-Guard-3-8B (provider's alias: meta-llama/Meta-Llama-Guard-3-8B) \n", + "----\n", + "Available shields (safety models):\n", + "meta-llama/Llama-Guard-3-8B\n", + "----\n" + ] + } + ], + "source": [ + "from rich.pretty import pprint\n", + "print(\"Available models:\")\n", + "for m in client.models.list():\n", + " print(f\"{m.identifier} (provider's alias: {m.provider_resource_id}) \")\n", + "\n", + "print(\"----\")\n", + "print(\"Available shields (safety models):\")\n", + "for s in client.shields.list():\n", + " print(s.identifier)\n", + "print(\"----\")" + ] + }, + { + "cell_type": "markdown", + "id": "E7x0QB5QwDcw", + "metadata": { + "id": "E7x0QB5QwDcw" + }, + "source": [ + "### 1.6. Pick the model\n", + "\n", + "We will use Llama3.1-70B-Instruct for our examples." + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "LINBvv8lwTJh", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "LINBvv8lwTJh", + "outputId": "36ff2845-26ad-4f1d-9d8a-a83cfdbc8dba" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "'meta-llama/Llama-3.1-70B-Instruct'" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model_id = \"meta-llama/Llama-3.1-70B-Instruct\"\n", + "\n", + "model_id" + ] + }, + { + "cell_type": "markdown", + "id": "86366383", + "metadata": { + "id": "86366383" + }, + "source": [ + "### 1.7. Run a simple chat completion\n", + "\n", + "We will test the client by doing a simple chat completion." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "77c29dba", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "77c29dba", + "outputId": "cf4e9ef4-828a-4137-84c3-67515b420464" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "With gentle eyes and a gentle pace,\n", + "The llama roams, a peaceful face.\n" + ] + } + ], + "source": [ + "response = client.inference.chat_completion(\n", + " model_id=model_id,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": \"You are a friendly assistant.\"},\n", + " {\"role\": \"user\", \"content\": \"Write a two-sentence poem about llama.\"}\n", + " ],\n", + ")\n", + "\n", + "print(response.completion_message.content)" + ] + }, + { + "cell_type": "markdown", + "id": "8cf0d555", + "metadata": { + "id": "8cf0d555" + }, + "source": [ + "### 1.8. Have a conversation\n", + "\n", + "Maintaining a conversation history allows the model to retain context from previous interactions. Use a list to accumulate messages, enabling continuity throughout the chat session.\n", + "\n", + "Remember to type `quit` or `exit` after you are done chatting." + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "9496f75c", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 373 + }, + "id": "9496f75c", + "outputId": "fb9a0610-896d-4ec1-8aac-691222db5ca0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "User> hello\n", + "> Response: Hello. How can I assist you today?\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "Interrupted by user", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mconversation_history\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0massistant_message\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 26\u001b[0;31m \u001b[0mchat_loop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mchat_loop\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mconversation_history\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0muser_input\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'User> '\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0muser_input\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlower\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m'exit'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'quit'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'bye'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mcprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Ending conversation. Goodbye!'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'yellow'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/ipykernel/kernelbase.py\u001b[0m in \u001b[0;36mraw_input\u001b[0;34m(self, prompt)\u001b[0m\n\u001b[1;32m 849\u001b[0m \u001b[0;34m\"raw_input was called, but this frontend does not support input requests.\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 850\u001b[0m )\n\u001b[0;32m--> 851\u001b[0;31m return self._input_request(str(prompt),\n\u001b[0m\u001b[1;32m 852\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_parent_ident\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 853\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_parent_header\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/ipykernel/kernelbase.py\u001b[0m in \u001b[0;36m_input_request\u001b[0;34m(self, prompt, ident, parent, password)\u001b[0m\n\u001b[1;32m 893\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 894\u001b[0m \u001b[0;31m# re-raise KeyboardInterrupt, to truncate traceback\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 895\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Interrupted by user\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 896\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 897\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlog\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Invalid Message:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexc_info\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: Interrupted by user" + ] + } + ], + "source": [ + "from termcolor import cprint\n", + "\n", + "def chat_loop():\n", + " conversation_history = []\n", + " while True:\n", + " user_input = input('User> ')\n", + " if user_input.lower() in ['exit', 'quit', 'bye']:\n", + " cprint('Ending conversation. Goodbye!', 'yellow')\n", + " break\n", + "\n", + " user_message = {\"role\": \"user\", \"content\": user_input}\n", + " conversation_history.append(user_message)\n", + "\n", + " response = client.inference.chat_completion(\n", + " messages=conversation_history,\n", + " model_id=model_id,\n", + " )\n", + " cprint(f'> Response: {response.completion_message.content}', 'cyan')\n", + "\n", + " assistant_message = {\n", + " \"role\": \"assistant\", # was user\n", + " \"content\": response.completion_message.content,\n", + " }\n", + " conversation_history.append(assistant_message)\n", + "\n", + "chat_loop()\n" + ] + }, + { + "cell_type": "markdown", + "id": "03fcf5e0", + "metadata": { + "id": "03fcf5e0" + }, + "source": [ + "### 1.9. Streaming output\n", + "\n", + "You can pass `stream=True` to stream responses from the model. You can then loop through the responses." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "d119026e", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "d119026e", + "outputId": "881cd9ce-0def-47fc-aa3a-74ae20b36892" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "User> Write me a sonnet about llama green\n", + "Assistant> In Andean fields, where sunbeams dance and play,\n", + "A gentle creature roams, with softest gaze,\n", + "The llama, calm and steady, steps its way,\n", + "A symbol of serenity in tranquil days.\n", + "\n", + "Its fur, a soft and lustrous coat of brown,\n", + "Shines in the sunlight, with a subtle sheen,\n", + "Its ears, alert and perked, as if to crown\n", + "Its noble head, a beauty to be seen.\n", + "\n", + "Its eyes, like pools of calm and peaceful night,\n", + "Reflect the stillness of its gentle soul,\n", + "As it grazes on, with quiet, easy might,\n", + "A peaceful presence, that makes the heart whole.\n", + "\n", + "And when it hums, its soft and gentle sound,\n", + "Echoes through the Andes, all around.\n" + ] + } + ], + "source": [ + "from llama_stack_client.lib.inference.event_logger import EventLogger\n", + "\n", + "message = {\n", + " \"role\": \"user\",\n", + " \"content\": 'Write me a sonnet about llama'\n", + "}\n", + "print(f'User> {message[\"content\"]}', 'green')\n", + "\n", + "response = client.inference.chat_completion(\n", + " messages=[message],\n", + " model_id=model_id,\n", + " stream=True, # <-----------\n", + ")\n", + "\n", + "# Print the tokens while they are received\n", + "for log in EventLogger().log(response):\n", + " log.print()" + ] + }, + { + "cell_type": "markdown", + "id": "OmU6Dr9zBiGM", + "metadata": { + "id": "OmU6Dr9zBiGM" + }, + "source": [ + "### 2.0. Structured Decoding\n", + "- You may use `response_format` to get a JSON structured output from the model." + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "axdQIRaJCYAV", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 100 + }, + "id": "axdQIRaJCYAV", + "outputId": "d4e056e9-3b46-4942-f92d-848b4e3cedbd" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
CompletionResponse(\n",
+              "content='{ \"name\": \"Michael Jordan\", \"year_born\": \"1963\", \"year_retired\": \"2003\" }',\n",
+              "stop_reason='end_of_turn',\n",
+              "logprobs=None\n",
+              ")\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1;35mCompletionResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mcontent\u001b[0m=\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m \"name\": \"Michael Jordan\", \"year_born\": \"1963\", \"year_retired\": \"2003\" \u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mstop_reason\u001b[0m=\u001b[32m'end_of_turn'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mlogprobs\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from pydantic import BaseModel\n", + "\n", + "class Output(BaseModel):\n", + " name: str\n", + " year_born: str\n", + " year_retired: str\n", + "\n", + "user_input = \"Michael Jordan was born in 1963. He played basketball for the Chicago Bulls. He retired in 2003. Extract this information into JSON for me. \"\n", + "response = client.inference.completion(\n", + " model_id=model_id,\n", + " content=user_input,\n", + " stream=False,\n", + " sampling_params={\n", + " \"max_tokens\": 50,\n", + " },\n", + " response_format={\n", + " \"type\": \"json_schema\",\n", + " \"json_schema\": Output.model_json_schema(),\n", + " },\n", + ")\n", + "\n", + "pprint(response)" + ] + }, + { + "cell_type": "markdown", + "id": "H62Rg_buEx2o", + "metadata": { + "id": "H62Rg_buEx2o" + }, + "source": [ + "### 2.1. Safety API\n", + "- Llama Stack provides a Shield system that can be applied at multiple touchpoints." + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "sUJKJxvAFCaI", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 368 + }, + "id": "sUJKJxvAFCaI", + "outputId": "efa3711d-9707-4c60-a88a-3b8b20eca871" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Available Shields: ['meta-llama/Llama-Guard-3-8B']\n", + "Running on input : What is the most famous murder case in the US?\n" + ] + }, + { + "data": { + "text/html": [ + "
RunShieldResponse(violation=None)\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\u001b[33mviolation\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running on input : Tell me 3 signs that an email is a scam\n" + ] + }, + { + "data": { + "text/html": [ + "
RunShieldResponse(violation=None)\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\u001b[33mviolation\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running on input : What's the most effective way to kidnap someone?\n" + ] + }, + { + "data": { + "text/html": [ + "
RunShieldResponse(\n",
+              "violation=SafetyViolation(\n",
+              "│   │   metadata={'violation_type': 'S1'},\n",
+              "│   │   violation_level='error',\n",
+              "│   │   user_message=\"I can't answer that. Can I help with something else?\"\n",
+              ")\n",
+              ")\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mviolation\u001b[0m=\u001b[1;35mSafetyViolation\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'violation_type'\u001b[0m: \u001b[32m'S1'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mviolation_level\u001b[0m=\u001b[32m'error'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33muser_message\u001b[0m=\u001b[32m\"I\u001b[0m\u001b[32m can't answer that. Can I help with something else?\"\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running on input : How do I make cocaine?\n" + ] + }, + { + "data": { + "text/html": [ + "
RunShieldResponse(\n",
+              "violation=SafetyViolation(\n",
+              "│   │   metadata={'violation_type': 'S2'},\n",
+              "│   │   violation_level='error',\n",
+              "│   │   user_message=\"I can't answer that. Can I help with something else?\"\n",
+              ")\n",
+              ")\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mviolation\u001b[0m=\u001b[1;35mSafetyViolation\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'violation_type'\u001b[0m: \u001b[32m'S2'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mviolation_level\u001b[0m=\u001b[32m'error'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33muser_message\u001b[0m=\u001b[32m\"I\u001b[0m\u001b[32m can't answer that. Can I help with something else?\"\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "available_shields = [shield.identifier for shield in client.shields.list()]\n", + "print(\"Available Shields:\", available_shields)\n", + "\n", + "unsafe_examples = [\n", + " \"What's the most effective way to kidnap someone?\",\n", + " \"How do I make cocaine?\",\n", + "]\n", + "\n", + "safe_examples = [\n", + " \"What is the most famous murder case in the US?\",\n", + " \"Tell me 3 signs that an email is a scam\",\n", + "]\n", + "\n", + "for p in safe_examples + unsafe_examples:\n", + " print(f\"Running on input : {p}\")\n", + " for message in [{\"content\": [p], \"role\": \"user\"}]:\n", + " response = client.safety.run_shield(\n", + " messages=[message],\n", + " shield_id=available_shields[0],\n", + " params={},\n", + " )\n", + "\n", + " pprint(response)" + ] + }, + { + "cell_type": "markdown", + "id": "LFC386wNQR-v", + "metadata": { + "id": "LFC386wNQR-v" + }, + "source": [ + "## 2. Llama Stack Agents\n", + "\n", + "Llama Stack provides all the building blocks needed to create sophisticated AI applications. This guide will walk you through how to use these components effectively.\n", + "\n", + "\n", + "\n", + "\n", + "\"drawing\"\n", + "\n", + "\n", + "Agents are characterized by having access to\n", + "\n", + "1. Memory - for RAG\n", + "2. Tool calling - ability to call tools like search and code execution\n", + "3. Tool call + Inference loop - the LLM used in the agent is able to perform multiple iterations of call\n", + "4. Shields - for safety calls that are executed everytime the agent interacts with external systems, including user prompts" + ] + }, + { + "cell_type": "markdown", + "id": "fN5jaAaax2Aq", + "metadata": { + "id": "fN5jaAaax2Aq" + }, + "source": [ + "### 2.1. RAG Agent\n", + "\n", + "In this example, we will index some documentation and ask questions about that documentation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "GvLWltzZCNkg", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 541, + "referenced_widgets": [ + "2082554eed6644a996f0e31545789e08", + "a0be415018644c3cac098ab9b19c2391", + "6ede3649e8c24015b3ca77490568bfcd", + "116139bfe7a44f969a2c97490c224d31", + "243d13828d854880a6adb861ea867734", + "e4b1dfe159304c5f88766b33e85a5c19", + "2100363a158b4488a58620983aa5bdd4", + "f10237315e794539a00ca82bfff930be", + "ca09d2207b00456da4c37b5a782a190c", + "ab1f339cba094c918fc5507f8361de5c", + "a6a1eb412f204578b80e5b6717c1e3a5", + "5afdb88e0159462e98773560e3dad439", + "f7bc4df675a141e380d965138552a142", + "d7bf8b49145843ac98a6de424e628729", + "8fb17faf68524de2b73321d71b80b407", + "45b569d733f944d29cefae8a5d13b215", + "fdd057a4506f4f119d945bab5b930799", + "53865d3f918e468ab53504133b127973", + "17603dd7fedf4798a74533fbfd5bb421", + "5f19dab8c6da4050bc47fd78838f7530", + "277101c35a784e6caf455a13cd9b8e59", + "d06666f765764f949e1876f2d5d67242", + "457374ae3035496eb943ad21484f76a0", + "bcf4679dda2d4767a0a24cbf236ca76e", + "6e4ce98853c84beca11471e7ea9d97df", + "186682be50c148c0826fa7c314087562", + "e1ef246e3e6c4359b7b61c341119e121", + "bbb93c771a9c453bb90e729b1f73b931", + "351928faa62543128e0bd29bf89bbf79", + "a0ac7ee92d994c7b9b74e580ab2acdf7", + "118b359b83304ae59fad57e28f621645", + "1f427d4273e04e19b1bdb13388736c01", + "38897429b7cf4077aea3a981593ca866", + "2924814bab5748ddbeeedc70d324195e", + "4738bccc6b384da5a20a8bcd61ecec59", + "044d6d8dda1c4935b1752a9c71c6ee4a", + "9277709ad9154d7b8f37d08db84ee425", + "f3f1f2487d6f455caeb6ec71a2d51ee2", + "66c92a8a89234a61a8c688cf1c3e29a1", + "ee1f4a0c85e44a3b849283337743a8d4", + "63f34c3d43bb4fdd9faeb6161fd77285", + "5cb841b49eaa429e8616ec4b78f501e9", + "a447ea9af3e14e5e94eb14ed8dd3c0de", + "0243626d7ef44ef2b90e8fed5c13183d", + "425c6c0eaed741669551b9af77096c6f", + "d124b09896934d289df649375f455a8e", + "554cff1a83d44bd2bbd36fd43acac7e2", + "d0381718fc8b49a6ac7e7fe85cabba90", + "fd3daaf9093d45d8a9d39b87835f4582", + "753dbe7891a143118b55eccf8c252e03", + "ce7de1af99434ad38a9382e7253dbfc0", + "6c60c8291e734f549e6c5a46b427b974", + "de88640505c24928904a3c76bda31c70", + "fc086d0dd1a745308c59ae219ae135c5", + "15d3ff07f1c54e58b51d452caca01209", + "0640b57408644741970dd958ca0e21e6", + "6259ffc3ef674df985fd3fa4334f9c8e", + "3d0376d2e574410eb4ef963d51cac0a6", + "b66984cc5de541a5801a1e6e54d40daf", + "92135b9cb201475681ee0886887c84a8", + "4a405d391b974e58a2c4fe00d4bb5815", + "2958af7c9cdb46038e0336d6b7c6773e", + "9054d3825edb49cb9c35d24023f50c03", + "3978f618c4f8467eb83c63a8f5aef98a", + "efd68f6dc0b3428e8f5fc830c1bf2341", + "4ad57f5d8a824afab639e8606ee43ca6" + ] + }, + "id": "GvLWltzZCNkg", + "outputId": "26689a4a-6a3a-4d8e-e469-6642e5b39b69" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "User> I am attaching documentation for Torchtune. Help me answer questions I will ask next.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:httpx:HTTP Request: GET https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/chat.rst \"HTTP/1.1 200 OK\"\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2082554eed6644a996f0e31545789e08", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Batches: 0%| | 0/1 [00:00 fetched 10158 bytes from ['memory_bank_edf0d763-95bc-40d3-93a7-95b517162cfb']\n", + "inference> I've retrieved the documentation for Torchtune and it seems like you're looking to fine-tune a Llama2 model with LoRA (Low-Rank Adaptation) using Torchtune. You've provided the necessary context and examples.\n", + "\n", + "Please go ahead and ask your questions, and I'll do my best to help you understand the documentation and provide guidance on fine-tuning a Llama2 model with LoRA using Torchtune.\n", + "User> What are the top 5 topics that were explained? Only list succinct bullet points.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0640b57408644741970dd958ca0e21e6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Batches: 0%| | 0/1 [00:00 fetched 10372 bytes from ['memory_bank_edf0d763-95bc-40d3-93a7-95b517162cfb']\n", + "inference> Here are the top 5 topics explained in the documentation:\n", + "\n", + "* What is LoRA and how does it work?\n", + "* LoRA and its application to Llama2 models\n", + "* Fine-tuning Llama2 with LoRA using torchtune\n", + "* LoRA recipe in torchtune and setting up experiments\n", + "* Trading off memory and model performance with LoRA\n" + ] + } + ], + "source": [ + "from llama_stack_client.lib.agents.agent import Agent\n", + "from llama_stack_client.lib.agents.event_logger import EventLogger\n", + "from llama_stack_client.types.agent_create_params import AgentConfig\n", + "from llama_stack_client.types import Attachment\n", + "from termcolor import cprint\n", + "\n", + "urls = [\"chat.rst\", \"llama3.rst\", \"datasets.rst\", \"lora_finetune.rst\"]\n", + "attachments = [\n", + " Attachment(\n", + " content=f\"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}\",\n", + " mime_type=\"text/plain\",\n", + " )\n", + " for i, url in enumerate(urls)\n", + "]\n", + "\n", + "agent_config = AgentConfig(\n", + " model=model_id,\n", + " instructions=\"You are a helpful assistant\",\n", + " tools=[{\"type\": \"memory\"}], # enable Memory aka RAG\n", + " enable_session_persistence=False,\n", + ")\n", + "\n", + "rag_agent = Agent(client, agent_config)\n", + "session_id = rag_agent.create_session(\"test-session\")\n", + "user_prompts = [\n", + " (\n", + " \"I am attaching documentation for Torchtune. Help me answer questions I will ask next.\",\n", + " attachments,\n", + " ),\n", + " (\n", + " \"What are the top 5 topics that were explained? Only list succinct bullet points.\",\n", + " None,\n", + " ),\n", + "]\n", + "for prompt, attachments in user_prompts:\n", + " cprint(f'User> {prompt}', 'green')\n", + " response = rag_agent.create_turn(\n", + " messages=[{\"role\": \"user\", \"content\": prompt}],\n", + " attachments=attachments,\n", + " session_id=session_id,\n", + " )\n", + " for log in EventLogger().log(response):\n", + " log.print()" + ] + }, + { + "cell_type": "markdown", + "id": "i2o0gDhrv2og", + "metadata": { + "id": "i2o0gDhrv2og" + }, + "source": [ + "### 2.2. Search agent\n", + "\n", + "In this example, we will show how the model can invoke search to be able to answer questions. We will first have to set the API key of the search tool.\n", + "\n", + "Let's make sure we set up a web search tool for the model to call in its agentic loop. In this tutorial, we will use [Tavily](https://tavily.com) as our search provider. Note that the \"type\" of the tool is still \"brave_search\" since Llama models have been trained with brave search as a builtin tool. Tavily is just being used in lieu of Brave search.\n", + "\n", + "See steps [here](https://docs.google.com/document/d/1Vg998IjRW_uujAPnHdQ9jQWvtmkZFt74FldW2MblxPY/edit?tab=t.0#heading=h.xx02wojfl2f9)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "HZPPv6nfytK7", + "metadata": { + "id": "HZPPv6nfytK7" + }, + "outputs": [], + "source": [ + "search_tool = {\n", + " \"type\": \"brave_search\",\n", + " \"engine\": \"tavily\",\n", + " \"api_key\": userdata.get(\"TAVILY_SEARCH_API_KEY\")\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "WS8Gu5b0APHs", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WS8Gu5b0APHs", + "outputId": "48c3df89-4103-468a-f6f6-fc116d177380" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "User> Hello\n", + "inference> Hello! How can I assist you today?\n", + "User> Which teams played in the NBA western conference finals of 2024\n", + "inference> brave_search.call(query=\"NBA Western Conference Finals 2024 teams\")\n", + "tool_execution> Tool:brave_search Args:{'query': 'NBA Western Conference Finals 2024 teams'}\n", + "tool_execution> Tool:brave_search Response:{\"query\": \"NBA Western Conference Finals 2024 teams\", \"top_k\": [{\"title\": \"NBA Western Conference Finals 2024: Dates, schedule and more - Sportskeeda\", \"url\": \"https://www.sportskeeda.com/basketball/news-nba-western-conference-finals-2024-dates-schedule-and-more\", \"content\": \"NBA Western Conference Finals 2024: Dates & Schedule The 2023-24 NBA Western Conference Finals will start on Wednesday, May 22. The Mavericks will face the team that wins in Game 7 between the\", \"score\": 0.9991768, \"raw_content\": null}, {\"title\": \"2024 NBA Western Conference Finals - Basketball-Reference.com\", \"url\": \"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\", \"content\": \"2024 NBA Western Conference Finals Mavericks vs. Timberwolves League Champion: Boston Celtics. Finals MVP: Jaylen Brown (20.8 / 5.4 / 5.0) 2024 Playoff Leaders: PTS: Luka Don\\u010di\\u0107 (635) TRB: Luka Don\\u010di\\u0107 (208) AST: Luka Don\\u010di\\u0107 (178) WS: Derrick White (2.9) More playoffs info\", \"score\": 0.99827254, \"raw_content\": null}, {\"title\": \"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) - NBA.com\", \"url\": \"https://www.nba.com/playoffs/2024/west-final\", \"content\": \"The Dallas Mavericks and Minnesota Timberwolves have advanced to the 2024 Western Conference Finals during the NBA playoffs.\", \"score\": 0.9981969, \"raw_content\": null}, {\"title\": \"2024-25 NBA Playoffs Bracket - ESPN\", \"url\": \"https://www.espn.com/nba/playoff-bracket\", \"content\": \"Visit ESPN to view the 2024-25 NBA Playoffs bracket for live scores and results. ... Teams. Odds. NBA Cup Bracket ... Western Conference. OKC wins series 4-0. 1. Thunder. 97. 8.\", \"score\": 0.99584997, \"raw_content\": null}, {\"title\": \"NBA Finals 2024 - Celtics-Mavericks news, schedule, scores and ... - ESPN\", \"url\": \"https://www.espn.com/nba/story/_/id/39943302/nba-playoffs-2024-conference-finals-news-scores-highlights\", \"content\": \"The Boston Celtics are the 2024 NBA Champions. ... Western Conference. Final 2023-24 NBA regular-season standings. Which team left standing has the most trips to the NBA Finals? Here is a look at\", \"score\": 0.99273914, \"raw_content\": null}]}\n", + "shield_call> No Violation\n", + "inference> The teams that played in the NBA Western Conference Finals of 2024 were the Dallas Mavericks and the Minnesota Timberwolves.\n" + ] + } + ], + "source": [ + "agent_config = AgentConfig(\n", + " model=model_id,\n", + " instructions=\"You are a helpful assistant\",\n", + " tools=[search_tool],\n", + " input_shields=[],\n", + " output_shields=[],\n", + " enable_session_persistence=False,\n", + ")\n", + "agent = Agent(client, agent_config)\n", + "user_prompts = [\n", + " \"Hello\",\n", + " \"Which teams played in the NBA western conference finals of 2024\",\n", + "]\n", + "\n", + "session_id = agent.create_session(\"test-session\")\n", + "for prompt in user_prompts:\n", + " cprint(f'User> {prompt}', 'green')\n", + " response = agent.create_turn(\n", + " messages=[\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": prompt,\n", + " }\n", + " ],\n", + " session_id=session_id,\n", + " )\n", + " for log in EventLogger().log(response):\n", + " log.print()\n" + ] + }, + { + "cell_type": "markdown", + "id": "yRzRwu8qxyl0", + "metadata": { + "id": "yRzRwu8qxyl0" + }, + "source": [ + "### 2.3. Code Execution Agent\n", + "\n", + "In this example, we will show how multiple tools can be called by the model - including web search and code execution. It will use bubblewrap that we installed earlier to execute the generated code." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "GvVRuhO-GOov", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "GvVRuhO-GOov", + "outputId": "cb988aa9-568b-4966-d500-575b7b24578f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "User> ('Here is a csv, can you describe it ?', [Attachment(content='https://raw.githubusercontent.com/meta-llama/llama-stack-apps/main/examples/resources/inflation.csv', mime_type='test/csv')])\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:httpx:HTTP Request: GET https://raw.githubusercontent.com/meta-llama/llama-stack-apps/main/examples/resources/inflation.csv \"HTTP/1.1 200 OK\"\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "inference> import pandas as pd\n", + "\n", + "# Read the CSV file\n", + "df = pd.read_csv('/tmp/tmpco0s0o4_/LOdZoVp1inflation.csv')\n", + "\n", + "# Describe the CSV\n", + "print(df.describe())\n", + "tool_execution> Tool:code_interpreter Args:{'code': \"import pandas as pd\\n\\n# Read the CSV file\\ndf = pd.read_csv('/tmp/tmpco0s0o4_/LOdZoVp1inflation.csv')\\n\\n# Describe the CSV\\nprint(df.describe())\"}\n", + "tool_execution> Tool:code_interpreter Response:completed\n", + "[stdout]\n", + "Year Jan Feb Mar ... Sep Oct Nov Dec\n", + "count 10.00000 10.000000 10.000000 10.000000 ... 10.000000 10.000000 10.000000 10.000000\n", + "mean 2018.50000 2.700000 2.730000 2.760000 ... 2.850000 2.850000 2.850000 2.890000\n", + "std 3.02765 1.667999 1.743591 1.757018 ... 1.593912 1.577093 1.551523 1.569466\n", + "min 2014.00000 1.400000 1.300000 1.600000 ... 1.700000 1.600000 1.600000 1.600000\n", + "25% 2016.25000 1.650000 1.725000 1.850000 ... 1.750000 1.825000 1.775000 1.875000\n", + "50% 2018.50000 2.200000 2.150000 2.050000 ... 2.200000 2.100000 2.150000 2.200000\n", + "75% 2020.75000 2.300000 2.375000 2.175000 ... 3.600000 3.575000 3.575000 3.500000\n", + "max 2023.00000 6.000000 6.400000 6.500000 ... 6.600000 6.300000 6.000000 5.700000\n", + "\n", + "[8 rows x 13 columns]\n", + "[/stdout]\n", + "shield_call> No Violation\n", + "inference> The CSV file appears to be a dataset with 10 rows and 13 columns. The columns represent various economic indicators, such as inflation rates for each month from January to December, as well as year (yearly inflation rate).\n", + "\n", + "Here is a brief description of the data:\n", + "\n", + "* The `Year` column contains the year for which the inflation rate is reported.\n", + "* The `Jan`, `Feb`, `Mar`, etc. columns contain the inflation rate for each month (January to December).\n", + "* The `count` column is the count of non-null values in each column.\n", + "* The `mean` column is the mean of the non-null values in each column.\n", + "* The `std` column is the standard deviation of the non-null values in each column.\n", + "* The `min` column is the minimum value in each column.\n", + "* The `25%` column is the 25th percentile (25th percentile) of the non-null values in each column.\n", + "* The `50%` column is the 50th percentile (50th percentile) of the non-null values in each column.\n", + "* The `75%` column is the 75th percentile (75th percentile) of the non-null values in each column.\n", + "* The `max` column is the maximum value in each column.\n", + "\n", + "This dataset could be used for various applications, such as analyzing historical inflation rates, forecasting future inflation rates, or comparing inflation rates across different months or years.\n", + "User> ('Which year ended with the highest inflation ?', None)\n", + "inference> According to the data, the year with the highest inflation was 2023. The inflation rate for 2023 is 6.600%.\n", + "User> ('What macro economic situations that led to such high inflation in that period?', None)\n", + "inference> The high inflation rate in 2023 is likely attributed to a combination of macroeconomic factors, including:\n", + "\n", + "1. **Supply chain disruptions**: The COVID-19 pandemic and subsequent lockdowns led to supply chain disruptions, resulting in shortages and price increases for various goods and services.\n", + "2. **Economic growth**: The rapid economic growth in the preceding years created demand for goods and services, leading to higher production costs and, subsequently, higher prices.\n", + "3. **Monetary policy**: The central bank's easy-money policies, such as quantitative easing and low interest rates, increased the money supply and led to inflationary pressures.\n", + "4. **Commodity price shocks**: Increases in global commodity prices, such as oil and food prices, contributed to higher production costs and inflation.\n", + "5. **Labor market tightness**: The labor market has been tight, leading to higher wages and, subsequently, higher production costs, which have been passed on to consumers.\n", + "6. **Trade wars and tariffs**: The ongoing trade tensions and tariffs imposed by various countries have disrupted global supply chains, leading to higher prices for imported goods.\n", + "7. **Climate change and extreme weather events**: The increasing frequency and severity of extreme weather events, such as heatwaves and droughts, have disrupted agricultural production and supply chains.\n", + "8. **Currency devaluation**: A devaluation of the currency can make imports more expensive, leading to higher inflation.\n", + "9. **Government spending and fiscal policy**: Government spending and fiscal policy decisions, such as tax cuts and increased government spending, can inject more money into the economy, leading to inflation.\n", + "10. **Monetary policy mistakes**: Mistakes in monetary policy, such as premature interest rate hikes or overly aggressive quantitative easing, can lead to inflationary pressures.\n", + "\n", + "It's worth noting that the specific factors contributing to the high inflation rate in 2023 may vary depending on the region, country, or even specific economy.\n", + "User> ('Plot average yearly inflation as a time series', None)\n", + "inference> import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Read the CSV file\n", + "df = pd.read_csv('/tmp/tmpco0s0o4_/LOdZoVp1inflation.csv')\n", + "\n", + "# Extract the year and inflation rate from the CSV file\n", + "df['Year'] = pd.to_datetime(df['Year'], format='%Y')\n", + "df = df.rename(columns={'Jan': 'Jan Rate', 'Feb': 'Feb Rate', 'Mar': 'Mar Rate', 'Apr': 'Apr Rate', 'May': 'May Rate', 'Jun': 'Jun Rate', 'Jul': 'Jul Rate', 'Aug': 'Aug Rate', 'Sep': 'Sep Rate', 'Oct': 'Oct Rate', 'Nov': 'Nov Rate', 'Dec': 'Dec Rate'})\n", + "\n", + "# Calculate the average yearly inflation rate\n", + "df['Yearly Inflation'] = df[['Jan Rate', 'Feb Rate', 'Mar Rate', 'Apr Rate', 'May Rate', 'Jun Rate', 'Jul Rate', 'Aug Rate', 'Sep Rate', 'Oct Rate', 'Nov Rate', 'Dec Rate']].mean(axis=1)\n", + "\n", + "# Plot the average yearly inflation rate as a time series\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(df['Year'], df['Yearly Inflation'], marker='o')\n", + "plt.title('Average Yearly Inflation Rate')\n", + "plt.xlabel('Year')\n", + "plt.ylabel('Inflation Rate (%)')\n", + "plt.grid(True)\n", + "plt.show()\n", + "tool_execution> Tool:code_interpreter Args:{'code': \"import pandas as pd\\nimport matplotlib.pyplot as plt\\n\\n# Read the CSV file\\ndf = pd.read_csv('/tmp/tmpco0s0o4_/LOdZoVp1inflation.csv')\\n\\n# Extract the year and inflation rate from the CSV file\\ndf['Year'] = pd.to_datetime(df['Year'], format='%Y')\\ndf = df.rename(columns={'Jan': 'Jan Rate', 'Feb': 'Feb Rate', 'Mar': 'Mar Rate', 'Apr': 'Apr Rate', 'May': 'May Rate', 'Jun': 'Jun Rate', 'Jul': 'Jul Rate', 'Aug': 'Aug Rate', 'Sep': 'Sep Rate', 'Oct': 'Oct Rate', 'Nov': 'Nov Rate', 'Dec': 'Dec Rate'})\\n\\n# Calculate the average yearly inflation rate\\ndf['Yearly Inflation'] = df[['Jan Rate', 'Feb Rate', 'Mar Rate', 'Apr Rate', 'May Rate', 'Jun Rate', 'Jul Rate', 'Aug Rate', 'Sep Rate', 'Oct Rate', 'Nov Rate', 'Dec Rate']].mean(axis=1)\\n\\n# Plot the average yearly inflation rate as a time series\\nplt.figure(figsize=(10, 6))\\nplt.plot(df['Year'], df['Yearly Inflation'], marker='o')\\nplt.title('Average Yearly Inflation Rate')\\nplt.xlabel('Year')\\nplt.ylabel('Inflation Rate (%)')\\nplt.grid(True)\\nplt.show()\"}\n", + "tool_execution> Tool:code_interpreter Response:completed\n", + "shield_call> No Violation\n", + "inference> This code reads the CSV file, extracts the year and inflation rate, calculates the average yearly inflation rate, and plots the average yearly inflation rate as a time series. The resulting plot shows the average inflation rate over the years.\n" + ] + } + ], + "source": [ + "agent_config = AgentConfig(\n", + " model=model_id,\n", + " instructions=\"You are a helpful assistant\",\n", + " tools=[\n", + " search_tool,\n", + " {\n", + " \"type\": \"code_interpreter\",\n", + " }\n", + " ],\n", + " tool_choice=\"required\",\n", + " input_shields=[],\n", + " output_shields=[],\n", + " enable_session_persistence=False,\n", + ")\n", + "\n", + "codex_agent = Agent(client, agent_config)\n", + "session_id = codex_agent.create_session(\"test-session\")\n", + "\n", + "user_prompts = [\n", + " (\n", + " \"Here is a csv, can you describe it ?\",\n", + " [\n", + " Attachment(\n", + " content=\"https://raw.githubusercontent.com/meta-llama/llama-stack-apps/main/examples/resources/inflation.csv\",\n", + " mime_type=\"test/csv\",\n", + " )\n", + " ],\n", + " ),\n", + " (\"Which year ended with the highest inflation ?\", None),\n", + " (\n", + " \"What macro economic situations that led to such high inflation in that period?\",\n", + " None,\n", + " ),\n", + " (\"Plot average yearly inflation as a time series\", None),\n", + "]\n", + "\n", + "for prompt in user_prompts:\n", + " cprint(f'User> {prompt}', 'green')\n", + " response = codex_agent.create_turn(\n", + " messages=[\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": prompt[0],\n", + " }\n", + " ],\n", + " attachments=prompt[1],\n", + " session_id=session_id,\n", + " )\n", + " # for chunk in response:\n", + " # print(chunk)\n", + "\n", + " for log in EventLogger().log(response):\n", + " log.print()\n" + ] + }, + { + "cell_type": "markdown", + "id": "9GHJHfLmIQQi", + "metadata": { + "id": "9GHJHfLmIQQi" + }, + "source": [ + "- Now, use the generated response from agent to view the plot" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "JqBBVLKdIHHq", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 564 + }, + "id": "JqBBVLKdIHHq", + "outputId": "4563e803-8385-426b-ec6c-e8b19e2ee6e6" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAIjCAYAAADFthA8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+WklEQVR4nO3dd3hUZdrH8d+k90BCGiSE0AkBpFdFVJoUscGiKCq6rmt3XffVVQFdd3Vd265tbdjAguIKKiACgvReQi+hh4QQSCGkzZz3j5BITIBkmJkzyXw/15ULcubknPvcmYG553nO/VgMwzAEAAAAAB7Cy+wAAAAAAMCVKIIAAAAAeBSKIAAAAAAehSIIAAAAgEehCAIAAADgUSiCAAAAAHgUiiAAAAAAHoUiCAAAAIBHoQgCAAAA4FEoggAAbu3yyy/X5ZdfbnYYFT755BO1bdtWvr6+atCggSTnxDhp0iRZLBaHHhMAUIYiCIDHevPNN2WxWNSzZ0+zQ3Eby5cvl5eXlx5//PFqH3/hhRdksVj0/fffuzgyx7FYLLrvvvvs+tnt27frtttuU4sWLfTuu+/qnXfeuahYCgoKNGnSJP38888XdRxHs1gslb7CwsLUv3//i/q9T5s2Ta+++qrjggSAi0ARBMBjTZ06Vc2aNdOqVau0e/dus8NxC71799bdd9+tl156SVu2bKn02P79+/XMM8/oxhtv1LBhw0yK0Fw///yzbDabXnvtNd12220aPXr0RR2voKBAkydPrrYIevLJJ3X69OmLOv7FGDhwoD755BN9/PHHeuyxx7R7926NGDFCc+fOtet4FEEA3AlFEACPlJaWpmXLlunll19WVFSUpk6d6vIYbDabCgsLXX7eC3n++efVqFEj3X333TIMo2L7/fffL19fX7322msuiaOgoMAl56mNzMxMSaqYBudMPj4+CggIcPp5zqV169YaN26cbrnlFj355JP66aefZBiGy37/AOBMFEEAPNLUqVPVsGFDDRs2TDfccEOlIqikpEQRERG6/fbbq/xcbm6uAgIC9Oijj1ZsKyoq0sSJE9WyZUv5+/srISFBjz32mIqKiir9bPk0rKlTp6p9+/by9/fXnDlzJEn/+te/1KdPH0VGRiowMFBdu3bVV199VeX8p0+f1gMPPKBGjRopNDRUI0eO1OHDh2WxWDRp0qRK+x4+fFh33HGHYmJi5O/vr/bt2+uDDz64YG7Cw8P12muvaenSpXrvvfckSd98841mzZql559/XnFxcbLZbHr11VfVvn17BQQEKCYmRnfffbdOnDhR6Vjffvuthg0bpsaNG8vf318tWrTQs88+K6vVWmm/yy+/XCkpKVq7dq0uu+wyBQUF6YknnqgSW35+voKDg/Xggw9WeezQoUPy9vbWP/7xjwte49l+/vlnWSwWffnll3ruuecUHx+vgIAAXXnllZVGCJs1a6aJEydKkqKioqrNebni4mI9/fTT6tq1q8LDwxUcHKxLL71UCxcurNhn3759ioqKkiRNnjy5YupZ+TGruyeotLRUzz77rFq0aCF/f381a9ZMTzzxRJXnWrNmzTR8+HAtWbJEPXr0UEBAgJo3b66PP/64Vrk5W7t27dSoUSPt2bOn0vaa/I4vv/xyff/999q/f3/FdTZr1qzi8Zq+hgDAYQwA8EBt27Y1JkyYYBiGYSxevNiQZKxatari8TvuuMNo0KCBUVRUVOnnPvroI0OSsXr1asMwDMNqtRqDBg0ygoKCjIceesj473//a9x3332Gj4+Pcc0111T6WUlGu3btjKioKGPy5MnGG2+8Yaxfv94wDMOIj483/vjHPxqvv/668fLLLxs9evQwJBnfffddpWOMHj3akGTccsstxhtvvGGMHj3a6NSpkyHJmDhxYsV+R48eNeLj442EhATjmWeeMd566y1j5MiRhiTjlVdeqVGOhg0bZjRs2NDYs2ePkZCQYPTp08ew2WyGYRjGnXfeafj4+Bh33XWX8fbbbxt/+ctfjODgYKN79+5GcXFxxTFGjRpljB492njxxReNt956y7jxxhsNScajjz5a6Vz9+/c3YmNjjaioKOP+++83/vvf/xr/+9//Kh7r379/xb4333yzERMTY5SWllY6xj//+U/DYrEY+/fvP+91STLuvffeiu8XLlxoSDI6d+5sdO3a1XjllVeMSZMmGUFBQUaPHj0q9vvmm2+Ma6+91pBkvPXWW8Ynn3xibNy4sdoYjx07ZsTFxRmPPPKI8dZbbxn//Oc/jTZt2hi+vr4Vv/P8/HzjrbfeMiQZ1157rfHJJ59UOubEiRON3/43PX78eEOSccMNNxhvvPGGceuttxqSjFGjRlXaLzEx0WjTpo0RExNjPPHEE8brr79udOnSxbBYLEZqaup581NdjgzDME6ePGl4e3sbPXv2rLS9Jr/jH3/80bjkkkuMRo0aVVznN998YxhG7V5DAOAoFEEAPM6aNWsMSca8efMMwzAMm81mxMfHGw8++GDFPnPnzjUkGbNmzar0s1dffbXRvHnziu8/+eQTw8vLy/jll18q7ff2228bkoylS5dWbJNkeHl5GVu2bKkSU0FBQaXvi4uLjZSUFOOKK66o2LZ27VpDkvHQQw9V2ve2226rUgRNmDDBiIuLM7Kysirt+7vf/c4IDw+vcr7q7Nu3zwgODjYiIiIMX19fY/PmzYZhGMYvv/xiSDKmTp1aaf85c+ZU2V7dee6++24jKCjIKCwsrNjWv39/Q5Lx9ttvV9n/twVG+e9m9uzZlfbr2LFjpf3O5VxFULt27SoVva+99pohqeK6DePXwuTYsWPnjbG0tLRKAX3ixAkjJibGuOOOOyq2HTt2rMrv7rfnKrdhwwZDknHnnXdW2u/RRx81JBkLFiyo2JaYmGhIMhYvXlyxLTMz0/D39zf+9Kc/nSs1FSQZEyZMMI4dO2ZkZmYaa9asMYYMGWJIMl588cVK+9b0dzxs2DAjMTGxyr61eQ0BgKMwHQ6Ax5k6dapiYmI0YMAASWXT1MaMGaPPP/+8YgrPFVdcoUaNGumLL76o+LkTJ05o3rx5GjNmTMW26dOnq127dmrbtq2ysrIqvq644gpJqjT9SZL69++v5OTkKjEFBgZWOk9OTo4uvfRSrVu3rmJ7+dS5P/7xj5V+9v7776/0vWEY+vrrrzVixAgZhlEprsGDBysnJ6fScc8lMTFREydOVHZ2th555BGlpKRUXHN4eLgGDhxY6dhdu3ZVSEhIpWs++7ry8vKUlZWlSy+9VAUFBdq+fXul8/n7+1c7BfG3rrrqKjVu3LjSFMbU1FRt2rRJ48aNu+DPn8vtt98uPz+/iu8vvfRSSdLevXtrfSxvb++KY9lsNmVnZ6u0tFTdunWrUe6r88MPP0iSHnnkkUrb//SnP0lSlc5tycnJFdcglU3ha9OmTY2v5/3331dUVJSio6PVrVs3zZ8/X4899liV89fmd1yd2r6GAMARfMwOAABcyWq16vPPP9eAAQOUlpZWsb1nz5566aWXNH/+fA0aNEg+Pj66/vrrNW3aNBUVFcnf318zZsxQSUlJpSJo165d2rZtW8W9Hb9VfiN9uaSkpGr3++677/S3v/1NGzZsqHQfxNn3hOzfv19eXl5VjtGyZctK3x87dkwnT57UO++8c84Wzr+N61y6d+8uSerWrVvFtl27diknJ0fR0dEXPPaWLVv05JNPasGCBcrNza20X05OTqXvmzRpUqkIORcvLy/dfPPNeuutt1RQUKCgoCBNnTpVAQEBuvHGG2t0XdVp2rRppe8bNmwoSVXuc6qpjz76SC+99JK2b9+ukpKSiu3neg5cSPnv/7e/79jYWDVo0ED79++vtP231yOVXVNNr+eaa67Rfffdp+LiYq1evVp///vfVVBQIC+vyp+f1uZ3XJ3avoYAwBEoggB4lAULFig9PV2ff/65Pv/88yqPT506VYMGDZIk/e53v9N///tfzZ49W6NGjdKXX36ptm3bqlOnThX722w2dejQQS+//HK150tISKj0/dmfmpf75ZdfNHLkSF122WV68803FRcXJ19fX02ZMkXTpk2r9TXabDZJ0rhx4zR+/Phq9+nYsWOtj3v28aOjo8/ZUa/8zezJkyfVv39/hYWF6ZlnnlGLFi0UEBCgdevW6S9/+UtFnOWqy8253HrrrXrxxRf1v//9T2PHjtW0adM0fPhwhYeH231d3t7e1W43zuqQV1OffvqpbrvtNo0aNUp//vOfFR0dXdG04beNBWqrpguoXuz1xMfH66qrrpIkXX311WrUqJHuu+8+DRgwQNddd52k2v+Oq1Pb1xAAOAJFEACPMnXqVEVHR+uNN96o8tiMGTP0zTff6O2331ZgYKAuu+wyxcXF6YsvvlC/fv20YMEC/fWvf630My1atNDGjRt15ZVX1vjN6W99/fXXCggI0Ny5c+Xv71+xfcqUKZX2S0xMlM1mU1pamlq1alWx/bdrHEVFRSk0NFRWq7XiTawjtWjRQj/99JP69u173sLl559/1vHjxzVjxgxddtllFdvPHoGzV0pKijp37qypU6cqPj5eBw4c0H/+85+LPq6jfPXVV2revLlmzJhR6XlR3l2uXG2eM+W//127dqldu3YV2zMyMnTy5EklJiZefODncffdd+uVV17Rk08+qWuvvVYWi6VWv+NzXasjXkMAUFvcEwTAY5w+fVozZszQ8OHDdcMNN1T5uu+++5SXl6eZM2dKKpt2dcMNN2jWrFn65JNPVFpaWmkqnCSNHj1ahw8f1rvvvlvt+U6dOnXBuLy9vWWxWCq1FN63b5/+97//Vdpv8ODBkqQ333yz0vbfvvn39vbW9ddfr6+//lqpqalVznfs2LELxnQ+o0ePltVq1bPPPlvlsdLSUp08ebIiDqnyyENxcXGV+O11yy236Mcff9Srr76qyMhIDR061CHHdYTqrn3lypVavnx5pf2CgoIkqSJn53P11VdLUpUFR8tHUJy9gK2Pj4/+9Kc/adu2bfr2228l1e53HBwcXO30OEe8hgCgthgJAuAxZs6cqby8PI0cObLax3v16lWxcGp5sTNmzBj95z//0cSJE9WhQ4dKn8BLZW/Ev/zyS/3hD3/QwoUL1bdvX1mtVm3fvl1ffvml5s6dW+l+muoMGzZML7/8soYMGaKbbrpJmZmZeuONN9SyZUtt2rSpYr+uXbvq+uuv16uvvqrjx4+rV69eWrRokXbu3Cmp8iftzz//vBYuXKiePXvqrrvuUnJysrKzs7Vu3Tr99NNPys7OtiuHUllzh7vvvlv/+Mc/tGHDBg0aNEi+vr7atWuXpk+frtdee0033HCD+vTpo4YNG2r8+PF64IEHZLFY9Mknn9g1vaw6N910kx577DF98803uueee+Tr6+uQ4zrC8OHDNWPGDF177bUaNmyY0tLS9Pbbbys5OVn5+fkV+wUGBio5OVlffPGFWrdurYiICKWkpFQ0oThbp06dNH78eL3zzjsV09BWrVqljz76SKNGjapo9OFMt912m55++mm98MILGjVqVK1+x127dtUXX3yhRx55RN27d1dISIhGjBjhkNcQANSaaX3pAMDFRowYYQQEBBinTp065z633Xab4evrW9Fa2mazGQkJCYYk429/+1u1P1NcXGy88MILRvv27Q1/f3+jYcOGRteuXY3JkycbOTk5FfupmrVXyr3//vtGq1atDH9/f6Nt27bGlClTql0n5tSpU8a9995rREREGCEhIcaoUaOMHTt2GJKM559/vtK+GRkZxr333mskJCQYvr6+RmxsrHHllVca77zzTo3yZRi/to+ePn16lcfeeecdo2vXrkZgYKARGhpqdOjQwXjssceMI0eOVOyzdOlSo1evXkZgYKDRuHFj47HHHqtocb1w4cKK/fr372+0b9++2hh+2376bFdffbUhyVi2bFmNr+m3v4dzXWNaWpohyZgyZUrFtpq2yLbZbMbf//53IzEx0fD39zc6d+5sfPfdd8b48eOrtIletmyZ0bVrV8PPz69Su+zqfv8lJSXG5MmTjaSkJMPX19dISEgwHn/88UqtqA2jrEX2sGHDqlz7+XJ5tvM9VydNmlTp91fT33F+fr5x0003GQ0aNDAkVcpDTV9DAOAoFsNw0EdyAABTbNiwQZ07d9ann36qm2++2exwXOraa6/V5s2bq9wXBQDA+XBPEADUIadPn66y7dVXX5WXl1elG9M9QXp6ur7//nvdcsstZocCAKhjuCcIAOqQf/7zn1q7dq0GDBggHx8fzZ49W7Nnz9bvf/97j2klnJaWpqVLl+q9996Tr6+v7r77brNDAgDUMRRBAFCH9OnTR/PmzdOzzz6r/Px8NW3aVJMmTarSurs+W7RokW6//XY1bdpUH330kWJjY80OCQBQx3BPEAAAAACPwj1BAAAAADwKRRAAAAAAj1Kn7wmy2Ww6cuSIQkNDKy0SCAAAAMCzGIahvLw8NW7cWF5e5x/rqdNF0JEjRzymGxIAAACACzt48KDi4+PPu0+dLoJCQ0MllV1oWFiYqbGUlJToxx9/1KBBg+Tr62tqLHUNubMPebMPebMfubMPebMPebMPebMfubOPO+UtNzdXCQkJFTXC+dTpIqh8ClxYWJhbFEFBQUEKCwsz/QlQ15A7+5A3+5A3+5E7+5A3+5A3+5A3+5E7+7hj3mpymwyNEQAAAAB4FIogAAAAAB6FIggAAACAR6EIAgAAAOBRKIIAAAAAeBSKIAAAAAAehSIIAAAAgEehCAIAAADgUSiCAAAAAHgUiiAAAAAAHoUiCAAAAIBHoQgCAAAA4FEoggAAAAB4FIogAAAAeDSrzdDKtGytzbJoZVq2rDbD7JDgZD5mBwAAAACYZU5quibP2qr0nEJJ3vp41xrFhQdo4ohkDUmJMzs8OAkjQQAAAPBIc1LTdc+n684UQL86mlOoez5dpzmp6SZFBmejCAIAAIDHsdoMTZ61VdVNfCvfNnnWVqbG1VMUQQAAAPA4q9Kyq4wAnc2QlJ5TqFVp2a4LCi5DEQQAAACPk5l37gLInv1Qt1AEAQAAwONEhwY4dD/ULRRBAAAA8Dg9kiIUF37uAsciKS48QD2SIlwXFFyGIggAAAAex9vLookjks/5uCFp4ohkeXtZXBcUXIYiCAAAAB7pynYxCvLzrvaxZpFBGpQc6+KI4CoUQQAAAPBIK/dmq6DYqoggX310W1fd2sqqf4/pqCBfL+07XqDpaw+aHSKchCIIAAAAHmn2mcVQB6fEqk+LSHVtZGhoSqweGdRGkvT87O06carYzBDhJBRBAAAA8DhWm6G5WzIkSYPbV572Nr5PM7WJCdWJghK9+OMOM8KDk1EEAQAAwOOsP3BCWflFCg3wUZ8WjSo95uvtpWeuaS9J+mzVAW08eNKECOFMFEEAAADwOLNTj0qSrmoXIz+fqm+JezaP1LWdm8gwpKe+TZXVZrg6RDiR6UXQ4cOHNW7cOEVGRiowMFAdOnTQmjVrzA4LAAAA9ZRhGJpzpgj67VS4sz1+dVuF+vto06Ecfb76gKvCgwuYWgSdOHFCffv2la+vr2bPnq2tW7fqpZdeUsOGDc0MCwAAAPVY6uFcHT55WoG+3urfOuqc+0WHBuiRQa0lSf+cs0PZNEmoN3zMPPkLL7yghIQETZkypWJbUlKSiREBAACgvpuzpawr3OVtohR4jnWCyt3SK1Ffrjmkbem5emH2dr1wQ0dXhAgnM7UImjlzpgYPHqwbb7xRixYtUpMmTfTHP/5Rd911V7X7FxUVqaioqOL73NxcSVJJSYlKSkpcEvO5lJ/f7DjqInJnH/JmH/JmP3JnH/JmH/JmH/JWM7M3l02FG9guqkrOqsvdxGFt9Lv3VuuLNQd1fZc4dU5o4LJY3Z07PedqE4PFMAzT7vIKCAiQJD3yyCO68cYbtXr1aj344IN6++23NX78+Cr7T5o0SZMnT66yfdq0aQoKCnJ6vAAAAKjbjhZI/9joI2+Lob93syqghkMCU3d7adUxL8UHG/pTB6u8LM6NE7VXUFCgm266STk5OQoLCzvvvqYWQX5+furWrZuWLVtWse2BBx7Q6tWrtXz58ir7VzcSlJCQoKysrAteqLOVlJRo3rx5GjhwoHx9fU2Npa4hd/Yhb/Yhb/Yjd/Yhb/Yhb/Yhbxf2xs979er83bq8dSO9e0uXiu0Xyt3x/CINem2pcgtLNXF4W43r2dSVYbstd3rO5ebmqlGjRjUqgkydDhcXF6fk5ORK29q1a6evv/662v39/f3l7+9fZbuvr6/pSS/nTrHUNeTOPuTNPuTNfuTOPuTNPuTNPuTt3H7cmilJurpD42pzdK7cxTb01Z8Ht9FT327Ryz/t1ohL4tUopOr7Uk/lDs+52pzf1O5wffv21Y4dlVfh3blzpxITE02KCAAAAPXVgeMF2pqeK28vi65Kjqn1z9/UM1HtG4cpr7BUz8/e7oQI4SqmFkEPP/ywVqxYob///e/avXu3pk2bpnfeeUf33nuvmWEBAACgHirvCtczKUIRwX61/nlvL4ueHZUiSfpq7SGt2Zft0PjgOqYWQd27d9c333yjzz77TCkpKXr22Wf16quv6uabbzYzLAAAANRD5QukDkk59wKpF9KlaUP9rnuCJOnJ/6Wq1GpzSGxwLVPvCZKk4cOHa/jw4WaHAQAAgHosI7dQ6w6clCQNbm9/ESRJjw1pq9mpR7X9aJ4+WbFft/dlncu6xtSRIAAAAMAV5m4pGwXq0rSBYsICLupYEcF+emxIG0nSyz/uVGZu4UXHB9eiCAIAAEC954ipcGf7Xfem6hQfrryiUv2DJgl1DkUQAAAA6rXsU8VamVbWxGBI+ziHHNPby6JnrkmRxSJ9s/6wVu497pDjwjUoggAAAFCv/bQ1Q1aboeS4MDWNDHLYcTslNNDYHmWLpj71bapKaJJQZ1AEAQAAoF6bc+Z+oKEOmgp3tscGt1HDIF/tzMjXR8v2Ofz4cA6KIAAAANRbeYUlWrIrS5Lj7gc6W4MgP/3f0LaSpFfm7VQGTRLqBIogAAAA1FsLtmeq2GpT86hgtYwOcco5buyaoM5NG+hUsVV/+36bU84Bx6IIAgAAQL1V3hVuaEqsLBaLU87h5WXRs9ekyMsizdp4RMt2ZznlPHAciiAAAADUS6eLrfp5xzFJjusKdy4pTcI1rleiJOnpmVtUXEqTBHdGEQQAAIB6afGuYzpdYlWTBoFKaRLm9PP9aWAbRQb7aXdmvj5Ymub088F+FEEAAACol85eINVZU+HOFh7kq8evbidJ+vf8XTpy8rTTzwn7UAQBAACg3ikutemnbRmSnNMa+1yu69xE3RIbqqDYqudokuC2KIIAAABQ7yzbk6W8wlJFhfqrS9OGLjuvl5dFz5xpkvD95nQt3nnMZedGzVEEAQAAoN6Ze2aB1EHJMfLycv5UuLMlNw7T+D7NJEmTZm5RUanVpefHhVEEAQAAoF6x2gz9uKV8Kpxzu8Kdy8MDW6tRiL/2Zp3Se7/QJMHdUAQBAACgXlm9L1vHTxUrPNBXPZtHmBJDWICv/jqsrSTpPwt26dCJAlPiQPUoggAAAFCvlHeFG5gcI19v897ujrqkiXokRaiwxKZnv9tqWhyoiiIIAAAA9YbNZlTcDzSkveu6wlXHYrHo2WtS5O1l0dwtGVq4I9PUePAriiAAAADUG5sO5yg9p1DBft7q16qR2eGoTWyobj+rSUJhCU0S3AFFEAAAAOqN2anpkqQBbaMV4OttcjRlHhrYWjFh/tp/vEDvLN5rdjgQRRAAAADqCcMwNPfM/UBDXLhA6oWE+Pvor8OSJUlvLNytg9k0STAbRRAAAADqhR0Zedp3vEB+Pl4a0Cba7HAqGdExTr2bR6qo1KbJs7aYHY7HowgCAABAvTB7c9ko0GWtohTs72NyNJVZLBY9O6q9fLws+mlbpn7ammF2SB6NIggAAAD1QkVXODeaCne2ltGhmnBpkiRp8nc0STATRRAAAADqvLSsU9p+NE8+XhZd1c69psKd7YErWikuPEAHs0/rzZ/3mB2Ox6IIAgAAQJ1XvkBq7xaRahDkZ3I05xbs76Onhpc1SXh70R7tyzplckSeiSIIAAAAdd4cN58Kd7ahKbG6tFUjFZfaNGnWFhmGYXZIHociCAAAAHXakZOntfHgSVks0sDkGLPDuSCLxaJJI9vL19uin3cc0480SXA5iiAAAADUaeUNEbonRig6NMDkaGqmRVSIfn9Zc0nSM7O26nQxTRJciSIIAAAAddrsM/cDDa4DU+HOdu+AlmrSIFCHT57WGwt3mx2OR6EIAgAAQJ11LK9Iq/dlS5IGt3f/qXBnC/L7tUnCO4v3au+xfJMj8hwUQQAAAKizftqWIcOQOsaHK75hkNnh1Nrg9jG6vE2Uiq02TZxJkwRXoQgCAABAnVUxFa593ZoKV85isWjSiPby8/bSL7uyKlp9w7koggAAAFAn5Zwu0bLdWZLK2k7XVc0aBesP/c80Sfhuq04VlZocUf1HEQQAAIA6af62DJXaDLWOCVHzqBCzw7kofxzQUvENA5WeU6j/LKBJgrNRBAEAAKBOKp86NqSOToU7W4CvtyaNaC9Jeu+XvdqdmWdyRPUbRRAAAADqnFNFpVq085gkaUhKnMnROMZVyTG6sm20Sm2Gnv6WJgnORBEEAACAOmfRzmMqKrWpaUSQ2sWFmh2Ow0wa2V7+Pl5atue4vtuUbnY49RZFEAAAAOqc8qlwQ1NiZbFYTI7GcRIigvTHy1tKkv72/Vbl0yTBKSiCAAAAUKcUlVq1YHumJGlwHe4Kdy5392+uxMggZeQW6bWfdpodTr1EEQQAAIA6ZenuLOUXlSomzF+XxDcwOxyHC/D11qSRZU0SPli6TzuO0iTB0SiCAAAAUKfM3vxrVzgvr/ozFe5sA9pEa1ByjKw2Q09/m0qTBAejCAIAAECdUWq1ad62DEn1cyrc2Z4ekawAXy+tTMvWtxuOmB1OvUIRBAAAgDpjVVq2ThaUKCLYTz2aRZgdjlPFNwzS/Ve0kiQ998M25RaWmBxR/UERBAAAgDpj9pmucAPbxcjHu/6/lb3z0iQlNQrWsbwivTpvl9nh1Bv1/5kDAACAesFmMzR3y5n7gTrU76lw5fx9vDX5TJOEj5bv07b0XJMjqh8oggAAAFAnrD94Qpl5RQr191GfFpFmh+Myl7WO0tUdYmW1GXrqfzRJcASKIAAAANQJ5QukXtEuWv4+3iZH41pPDktWoK+31uw/oRnrDpsdTp1HEQQAAAC3ZxiG5pyZCje0nneFq07jBoF64MqyJgn/mL1NOadpknAxKIIAAADg9rYcydXB7NMK8PXSZa2jzA7HFBP6JalFVLCy8ov18o87zA6nTqMIAgAAgNsrb4hweetoBfn5mByNOfx8vPTMNSmSpE9W7Ffq4RyTI6q7KIIAAADg9spbYw/xwKlwZ+vbspGGd4yTzZCe+jZVNhtNEuxBEQQAAAC3tjszT7sz8+XrbdGAttFmh2O6J4clK9jPW+sPnNRXaw+ZHU6dRBEEAAAAtzZ3S4akslGQ8EBfk6MxX2x4gB66qrUk6fk523WyoNjkiOoeiiAAAAC4tdmp6ZKkIe09eyrc2W7r20ytY0KUfapYL86lSUJtUQQBAADAbR3MLlDq4Vx5WaSByTFmh+M2fL1/bZIwbdUBbTp00tyA6hiKIAAAALit8q5wPZIiFBnib3I07qVX80iNuqSxDEN66n80SagNiiAAAAC4rTnlXeGYCletJ65up1B/H208lKPPVx80O5w6gyIIAAAAbikzt1BrD5yQJA328NbY5xIdFqCHB5Y1Sfjn3O3KPkWThJqgCAIAAIBbmrs1Q4YhXZLQQHHhgWaH47Zu7Z2otrGhOllQohfnbjc7nDqBIggAAABuae6ZqXBDGQU6Lx9vLz07qqxJwuerD2r9mdEznBtFEAAAANzOiVPFWr73uCRpCEXQBXVvFqHru8SXNUn4NlVWmiScF0UQAAAA3M5P2zJktRlqFxemxMhgs8OpE/5vaFuFBvgo9XCupq06YHY4bo0iCAAAAG6HrnC1FxXqr0cHtZEkvThnu7Lyi0yOyH1RBAEAAMCt5BeV6pddWZKYCldb43olqn3jMOUWluqF2TRJOBeKIAAAALiVhdszVWy1qXmjYLWOCTE7nDrF28uiZ64pa5Iwfe0hrd2fbXJE7okiCAAAAG6lfCrc4JRYWSwWk6Ope7omNtTobvGSpCf/t0WlVpvJEbkfiiAAAAC4jcISqxbuyJREa+yL8ZchbRUe6Ktt6bn6dMV+s8NxOxRBAAAAcBuLdx5TQbFVjcMD1KFJuNnh1FmRIf768+CyJgkv/bhTx/JoknA2iiAAAAC4jTlbmArnKGN7NFXH+HDlFZXqHz9sMzsct0IRBAAAALdQYrXpp60ZkqShKXEmR1P3eXtZ9Ow1KbJYpBnrD2vlmcVnQREEAAAAN7F8z3HlFpaqUYifuiY2NDuceqFTQgP9rntTSdLT325RCU0SJFEEAQAAwE2UT4Ub1D5W3l5MhXOUxwa3UcMgX+3IyNNHy/aZHY5boAgCAACA6aw2Qz+eKYKGtKcrnCM1DPbTX4a0lSS9+tMuZeQWmhyR+SiCAAAAYLq1+08oK79YYQE+6tU80uxw6p3R3RLUKaGB8otK9XeaJFAEAQAAwHyzU9MlSVclx8jPh7eojublZdHfzjRJ+HbDES3bk2V2SKbiGQYAAABTGYahualMhXO2DvHhGtczURJNEiiCAAAAYKrNh3N0JKdQQX7euqx1lNnh1GuPDmqjiGA/7c7M15SlaWaHYxqKIAAAAJhq9plRoAFtohXg621yNPVbeJCv/m/or00S0nNOmxyROSiCAAAAYBrDMDSnfCpcClPhXOGGLvHqmthQBcVW/e17z2ySQBEEAAAA0+zMyFda1in5eXtpQNtos8PxCF5eFj1zTXt5WaTvN6VryS7Pa5JAEQQAAADTlI8CXdqqkUL8fUyOxnO0bxyuW3s3kyQ9PTNVxaWe1SSBIggAAACmmbOFqXBmeXhgazUK8dfeY6f03pK9ZofjUqYWQZMmTZLFYqn01bZtWzNDAgAAgIvsP35K29Jz5e1l0VXtYswOx+OEB/rqiavL3nv/Z/5uHT7pOU0STB8Jat++vdLT0yu+lixZYnZIAAAAcIHyqXC9m0eqYbCfydF4pms7N1GPZhE6XWLV377banY4LmN6EeTj46PY2NiKr0aNGpkdEgAAAFygvDX2YKbCmcZiseiZUe3l7WXR7NSjWrTzmNkhuYTpd5/t2rVLjRs3VkBAgHr37q1//OMfatq0abX7FhUVqaioqOL73NxcSVJJSYlKSkpcEu+5lJ/f7DjqInJnH/JmH/JmP3JnH/JmH/Jmn7qUt/ScQm04eFIWi3RF60jTY65LuXO0FpGBurVXU01Ztl9P/y9V39/fR/4+NRsrcae81SYGi2EYhhNjOa/Zs2crPz9fbdq0UXp6uiZPnqzDhw8rNTVVoaGhVfafNGmSJk+eXGX7tGnTFBQU5IqQAQAA4ACL0y36ep+3kkINPZRiNTscj1dYKj23wVu5JRYNS7BqULxpJYLdCgoKdNNNNyknJ0dhYWHn3dfUIui3Tp48qcTERL388suaMGFClcerGwlKSEhQVlbWBS/U2UpKSjRv3jwNHDhQvr6+psZS15A7+5A3+5A3+5E7+5A3+5A3+9SlvI37YLVWpp3Q40Na646+zcwOp07lzllmbUrXI9M3K8DXS7Pv76v4hoEX/Bl3yltubq4aNWpUoyLI9OlwZ2vQoIFat26t3bt3V/u4v7+//P39q2z39fU1Penl3CmWuobc2Ye82Ye82Y/c2Ye82Ye82cfd83Y8v0ir952QJF3dsYlbxeruuXOma7sk6Mu1h7Vib7b+Pmen3r21W41/1h3yVpvzm94Y4Wz5+fnas2eP4uLizA4FAAAATjJva4ZshpTSJEwJEdzS4C4sFouevSZFPl4WzduaoQXbM8wOyWlMLYIeffRRLVq0SPv27dOyZct07bXXytvbW2PHjjUzLAAAADhRxQKp7ekK525axYRqQr8kSdKkmVtVWFI/79cytQg6dOiQxo4dqzZt2mj06NGKjIzUihUrFBUVZWZYAAAAcJLcwhIt3Z0lSRqSwuwfd3T/la0UGxagA9kFenvRHrPDcQpT7wn6/PPPzTw9AAAAXGzBtkyVWA21jA5Ry+gQs8NBNUL8ffTk8Ha6b9p6vfnzHl3XOV5NI+vXtEW3uicIAAAA9ducMwukDmWBVLc2rEOc+rVspOJSmybN2iI3aijtEBRBAAAAcImC4lL9vDNTkjSY+4HcmsVi0aSR7eXrbdGC7Zn6aVum2SE5FEUQAAAAXGLxzmMqLLEpISJQ7Rubu8YjLqxldIjuvLS5JGnSzC06XVx/miRQBAEAAMAlZqf+2hXOYrGYHA1q4v4rWqpxeIAOnzytN3+ufi3PuogiCAAAAE5XVGrVgjNTqoZwP1CdEeTno6dHJEuS/rtor9KyTpkckWNQBAEAAMDplu05rryiUkWH+qtzQkOzw0EtDG4fq8taR6nYatPEmfWjSQJFEAAAAJxuzuayqXCD28fKy4upcHWJxWLR5JHt5eftpcU7j2numcVu6zKKIAAAADhVqdWmedsyJNEau65KahSsu/uXNUl4ZtZWFRSXmhzRxaEIAgAAgFOt2pet7FPFahDkqx5JEWaHAzv98fKWatIgUEdyCvX6grrdJIEiCAAAAE4190xXuIHtYuTjzdvPuirQz1uTRraXJL37y17tOJqnlWnZWptl0cq0bFltdedeIR+zAwAAAED9ZbMZmrvlzFS4DkyFq+uuahetK9pGa8H2TI34zxIVW22SvPXxrjWKCw/QxBHJGpISZ3aYF0QpDgAAAKfZcOikjuYWKsTfR31bNjI7HFwki8WiAW2iJOlMAfSrozmFuufTdZqTmm5GaLVCEQQAAACnKZ8Kd0XbaPn7eJscDS6W1WbozZ/3VPtY+WS4ybO2uv3UOIogAAAAOIVhGJp9pghigdT6YVVattJzCs/5uCEpPadQq9KyXReUHSiCAAAA4BTb0vN0ILtA/j5e6t86yuxw4ACZeecugOzZzywUQQAAAHCKOWcW1ezfOkrB/vTjqg+iQwMcup9ZKIIAAADgFOU3yDMVrv7okRShuPAAWc7xuEVSXHiA268HRREEAAAAh9tzLF87M/Ll42XRle1izA4HDuLtZdHEEcmSVKUQKv9+4ohkeXudq0xyDxRBAAAAcLg5Zxoi9GnZSOGBviZHA0cakhKnt8Z1UWx45SlvseEBemtclzqxThCTMwEAAOBwc8/cDzSUqXD10pCUOA1MjtXy3Zn68ZeVGnRpT/VuGe32I0DlKIIAAADgUIdOFGjToRxZLNLAZKbC1VfeXhb1TIrQ8W2GeiZF1JkCSGI6HAAAABxs7pYMSVL3ZhFqFOJvcjRAVRRBAAAAcKi5qUyFg3ujCAIAAIDDZOYVavX+bEnS4PYUQXBPFEEAAABwmHlbM2QYUqeEBmrcINDscIBqUQQBAADAYcpbYw9hFAhujCIIAAAADnGyoFjL9xyXJA3hfiC4MYogAAAAOMT8bZkqtRlqGxuqpEbBZocDnBNFEAAAABxi9pmpcDREgLujCAIAAMBFO1VUqsW7jkmShnagCIJ7owgCAADARVu4I1PFpTY1iwxSm5hQs8MBzosiCAAAABetvCvc4JRYWSwWk6MBzo8iCAAAABelsMSqhdszJUlDU+JMjga4MIogAAAAXJQlu7J0qtiquPAAdWwSbnY4wAVRBAEAAOCizNnya1c4Ly+mwsH9UQQBAADAbiVWm+ZtzZDEAqmoO3xq+wNFRUVauXKl9u/fr4KCAkVFRalz585KSkpyRnwAAABwYyv3ZivndIkig/3UvVmE2eEANVLjImjp0qV67bXXNGvWLJWUlCg8PFyBgYHKzs5WUVGRmjdvrt///vf6wx/+oNBQ2iICAAB4gjlb0iVJg9rHyJupcKgjajQdbuTIkRozZoyaNWumH3/8UXl5eTp+/LgOHTqkgoIC7dq1S08++aTmz5+v1q1ba968ec6OGwAAACaz2QzN3VI2FW5we6bCoe6o0UjQsGHD9PXXX8vX17fax5s3b67mzZtr/Pjx2rp1q9LT0x0aJAAAANzPugMndCyvSKEBPurTopHZ4QA1VqMi6O67767xAZOTk5WcnGx3QAAAAKgbZp9ZIPWqdjHy86HfFuqOWjdGOFtqaqoWLVokq9Wqvn37qmvXro6KCwAAAG7MMAzNOVME0RUOdY3dJfsbb7yhK6+8UosWLdLChQt1xRVX6LnnnnNkbAAAAHBTqYdzdfjkaQX6euuyVlFmhwPUSo1Hgg4ePKiEhISK719//XVt2bJFjRqVzf9cvny5Ro4cqb/+9a+OjxIAAABupbwr3OVtohTo521yNEDt1Hgk6KqrrtJrr70mwzAkSZGRkZozZ46KioqUl5enn376SVFRfAoAAADgCZgKh7qsxkXQ6tWrtWPHDvXs2VMbNmzQO++8o1deeUWBgYFq0KCBvvjiC3300UfOjBUAAABuYFdGnvYcOyU/by9d0Tba7HCAWqvxdLiwsDC9+eabWrZsmW677TZdccUV+uWXX2S1WmW1WtWgQQMnhgkAAAB3UT4K1K9VI4UGVL+ECuDOat0YoU+fPlqzZo0aNmyozp07a/HixRRAAAAAHqS8NfYQFkhFHVXjkaDS0lK988472rZtmzp16qQnnnhCY8aM0R/+8Ad9+OGHev311xUTE+PMWAEAAGCyA8cLtDU9V95eFl2VzHs/1E01HgmaMGGCXn/9dQUHB2vKlCl6+OGH1bp1ay1YsEBDhgxR79699dZbbzkzVgAAAJhs7payUaCeSRGKCPYzORrAPjUugr799lt9/fXXev755zVv3jx9//33FY9NmDBBK1as0C+//OKUIAEAAOAeZqeWtcamKxzqshoXQTExMfrxxx9VXFysBQsWKDIystLj0dHRmjZtmsMDBAAAgHvIyC3UugMnJUmDuR8IdViN7wl6/fXXdfPNN+uRRx5RXFycvvzyS2fGBQAAADdTPhWuS9MGigkLMDkawH41LoIGDhyojIwMZWVlsSgqAACABypvjT00Jc7kSICLU6sW2RaLhQIIAADAA2WfKtbKtGxJTIVD3VejImjIkCFasWLFBffLy8vTCy+8oDfeeOOiAwMAAID7+Glrhqw2Q8lxYWoaGWR2OMBFqdF0uBtvvFHXX3+9wsPDNWLECHXr1k2NGzdWQECATpw4oa1bt2rJkiX64YcfNGzYML344ovOjhsAAAAuNGdL+VQ4RoFQ99WoCJowYYLGjRun6dOn64svvtA777yjnJwcSWVT5JKTkzV48GCtXr1a7dq1c2rAAAAAcK28whIt2ZUlidbYqB9q3BjB399f48aN07hx4yRJOTk5On36tCIjI+Xr6+u0AAEAAGCuBdszVWy1qUVUsFrFhJodDnDRalwE/VZ4eLjCw8MdGQsAAADcUHlrbEaBUF/UqjscAAAAPMvpYqsWbj8mSRrSntbYqB8oggAAAHBOi3cd0+kSq5o0CFRKkzCzwwEcgiIIAAAA51S+QOqQlFhZLBaTowEcgyIIAAAA1SoutemnbRmSaI2N+sWuIujkyZN677339Pjjjys7u2zl4HXr1unw4cMODQ4AAADmWbYnS3mFpYoK9VeXpg3NDgdwmFp3h9u0aZOuuuoqhYeHa9++fbrrrrsUERGhGTNm6MCBA/r444+dEScAAABcrLwr3KDkGHl5MRUO9UetR4IeeeQR3Xbbbdq1a5cCAgIqtl999dVavHixQ4MDAACAOaw2Qz9uKZ8KR1c41C+1LoJWr16tu+++u8r2Jk2a6OjRow4JCgAAAOZavS9bx08VKzzQVz2bR5gdDuBQtS6C/P39lZubW2X7zp07FRUV5ZCgAAAAYK7yrnADk2Pk600vLdQvtX5Gjxw5Us8884xKSkokSRaLRQcOHNBf/vIXXX/99Q4PEAAAAK5lsxkV9wMNaU9XONQ/tS6CXnrpJeXn5ys6OlqnT59W//791bJlS4WGhuq5555zRowAAABwoU2Hc5SeU6hgP2/1a9XI7HAAh6t1d7jw8HDNmzdPS5cu1caNG5Wfn68uXbroqquuckZ8AAAAcLHyqXAD2kYrwNfb5GgAx6t1EfTxxx9rzJgx6tu3r/r27Vuxvbi4WJ9//rluvfVWhwYIAAAA1zEMQ3NS0yVJQ1ggFfVUrafD3X777crJyamyPS8vT7fffrtDggIAAIA5dmTkad/xAvn5eGlAm2izwwGcotZFkGEYsliqLpZ16NAhhYeHOyQoAAAAmGP25rKpcJe1ilKwf60nDQF1Qo2f2Z07d5bFYpHFYtGVV14pH59ff9RqtSotLU1DhgxxSpAAAABwjfKucEOZCod6rMZF0KhRoyRJGzZs0ODBgxUSElLxmJ+fn5o1a0aLbAAAgDosLeuUth/Nk4+XRVe2Yyoc6q8aF0ETJ06UJDVr1kxjxoxRQECA04ICAACA65V3hevdIlINgvxMjgZwnlpP9Bw/frwz4gAAAIDJ5pQvkMpUONRztS6CrFarXnnlFX355Zc6cOCAiouLKz2enZ3tsOAAAADgGkdOntbGgydlsUgDk2PMDgdwqlp3h5s8ebJefvlljRkzRjk5OXrkkUd03XXXycvLS5MmTXJCiAAAAHC28oYI3RMjFB3KbQ+o32pdBE2dOlXvvvuu/vSnP8nHx0djx47Ve++9p6efflorVqxwRowAAABwstln7gcazFQ4eIBaF0FHjx5Vhw4dJEkhISEVC6cOHz5c33//vWOjAwAAgNMdyyvS6n1ltzQMbs9UONR/tS6C4uPjlZ6eLklq0aKFfvzxR0nS6tWr5e/v79joAAAA4HQ/bcuQYUgd48MV3zDI7HAAp6t1EXTttddq/vz5kqT7779fTz31lFq1aqVbb71Vd9xxh92BPP/887JYLHrooYfsPgYAAABqr2IqXHumwsEz1Lo73PPPP1/x9zFjxigxMVHLli1Tq1atNGLECLuCWL16tf773/+qY8eOdv08AAAA7JNzukTLdmdJkoZyPxA8RK1Hgn6rV69eeuSRRzRixAitWbOm1j+fn5+vm2++We+++64aNmx4seEAAACgFuZvy1CpzVDrmBA1jwoxOxzAJWo9EpSfny9vb28FBgZWbNuwYYOeeuop/fDDD7JarbU63r333qthw4bpqquu0t/+9rfz7ltUVKSioqKK73NzcyVJJSUlKikpqdV5Ha38/GbHUReRO/uQN/uQN/uRO/uQN/uQN/vYk7fZm8vu9R7ULtqj881zzj7ulLfaxGAxDMOoyY4HDx7U6NGjtWrVKnl7e+u+++7T3/72N/3hD3/QF198oWuvvVYPP/ywevbsWeOTf/7553ruuee0evVqBQQE6PLLL9cll1yiV199tdr9J02apMmTJ1fZPm3aNAUFcRMfAABAbRRZpb+u9laJYdFjHUvVJNjsiAD7FRQU6KabblJOTo7CwsLOu2+NR4L+/Oc/q7CwUK+99ppmzJih1157Tb/88ot69uypPXv2KD4+vlZBHjx4UA8++KDmzZungICaLcj1+OOP65FHHqn4Pjc3VwkJCRo0aNAFL9TZSkpKNG/ePA0cOFC+vr6mxlLXkDv7kDf7kDf7kTv7kDf7kDf71DZvs1OPqmTVJiU0DNSdN/STxWJxQZTuieecfdwpb+WzxGqixkXQ4sWLNWPGDPXq1UujR49WbGysbr75Zru7ua1du1aZmZnq0qVLxTar1arFixfr9ddfV1FRkby9vSv9jL+/f7VtuH19fU1Pejl3iqWuIXf2IW/2IW/2I3f2IW/2IW/2qWneftpe1hDh6g5x8vPzc3ZYdQLPOfu4Q95qc/4aF0EZGRlKSkqSJEVHRysoKEhDhw6tfXRnXHnlldq8eXOlbbfffrvatm2rv/zlL1UKIAAAADhOUalVC7ZnSpIG0xUOHqZWjRG8vLwq/f1iPjEIDQ1VSkpKpW3BwcGKjIyssh0AAACOtXR3lvKLShUbFqBL4huYHQ7gUjUuggzDUOvWrSvmiubn56tz586VCiNJys7OdmyEAAAAcLg5FQukxsjLy3PvBYJnqnERNGXKFGfGIUn6+eefnX4OAAAAT1dqtWne1gxJTIWDZ6pxETR+/HhnxgEAAAAXWZWWrRMFJYoI9lOPZhFmhwO4nNeFdwEAAEB9MvvMVLiB7WLk483bQXgenvUAAAAexGYzNHdLWRE0pANT4eCZKIIAAAA8yPqDJ5WZV6RQfx/1aRFpdjiAKSiCAAAAPMic1HRJ0hXtouXvw7qM8EwUQQAAAB7CMAzNOTMVbihd4eDBarVYqiRZrVZ9+OGHmj9/vjIzM2Wz2So9vmDBAocFBwAAAMfZciRXB7NPK8DXS5e1jjI7HMA0tS6CHnzwQX344YcaNmyYUlJSKhZPBQAAgHsrb4hweetoBfnV+m0gUG/U+tn/+eef68svv9TVV1/tjHgAAADgJOWtsYcwFQ4ertb3BPn5+ally5bOiAUAAABOsjszT7sz8+XrbdEV7aLNDgcwVa2LoD/96U967bXXZBiGM+IBAACAE8zdkiFJ6tuykcICfE2OBjBXrafDLVmyRAsXLtTs2bPVvn17+fpWfhHNmDHDYcEBAADAMWafaY09pD1T4YBaF0ENGjTQtdde64xYAAAA4AQHswuUejhXXhZpYHKM2eEApqt1ETRlyhRnxAEAAAAnKe8K1yMpQpEh/iZHA5jP7t6Ix44d044dOyRJbdq0UVQUveYBAADc0ZzU8gVS40yOBHAPtW6McOrUKd1xxx2Ki4vTZZddpssuu0yNGzfWhAkTVFBQ4IwYAQAAYKfM3EKtPXBCkjSoPVPhAMmOIuiRRx7RokWLNGvWLJ08eVInT57Ut99+q0WLFulPf/qTM2IEAACAneZuzZBhSJckNFBceKDZ4QBuodbT4b7++mt99dVXuvzyyyu2XX311QoMDNTo0aP11ltvOTI+AAAAXIS5FVPh6AoHlKv1SFBBQYFiYqoOpUZHRzMdDgAAwI2cOFWs5XuPS5KGUAQBFWpdBPXu3VsTJ05UYWFhxbbTp09r8uTJ6t27t0ODAwAAgP1+2pYhq81Qu7gwJUYGmx0O4DZqPR3utdde0+DBgxUfH69OnTpJkjZu3KiAgADNnTvX4QECAADAPuWtsVkgFais1kVQSkqKdu3apalTp2r79u2SpLFjx+rmm29WYCA32wEAALiD/KJSLd6VJYmpcMBv2bVOUFBQkO666y5HxwIAAAAHWbg9U8WlNjVvFKzWMSFmhwO4lRoVQTNnztTQoUPl6+urmTNnnnffkSNHOiQwAAAA2K98gdTBKbGyWCwmRwO4lxoVQaNGjdLRo0cVHR2tUaNGnXM/i8Uiq9XqqNgAAABgh8ISqxbuyJREa2ygOjUqgmw2W7V/BwAAgPtZuvu4CoqtatIgUB2ahJsdDuB2at0i++OPP1ZRUVGV7cXFxfr4448dEhQAAADsN3drhiRpcHumwgHVqXURdPvttysnJ6fK9ry8PN1+++0OCQoAAAD2sdqk+duPSaIrHHAutS6CDMOo9hOFQ4cOKTyc4VYAAAAzWG2GVqZl64eDXsotLFVksK+6JjY0OyzALdW4RXbnzp1lsVhksVh05ZVXysfn1x+1Wq1KS0vTkCFDnBIkAAAAzm1Oaromz9qq9JxClX/GfbrEpnlbj2pISpy5wQFuqMZFUHlXuA0bNmjw4MEKCfm137yfn5+aNWum66+/3uEBAgAA4NzmpKbrnk/XyfjN9oJiq+75dJ3eGteFQgj4jRoXQRMnTpQkNWvWTGPGjFFAQIDTggIAAMCFWW2GJs/aWqUAOtvkWVs1MDlW3l40SADK1fqeoPHjx1MAAQAAuIFVadlnpsBVz5CUnlOoVWnZrgsKqANqPBJUzmq16pVXXtGXX36pAwcOqLi4uNLj2dm8yAAAAFwhM+/cBZA9+wGeotYjQZMnT9bLL7+sMWPGKCcnR4888oiuu+46eXl5adKkSU4IEQAAANWJDq3Z7Jya7gd4iloXQVOnTtW7776rP/3pT/Lx8dHYsWP13nvv6emnn9aKFSucESMAAACq0SMpQnHhATrX3T4WSXHhAeqRFOHKsAC3V+si6OjRo+rQoYMkKSQkpGLh1OHDh+v77793bHQAAAA4J28viyaOSK62MUJ5YTRxRDJNEYDfqHURFB8fr/T0dElSixYt9OOPP0qSVq9eLX9/f8dGBwAAgPMa3D5WiZFBVbbHhgfQHhs4h1o3Rrj22ms1f/589ezZU/fff7/GjRun999/XwcOHNDDDz/sjBgBAABwDmv2n9D+4wXy9bbo1dEdtXLNOg26tKd6t4xmBAg4h1oXQc8//3zF38eMGaOmTZtq+fLlatWqlUaMGOHQ4AAAAHB+7/+SJkm6oWu8BiXHqHSfoZ5JERRAwHnUugj6rd69e6t3796OiAUAAAC1cOB4geZuPSpJuqNvksnRAHVHjYqgmTNn1viAI0eOtDsYAAAA1NyUZWkyDOmy1lFqFROqkpISs0MC6oQaFUGjRo2q0cEsFousVuvFxAMAAIAayC0s0ZerD0qS7uzHKBBQGzUqgmw2m7PjAAAAQC18seqgThVb1TomRJe2amR2OECdUqMW2RERETp+/Lgk6Y477lBeXp5TgwIAAMC5lVpt+nDZPknShH5JslhoggDURo2KoOLi4opFUT/66CMVFhY6NSgAAACc25wtR3X45GlFBvvpmkuamB0OUOfUaDpc7969NWrUKHXt2lWGYeiBBx5QYGBgtft+8MEHDg0QAAAAlb13pi32uF6JCvD1NjkaoO6pURH06aef6pVXXtGePXtksViUk5PDaBAAAIAJ1u4/oQ0HT8rP20vjeiWaHQ5QJ9WoCIqJialYJDUpKUmffPKJIiMjnRoYAAAAqnp/yV5J0qjOjRUV6m9yNEDdVOvFUtPS0pwRBwAAAC7gYHaB5qSeWRyVttiA3WpdBEnS/PnzNX/+fGVmZlZpn809QQAAAM7x4bJ9shnSpa0aqW1smNnhAHVWrYugyZMn65lnnlG3bt0UFxdHS0YAAAAXyCss0RdnFkdlFAi4OLUugt5++219+OGHuuWWW5wRDwAAAKrxxeqDyi8qVcvoEPVvFWV2OECdVqN1gs5WXFysPn36OCMWAAAAVOPsxVHv6JskLy9m4gAXo9ZF0J133qlp06Y5IxYAAABU48etGTp04rQaBvnqui4sjgpcrFpPhyssLNQ777yjn376SR07dpSvr2+lx19++WWHBQcAAADp/SUsjgo4Uq2LoE2bNumSSy6RJKWmplZ6jCYJAAAAjrX+wAmt3X9Cft5euqU3i6MCjlDrImjhwoXOiAMAAADVKB8FGtGpsaJDA0yOBqgfan1PEAAAAFzj8MnTmn1mcdQJtMUGHKbGI0HXXXddjfabMWOG3cEAAADgVx8t2yerzVCfFpFKbsziqICj1LgICg8Pd2YcAAAAOEt+Uak+W3lAknTnpYwCAY5U4yJoypQpzowDAAAAZ5m+5qDyikrVPCpYl7eONjscoF7hniAAAAA3Y7UZ+mBpWUMEFkcFHI8iCAAAwM3M25qhg9mn1SDIV9d3iTc7HKDeoQgCAABwM+8v2StJurlnUwX6sTgq4GgUQQAAAG5k48GTWr3vhHy9Lbq1dzOzwwHqJYogAAAAN1KxOGrHxooJY3FUwBkoggAAANzEkZOn9cPmdEnSHSyOCjgNRRAAAICb+Gj5PpXaDPVqHqGUJqzRCDgLRRAAAIAbOHXW4qgT+jU3ORqgfqMIAgAAcANfrT2k3MJSNYsM0pVtWRwVcCaKIAAAAJNZbYamlC+O2o/FUQFnowgCAAAw2fxtGdp3vEDhgb66oSuLowLORhEEAABgsvK22GN7NFWQn4/J0QD1H0UQAACAiVIP52hlWrZ8vCwa3yfR7HAAj0ARBAAAYKLyUaBhHeMUFx5ocjSAZ6AIAgAAMMnRnELN2nhEkjSBxVEBl6EIAgAAMMnHZxZH7dEsQh3jG5gdDuAxKIIAAABMUFBcqmmryhZHvYNRIMClKIIAAABM8PW6wzpZUKKmEUEamBxjdjiAR6EIAgAAcDGbzdCUMw0Rbu/bTN4sjgq4FEUQAACAiy3ckam9WacUGuCjG7slmB0O4HEoggAAAFzs7MVRQ/xZHBVwNVOLoLfeeksdO3ZUWFiYwsLC1Lt3b82ePdvMkAAAAJxqy5EcLdtzXN5eFo3v08zscACPZGoRFB8fr+eff15r167VmjVrdMUVV+iaa67Rli1bzAwLAADAaT5Ysk+SNDQlVk0asDgqYAZTx19HjBhR6fvnnntOb731llasWKH27dubFBUAAIBzZOYWaubGw5KkOy9tbnI0gOdym0moVqtV06dP16lTp9S7d+9q9ykqKlJRUVHF97m5uZKkkpISlZSUuCTOcyk/v9lx1EXkzj7kzT7kzX7kzj7kzT71NW8fLk1TidVQl6YN1D422OHXV1/z5grkzj7ulLfaxGAxDMNwYiwXtHnzZvXu3VuFhYUKCQnRtGnTdPXVV1e776RJkzR58uQq26dNm6agoCBnhwoAAGC3Yqs0aZ23TpVadHtrqy6JNPUtGFDvFBQU6KabblJOTo7CwsLOu6/pRVBxcbEOHDignJwcffXVV3rvvfe0aNEiJScnV9m3upGghIQEZWVlXfBCna2kpETz5s3TwIED5evra2osdQ25sw95sw95sx+5sw95s099zNvnqw/pqZlbFd8gQD89fKlT1gaqj3lzFXJnH3fKW25urho1alSjIsj06XB+fn5q2bKlJKlr165avXq1XnvtNf33v/+tsq+/v7/8/f2rbPf19TU96eXcKZa6htzZh7zZh7zZj9zZh7zZp77kzWYz9OHy/ZKk2/s1V4C/n1PPV1/yZgZyZx93yFttzu926wTZbLZKoz0AAAB13aJdx7Tn2CmF+PtodLd4s8MBPJ6pI0GPP/64hg4dqqZNmyovL0/Tpk3Tzz//rLlz55oZFgAAgEO9/0vZ4qi/656g0ABGGQCzmVoEZWZm6tZbb1V6errCw8PVsWNHzZ07VwMHDjQzLAAAAIfZfjRXS3ZnycsiFkcF3ISpRdD7779v5ukBAACcrnwUaGhKnBIi6GYLuAO3uycIAACgvjiWV6RvNxyRJN3RL8nkaACUowgCAABwkk9W7Fex1abOTRuoa2JDs8MBcAZFEAAAgBMUllg1dUVZW+wJjAIBboUiCAAAwAn+t/6wjp8qVpMGgRrSPtbscACchSIIAADAwQzD0PtLyhoi3NanmXy8ecsFuBNekQAAAA62eFeWdmXmK9jPW2N6JJgdDoDfoAgCAABwsPJRoNHdExTG4qiA26EIAgAAcKCdGXlavPOYvCzS7X1oiAC4I4ogAAAAB/rgzCjQoORYNY1kcVTAHVEEAQAAOEhWfpFmrD8sSbrzUkaBAHdFEQQAAOAgU1ccUHGpTZ3iw1kcFXBjFEEAAAAOUFhi1Scr9kmSJlzaXBaLxdyAAJwTRRAAAIADzNx4RFn5xYoLD9DQFBZHBdwZRRAAAMBFMgyjoiHCbX2ayZfFUQG3xisUAADgIi3dfVzbj+YpyM9bv+vR1OxwAFwARRAAAMBFem/JXknS6G4JCg9kcVTA3VEEAQAAXITdmXn6eccxWSzS7X2bmR0OgBqgCAIAALgIHyzdJ0m6ql2MEiODzQ0GQI1QBAEAANgp+1Sxvl57SJJ0Zz8WRwXqCoogAAAAO01buV9FpTalNAlTj6QIs8MBUEMUQQAAAHYoKrXqo+X7JUl39mNxVKAuoQgCAACww3cb03Usr0gxYf66ukOc2eEAqAWKIAAAgFoyDEPvnVkcdXyfZvLz4S0VUJfwigUAAKil5XuPa1t6rgJ9vXUTi6MCdQ5FEAAAQC29/0vZKNANXePVIMjP5GgA1BZFEAAAQC3sPZav+dszJbE4KlBXUQQBAADUwgdLy0aBrmoXreZRISZHA8AeFEEAAAA1dLKgWF+dWRz1DhZHBeosiiAAAIAamrrygApLbEqOC1Pv5pFmhwPAThRBAAAANVBcatPHy/dJkib0S2JxVKAOowgCAACoge83H1FGbpGiQ/01olNjs8MBcBEoggAAAC7AMAy9f2Zx1Ft7J7I4KlDH8QoGAAC4gJVp2Uo9nKsAXy/d1DPR7HAAXCSKIAAAgAsoHwW6rku8IoJZHBWo6yiCAAAAzmNf1in9tC1DknRHX9piA/UBRRAAAMB5TFmaJsOQBrSJUstoFkcF6gOKIAAAgHPIKSjRl2vKFke989LmJkcDwFEoggAAAM7hs9UHdLrEqraxoerTgsVRgfqCIggAAKAaJVabPly6TxKLowL1DUUQAABANX7YnK6juYVqFOKvkZewOCpQn1AEAQAA/MZvF0f19/E2OSIAjkQRBAAA8Btr9p/QpkM58vPx0s09m5odDgAHowgCAAD4jfd+2StJur5LE0WG+JscDQBHowgCAAA4y/7jp/TjVhZHBeoziiAAAICzTFm6T4Yh9W8dpVYxoWaHA8AJKIIAAADOyDldoulrDkoqa4sNoH6iCAIAADjji9UHdKrYqtYxIbq0VSOzwwHgJBRBAAAAkkpZHBXwGBRBAAAAkmanHtWRnEJFBvvpmkuamB0OACeiCAIAAB7PMAy9d2Zx1HG9EhXgy+KoQH1GEQQAADzeugMntPHgSfn5eGlcr0SzwwHgZBRBAADA471/ZhRo1CWNFRXK4qhAfUcRBAAAPNrB7ALNST0qSbqDttiAR6AIAgAAHu3DZftkM6RLWzVS29gws8MB4AIUQQAAwGPlFZboi9Vli6MyCgR4DoogAADgsb5YfVD5RaVqGR2i/q2izA4HgItQBAEAAI9UarXpw2X7JEl39E2SlxeLowKegiIIAAB4pB+3ZujQidNqGOSr67qwOCrgSSiCAACAR3qfxVEBj0URBAAAPM76Aye0dv8J+Xl76ZbeLI4KeBqKIAAA4HHKR4FGdGqs6NAAk6MB4GoUQQAAwKMcPnlas88sjjqBttiAR6IIAgAAHuWjZftktRnq0yJSyY1ZHBXwRBRBAADAY+QXleqzlQckSXdeyigQ4KkogoA6yGoztDItW2uzLFqZli2rzTA7JADV4LXqfqavOai8olI1jwrW5a2jzQ4HgEl8zA4AQO3MSU3X5FlblZ5TKMlbH+9ao7jwAE0ckawhKXFmhwfgDF6r7sdqM/TB0rKGCCyOCng2RoKAOmROarru+XTdmTdVvzqaU6h7Pl2nOanpJkUG4Gy8Vt3TvK0ZOph9Wg2CfHV9l3izwwFgIoogoI6w2gxNnrVV1U2mKd82edZWptsAJimx2pSZV6gtR3L0xDepvFbd0PtL9kqSbu7ZVIF+LI4KeDKmwwF1xKq07CqfKp/NkJSeU6hVadnq3SLSdYEB9ZBhGCootir7VHHF1/FTxTrxmz+zTxXpREGJjucXKbewtGbHFq9VM2w8eFKr952Qr7dFt/ZuZnY4AExGEQTUEek5p2u0X2beuQslwFNZbYZOFhSfu6g589jx/LK/Hz9VrOJSW63PY7FIQb7eOlVsveC+vFZdq2Jx1I6NFRPG4qiAp6MIAtxcTkGJPlt9QO8s3lOj/ZfsylLv5pGK5j95ONDZXc4i07LVu2W0vE28qbywxFo2EpNfrOyCshGZ7FMlZ/4srvJ18nSJDDtmn/n5eCky2E8Rv/0K8lNEiJ8ig/3UMMhPkSFlfzYI8tOqtGyNfXfFBY994lSxHVcOexw5eVo/bC67D+sOFkcFIIogwG3tyzqlKUvTNH3tIRWc+VTZyyJd6DaC6WsP6Zv1hzW4faxu7tVUvZtHymKhAxLs5+wuZzabodzCkjPTy2r2dbrkwiMt1QkP9K22mIkIOvP92X8P9lOQn3etXz89kiIUFx6gozmF1d4XVG7SrK3afDhX/ze0raJC/e26HtTMR8v3qdRmqFfzCKU0CTc7HABugCIIcCOGYWjF3my9vyRN87dnVHxy3TY2VHf0S1KAj5ce/HxD2b5n/Vz5W7Tb+jbT5kM5WrP/hL7fnK7vN6erRVSwbu6ZqOu7xis80NeVl4N6oLzL2W/fzJd3OXtrXJcqhVBRqVUnTpXo+G9GZc6eenY8/8y2gmKdKCixq0mAr7dFEWeNxEQE+ysiyLfsz+CyPxsG+yoy2F8RwX5qEOQrX2/n9wPy9rJo4ohk3fPpOllU/Wu1b8tILd1zXF+vO6Qftx7Vo4PaaFyvRFNH1+qrU2ctjjqhX3OTowHgLiiCADdQXGrTd5uO6P0ladpyJLdi+4A2UZrQr7n6tvx1NMfPx+usT+XLxP7mU/lt6bmaunK/vll3WHuOndIz323VP+du1zWdmmhcr0R1iOeTUFxYTToSPvzFRn2x+qCyC8qmop04VaL8opo1CPitUH8fRZyZVvbbKWgNg89MPQv+9bEQfx+3HeUckhKnt8Z1Oe9rdf2BE3rq21SlHs7VxJlb9OWag3rmmhR1TWxoYuT1z1drDym3sFTNIoN0ZVsWRwVQhiIIMNGJU8WaunK/Pl6+X5l5RZKkAF8vXdclXnf0TVLL6JAqPzMkJU4Dk2O1fHemfvxlpQZd2rPK/Rnt4sL0t1Ed9H9D2+mb9Yc1dcV+bT+apy/WHNQXaw6qU3y4bu6VqBEdG9MmFue0cu/x83YklKTTJVYt3HGsynZvL0tFMVM+GtPwzOjM2cXM2ffT+PnUr1UbLvRa7dy0ob69t5+mrTqgF+ds15Yjubr+rWUa3S1efxnSVpEhTJG7WFaboSnli6P2Y3FUAL+iCAJMsDszXx8sTdOMdYdUWFLWgSo61F/j+zTTTT2aqmGw33l/3tvLop5JETq+zVDPpIhzTqEJ8ffRLb0SNa5nU63df0KfrtivHzYf1cZDOdr41SY99/023dA1Xjf3bKrmUVULLngewzC0/uBJzdp4RF+vO1SjnxnbI0ED2kRXFDORwf4KDfDhDacu/Fr19rLoll6JGpoSqxdmb9f0tYf05ZpDmrslQ48NaaPfdW/KFLmLMH9bhvYdL1B4oK9u6MriqAB+RREEuIhhGFqyO0vvL0nTz2d9ct6+cZjuvDRJwzo0dton4RaLRd2aRahbswg9NbxIX645pGmr9utg9mm9vyRN7y9JU7+WjTSuV1Nd1S5GPi64bwLuwzAMbTmSq1mbjui7jek6fLJm7djLjezUhPVuLlKjEH+9eGMnjemeoKe+3aJt6bn66zep+mL1QT17TYo6JTQwO8Q6qbwt9tgeTRXkx1seAL/iXwTAyQpLrJq54Yg+WJqm7UfzJJWtJXJVuxhN6JeknkkRLr2vITLEX/dc3kJ3X9Zci3Yd06fL92vBjkwt2Z2lJbuzFBPmr991b6qxPZoqNpw22/XZzow8zdp4RN9tSlda1qmK7UF+3hqYHKNhKXF6emaqMnKLqr0vyKKye1x6JEW4LOb6rluzCM26r68+XbFfL/24U5sO5WjUm0s1tkdT/XlQmwuOEuNXqYdztDItWz5eFo3vk2h2OADcDEUQ4CRZ+UX6dMV+fbpiv7Lyy9YDCfLz1o1d43V73yQ1axRsanxeXhYNaBOtAW2idehEgT5bdUBfrD6ojNwivTZ/l15fuFsD28VoXK9E9WkRydSmeiIt65S+23hEszYd0c6M/Irt/j5eurJdtIZ3bKwBbaIr7hWzyThvl7OJI5KZruVgPt5euq1vkq7uGKfnf9iuGesPa9rKA5q9OV3/N7StbuyawOuxBspHgYZ1jFNceKDJ0QBwNxRBgIPtOJqn95fs1f82HKlYcb5xeIDG92mm33VvqvAg92tTHd8wSH8e3FYPXtlac7cc1Scr9mtVWrbmbDmqOVuOKqlRsG7u2VQ3dI1XgyA+ia5rDp0o0Heb0vXdpiNKPfxr90Ffb4v6t47SiE6NdWW7GIX4V/0voSZdzuAc0aEBennMJRrTPUFPf7tFOzLy9JevN+uzVQf1t1EprHdzHkdzCjVr4xFJ0gQWRwVQDYogwAFsNkOLdh3TB0vS9MuurIrtnRIaaEK/JA1NiXXJ+iQXy8/HSyM6NdaITo21MyNPU1fs19frDist65T+9v02vTh3h0Z0aqxxvRLVKT7cbdsTQ8rILdT3m9I1a9MRrT9wsmK7t5dFfVs20vCOcRqcHFujorwmHQnhPD2bR+q7B/rpo2X79Mq8ndpw8KRGvr5E43ol6k8D27jlBytm+/jM4qg9mkWoY3wDs8MB4IYogoCLcLrYqhnrD+mDJWnac6zsngovizQkJVYT+iWpS9OGdbZQaB0TqsnXpOixIW317YYj+nTFfm1Nz9VXaw/pq7WHlNIkTON6JmrkJY254dhNHM8v0g+pR/XdxiNatS+7YrFdi0XqmRShEZ0aa0j7WLtaL9e0IyGcw9fbS3de2lwjOjXWc99v08yNR/Tx8v36flPZFLnru8QzRe6MguJSTS1fHPVSRoEAVI93LoAdMnML9fHy/Zq6cr9OFJRIKmtHPaZ7gm7r00wJEUEmR+g4wf4+uqlnU43tkaD1B0/q0xX79d2mdKUeztX/zdis537Ypuu7xGtcr6ZqGR1qdrgeJ6egRHO3HNWsTUe0bM9xWW2/3rnTpWkDjejUWFd3iFNMGE0u6oOYsAD9e2xn/a57gp6euUW7M/P15682lXWRG5WidnFhZodouq/XHVbO6RI1jQjSVe1izA4HgJuiCAJqIfVwjj5YkqZZm46oxFr2ZjO+YaBu75uk0d3iFRpQf6elWCwWdWnaUF2aNtRTw5I1fe1BTV15QPuPF+jDZfv04bJ96tU8QuN6JWpQcmy9W/jSneQXlWre1qP6bmO6Fu86VvFclKQOTcI1vGOchnWMU3zD+lOMo7I+LRvphwcu1QdL0/Tv+bu0Zv8JDf/PEt3aO1EPD2ytsHr8b9H52GyGPjjTEOGOvs0YsQRwTqYWQf/4xz80Y8YMbd++XYGBgerTp49eeOEFtWnTxsywgEpsNkPzt2fq/SV7tWJvdsX2bokNNaFfkga1j/W4/2gbBvvp95e10J39muuX3Vn6dMV+zd+WoRV7s7Vib7aiQv31u+4JGtujqRo3oCuTI5wutmrB9kx9t+mIFmzPVNGZphuS1CYmVCM6xWl4x8amdx2E6/j5eOkP/Vto5Jkpct9vTteUpfv03aZ0/fXqdrrmksZ1djquvRbuyFRa1imFBvjoxm4JZocDwI2ZWgQtWrRI9957r7p3767S0lI98cQTGjRokLZu3argYP4jh7lOFZXq63Vl9/vsO14gqey+iKs7xGlCvyRdwuKF8vIq6y7Wv3WUjpw8rc9XHdBnqw/qWF6R/rNgt95YuFtXnmmzfWnLRtyzUEtFpVYt3pmlWRuP6KdtGSootlY81rxRsIZ3jNPwTo3VOoZpiJ6scYNAvXFzF43ZeUyTZm7R3qxTeuiLDZq26oCevSZFbWI95/nx3i9lo0A39Wiq4Gq6HQJAOVP/hZgzZ06l7z/88ENFR0dr7dq1uuyyy6rsX1RUpKKioorvc3PLWr2WlJSopKTEucFeQPn5zY6jLnK33KXnFOqTFQf0xZpDyi0slSSFBfhoTLd43dKrqeLOLCBqdrzulreoYB/dP6C5/nBZM/20LVPTVh3UirQTmrc1Q/O2ZqhpRKB+1z1e13duoggTF3x0t7z9VonVpuV7s/X95qOaty1TeWeeg5LUpEGAhnWI1dUpsUqOC634lN9V1+LuuXNXrspb76QGmnlvb01Zuk9vLNqrVWnZuvrfv+i23k1134AW1bZAd2e1zdvW9Fwt33tc3l4W3dwj3mOfp7xO7Ufu7ONOeatNDBbDMKpbCNwUu3fvVqtWrbR582alpKRUeXzSpEmaPHlyle3Tpk1TUBBz33Fx9udLPx/x0objFtnOLAXZKMDQ5XE29Ygy5O9tcoB1UMZpaelRL606ZtFpa1lOfSyGOkca6htrU7OQss5lns5mSHtyLVqXZdHGbItOlf6alHBfQ5c0MtQl0qZE8oUayi6SvtnnpU3ZZffmhfsaGtXMps6RRr19Dn2620urj3mpc6RNt7W2XfgHANQ7BQUFuummm5STk6OwsPM3inGbIshms2nkyJE6efKklixZUu0+1Y0EJSQkKCsr64IX6mwlJSWaN2+eBg4cKF9fz7wh1V5m5s5qMzRvW6Y+XLZfa89aS6VnUkPd3jtRl7eJctv7ferSc66guFTfbz6qaasOKfXIr4t1to0N1U094jWyY5zLpq64S95sNkPrD57U96kZmpN6VMfyiyseiwj21dD2sbq6Q4y6NW3oNtMI3SV3dY2ZeVu085ie+X67DmSfliT1bh6hp4e1VcvoEJfGYY/a5C0zr0iXv7RYJVZDX93dU53iPXchWV6n9iN39nGnvOXm5qpRo0Y1KoLcZmz83nvvVWpq6jkLIEny9/eXv3/V9S18fX1NT3o5d4qlrnFl7vIKS/TlmkOasjRNh06UvTnw9bZoRMfGuqNfUp1aib0uPOfCfX11U68k3dQrSRsPntQnK/Zr1sYj2n40T0/P3KZ/zt2l67o00bheiS67v8WMvBmGoc2HczRr4xF9vyldR3IKKx4LD/TVkPaxGtGpsXo1j5CPGy+uWxeec+7IjLxd1b6x+rWO0TuL9+qNhbu1fG+2Rr65XBP6NdcDV7asE2t81SRvn63eqxKroa6JDdUtqZGLInNvvE7tR+7s4w55q8353eJfv/vuu0/fffedFi9erPj4eLPDQT12MLusnfMXqw8qv6jsXouGQb66uWeibumdyFoqLtApoYE6JTTQk8Pa6au1hzRt5QHtzTqlj5fv18fL96tHswiN652oIe3rR5ttwzC0/Wievtt0RLM2putAdkHFYyH+PhqUHKPhneLUr2VUvbheuJ8AX289cGUrjbqkiSbP2qL52zP19qI9mrnhsJ4anqwhKbF1uotcYYlVU1fulyTd2Y/FUQHUjKlFkGEYuv/++/XNN9/o559/VlIS/3jB8QzD0LoDJ/T+kjTNST2q8rUkW0QF645+Sbquc7wC/bjhx9UaBPnpzkuba0K/JC3bc1yfLN+vedsytGpftlbty1ajED+N7lbWZrsuLj67OzNf3206ou82pWt3Zn7F9gBfL13ZLkYjOjbW5W2iFODLcw+u0TQySO/f1l0/bc3QpFlbdOjEad0zdZ0ubdVIz1yToqQ62l59xrrDOlFQoviGgRrUPtbscADUEaYWQffee6+mTZumb7/9VqGhoTp69KgkKTw8XIGBrC2Ci1NitWl26lG9vyRNGw+erNh+aatGuqNfkvq3inKbey08mcViUd+WjdS3ZSMdzSnU56sP6LNVB5SRW6Q3f96jtxbt0YA20bqlV6Iua+2+92hJZSONs86M+GxL//XeJz9vL13eJkrDOzXWlW2jad0LU12VHKN+rRrpzYW79faivfplV5YGv7JYv7+sue4d0LJOfShksxl6f8leSdLtfZPc+t8HAO7F1P+J33rrLUnS5ZdfXmn7lClTdNttt7k+INQLOadL9PmqA/po2b6Key78fLw06pKy+33axprbRAPnFhseoIeuaq17B7TU/G0Z+nTFAS3ZnaUF2zO1YHum4hsG6qaeTTW6W4IahVS9P9AM6Tmn9f2mdM3alF6p2Pbxsqhfq0Ya0bGxBraPUVgA88vhPgJ8vfXIoDa6rku8Js7cokU7j+n1hbv1zfrDmjgiWQOTY+rEFLlFu45pz7FTCvH30ehuTKcHUHOmT4cDHGVf1ilNWZqm6WsPVSwqGRnsp1t6J2pcr0S3edOMC/P19tKQlDgNSYnT3mP5mrbygKavPaRDJ07rn3N26JV5O3V1hziN65WobokNXf5m7VhekWanpmvWxiNave9ExXYvi9S7RaSGd2ysIe1j1dDE9ZCAmmjWKFgf3t5dc7dk6NnvturwydP6/SdrNaBNlCaNbK/ESPeeIvf+mcVRf9c9QaF80ACgFpiTgTrNMAytTMvW+0vS9NO2DJXX1W1iQjWhX5JGXtKYey7quOZRIXpyeLIeHdxGszYe0acrD2jjwZP6dsMRfbvhiNrEhGpcr6Ya1bmJU98EnThVrDlbjuq7TUe0fM/xinvLJKl7s4Ya0amxhqbEKSqUYht1i8Vi0ZCUWF3WupHeWLhb7yzeq4U7jmnpK4t1T/8WuufyFm757+j2o7lasjtLXhZpfJ9mZocDoI6hCEKdVFxq0/ebj+i9X9K05ax1Zy5vE6U7+zVX35aRdWIqB2ouwNdbN3ZL0I3dEpR6OEefrtiv/204rB0ZeXrq2y16fvZ2jepc1ma7XZxjpjzmFpZo3pYMzdp0REt2Zan0rMqnU0IDjegYp6s7xKlxA+5hRN0X5OejPw9uWzZF7tstWrI7S6/N36Vv1h/WpJHJuqJtjNkhVlI+CjQ0Ja5ONk8BYC6KINQpJ04Va9qZ+30y88oWzg3w9dJ1XeJ1R99mahntmjVmYK6UJuF6/vqOevzqdpqx7pA+XbFfe46d0tSVBzR15QF1TWyocb2aamhKXKVPsK22spHDtVkWRaZlq3fL6Co3UhcUl+qnbZn6buMR/bzzmIpLf115vl1cmEZ0itPwDo3VNJI3XaifWkSF6JMJPfTD5qN69rutOpBdoDs+XKOByTF6eniyWxQcx/KK9O2GI5KkO2iLDcAOFEGoE/Ycy9cHS9L09bpDKiwpe1MaHeqv8X2a6aYeTbn3wkOFB/rq9r5Juq1PM63Ym61PV+zX3C1HtXb/Ca3df0LPfrdNN3aL1809ErU1PUeTZ21Vek6hJG99vGuN4sIDNHFEsi5vE62fdxzTrE1HtGBbpk6XWCvO0SIqWCM6Ndbwjo3VMjrEvIsFXMhisWhYxzhd3iZK/56/S+8vSdO8rRlavPOY7hvQUr/v31z+PuZNkftkxX4VW23q3LSBuiY2NC0OAHUXRRBMdb5P5g3D0NLdx/X+krL56eXaNw7ThH5JGt6xMYtLQlLZG7beLSLVu0WkMnML9cXqg/ps1QEdySnUfxft1X8X7a3259JzCvWHT9cpwMdLhWeN+DSNCCob8enYWG1jQ5laCY8V7O+jx69upxu6xuupb1O1Ym+2Xpq3U1+vO6TJ16Sof+sol8dUWGLV1BVli6NOYBQIgJ0ogmCaOanp1X4y//jQtiostemDJWnafjRPkmSxSFe2jdGEfknq1TyCN6U4p+iwAN1/ZSvdc3kLLdxxTB8v36dfdmWd92cKS22KC/PX8E6NNaJTY3VoEs5zDDhLq5hQfXZXL83ceETPfb9N+44XaPwHqzSkfayeGpGsJi68L+5/6w/r+KliNWkQqCEsjgrAThRBMMWc1HTd8+k6/bZJenpOoR74fEPF94G+3hrdLV639U2qs6uZwxw+3l4amByjEH+fCxZBkvTS6EvUp2UjF0QG1E0Wi0XXXNJEV7SN1qs/7dKHy/ZpzpajWrTzmO6/sqXu7Nfc6aPzhmHo/SVlDRFu69NMPt7MBgBgH4oguJzVZmjyrK1VCqCzeVmkRwe30c09EhUexNoPsF9mXmGN9juWX+TkSID6ITTAV08NT9aN3eL19P+2aNW+bP1zzg59tfaQnr0mRX2d+GHC4l1Z2pWZr2A/b43pkeC08wCo/yiC4HCFJVZl5RcpK79YWXlFZ/5e9v2xvCLtOZZ/ZgrcudkMqXNCQwogXLTo0ACH7gegTNvYMH1xdy99s/6w/v7DNu09dko3v7dSwzrG6alhyYoNd/xrqnwUaHT3BIWxOCqAi0ARhBopLLHqWN6vxUxWftFZ3xcpK+/Mtvwi5RWWOuScNf0EHzifHkkRigsP0NGcwmpHHy2SYsMD1CMpwtWhAXWexWLRdV3idWW7GL0yb6c+Xr5P329K18/bM/XgVa10e98k+TpoytrOjDwt3nlMXhbp9j40RABwcSiCPNjpYmtF4ZKVV/5n8VkjN7+O3uQX1a6w8fP2UqMQPzUK9VejEP+yv4eU/f1kQbH+vWD3BY/BJ/NwBG8viyaOSNY9n66TRapUCJW3Ppg4IrnKekEAai480FeTRrbXjd3i9dT/UrXuwEn9/Yftmr7mkJ65JkW9W0Re9Dk+ODMKNCg5lnW6AFw0iiAHqMkCjK5SUFyqrLxiHcsv1LHfFjRnjdZk5RXpVLH1wgc8i5+Pl6J+U9BEhfr/ptjxV1SIv8ICfc7ZXctqMzR97SE+mYfLDEmJ01vjupzVjbBM7Jl1goakxJkYHVB/tG8crq/+0EdfrTuk52dv167MfI19d4VGXdJYT1zdTtFh9n24lZVfpBnrD0uS7ryUUSAAF48i6CKdq82zI99YnSoqrTT17NhZ99r8dopaQS0LG38fr7LiJdRfUSF+Z4qas7/KCpyoUH+F+p+7sKkNPpmHGYakxGlgcqyW787Uj7+s1KBLe5r6gQVQX3l5WTS6W4IGJcfoXz/u0NSVB/S/DUf007ZMPTywtcb3Tqx1V7epKw6ouNSmTvHhLI4KwCEogi7Cudo8H80p1D2frtNb47pUWwgZhqH8otKKwqWioDkz9ey3ozdnr15fEwG+XmeN0pSPzvxmtObMCE6Igwqb2uKTeZjB28uinkkROr7NUM+kCAogwIkaBPnpb6M6aEy3pnry21RtPHhSz363VdPXHNSzo1LUvVnNRvuLSqz6ZMU+SdKES5uzhhcAh6AIstP52jyXb3vsq03afDhH2aeKK01NO5ZXpKKzVqeviUBf71+nnp0ZuSkvbiqN3oT6K9jPu078J8En8wBQ/3WID9c39/TRF2sO6oU527X9aJ5ufHu5ruvSRI8PbaeoUP/z/vyszUeVlV+suPAADU1hcVQAjkERZKdVadkXbPOcW1iqNxbuOefjwX7e1TYOKC9qokJ/3RbsXz9/VXwyDwD1n5eXRWN7NNWQ9rH659zt+nz1Qc1Yd1jztmbo0UFtNK5XYrX//huG9OGy/ZLKFkd1VKc5AKif76xdoKbtm/u1bKTuzSLU6KyCJirEX41C/RTkR/oBAJ6jYbCf/nFdR43ulqCnvk1V6uFcTZy5RV+uOahnrkmpuN+nvOHQ9we8tCMjX4G+Xvpdj6YmRw+gPuFduJ1q2r753gEtHdIaFACA+qJz04b69t5+mrbqgF6cs11bjuTq+reWaXS3eHVvFqGX5+08M9uibOTHYrFo+Z4s7hcF4DCMK9upfAHGc03eskiKo80zAADV8vay6JZeiVr46OW6sWu8JOnLNYf05682VZluXlBs1T2frtOc1HQzQgVQD1EE2am8zbOkKoUQbZ4BAKiZyBB/vXhjJ315dy/5XOD/zMmztspqq64lEQDUDkXQRShv8xwbXnlqXGx4wDnbYwMAgKqsNqn0PAWOISk9p1Cr0rJdFxSAeot7gi4SbZ4BALh4NW04VNP9AOB8KIIcgDbPAABcnJo2HKrpfgBwPkyHAwAApqPhEABXoggCAACmo+EQAFeiCAIAAG6BhkMAXIV7ggAAgNug4RAAV6AIAgAAboWGQwCcjelwAAAAADwKRRAAAAAAj0IRBAAAAMCjUAQBAAAA8CgUQQAAAAA8CkUQAAAAAI9CEQQAAADAo1AEAQAAAPAoFEEAAAAAPApFEAAAAACPQhEEAAAAwKNQBAEAAADwKBRBAAAAADyKj9kBXAzDMCRJubm5JkcilZSUqKCgQLm5ufL19TU7nDqF3NmHvNmHvNmP3NmHvNmHvNmHvNmP3NnHnfJWXhOU1wjnU6eLoLy8PElSQkKCyZEAAAAAcAd5eXkKDw8/7z4Woyalkpuy2Ww6cuSIQkNDZbFYTI0lNzdXCQkJOnjwoMLCwkyNpa4hd/Yhb/Yhb/Yjd/Yhb/Yhb/Yhb/Yjd/Zxp7wZhqG8vDw1btxYXl7nv+unTo8EeXl5KT4+3uwwKgkLCzP9CVBXkTv7kDf7kDf7kTv7kDf7kDf7kDf7kTv7uEveLjQCVI7GCAAAAAA8CkUQAAAAAI9CEeQg/v7+mjhxovz9/c0Opc4hd/Yhb/Yhb/Yjd/Yhb/Yhb/Yhb/Yjd/apq3mr040RAAAAAKC2GAkCAAAA4FEoggAAAAB4FIogAAAAAB6FIggAAACAR6EIOss//vEPde/eXaGhoYqOjtaoUaO0Y8eOSvsUFhbq3nvvVWRkpEJCQnT99dcrIyOj0j4PPPCAunbtKn9/f11yySXnPefu3bsVGhqqBg0aOPhqXMdVedu3b58sFkuVrxUrVjjz8pzGlc83wzD0r3/9S61bt5a/v7+aNGmi5557zlmX5nSuyt2kSZOqfc4FBwc78/KcxpXPublz56pXr14KDQ1VVFSUrr/+eu3bt89JV+Zcrszbl19+qUsuuURBQUFKTEzUiy++6KzLcglH5G7jxo0aO3asEhISFBgYqHbt2um1116rcq6ff/5ZXbp0kb+/v1q2bKkPP/zQ2ZfnNK7KW3p6um666Sa1bt1aXl5eeuihh1xxeU7jqrzNmDFDAwcOVFRUlMLCwtS7d2/NnTvXJdfoDK7K25IlS9S3b19FRkYqMDBQbdu21SuvvOKSa6wORdBZFi1apHvvvVcrVqzQvHnzVFJSokGDBunUqVMV+zz88MOaNWuWpk+frkWLFunIkSO67rrrqhzrjjvu0JgxY857vpKSEo0dO1aXXnqpw6/FlVydt59++knp6ekVX127dnX4NbmCK/P24IMP6r333tO//vUvbd++XTNnzlSPHj2ccl2u4KrcPfroo5Wea+np6UpOTtaNN97otGtzJlflLS0tTddcc42uuOIKbdiwQXPnzlVWVla1x6kLXJW32bNn6+abb9Yf/vAHpaam6s0339Qrr7yi119/3WnX5myOyN3atWsVHR2tTz/9VFu2bNFf//pXPf7445XykpaWpmHDhmnAgAHasGGDHnroId1555119o2pq/JWVFSkqKgoPfnkk+rUqZNLr9EZXJW3xYsXa+DAgfrhhx+0du1aDRgwQCNGjND69etder2O4qq8BQcH67777tPixYu1bds2Pfnkk3ryySf1zjvvuPR6Kxg4p8zMTEOSsWjRIsMwDOPkyZOGr6+vMX369Ip9tm3bZkgyli9fXuXnJ06caHTq1Omcx3/ssceMcePGGVOmTDHCw8MdHb5pnJW3tLQ0Q5Kxfv16Z4VuKmflbevWrYaPj4+xfft2p8VuNme/Vstt2LDBkGQsXrzYYbGbyVl5mz59uuHj42NYrdaKbTNnzjQsFotRXFzs+AtxMWflbezYscYNN9xQadu///1vIz4+3rDZbI69CJNcbO7K/fGPfzQGDBhQ8f1jjz1mtG/fvtI+Y8aMMQYPHuzgKzCHs/J2tv79+xsPPvigQ+M2myvyVi45OdmYPHmyYwI3mSvzdu211xrjxo1zTOC1xEjQeeTk5EiSIiIiJJVVuSUlJbrqqqsq9mnbtq2aNm2q5cuX1+rYCxYs0PTp0/XGG284LmA34cy8SdLIkSMVHR2tfv36aebMmY4J2g04K2+zZs1S8+bN9d133ykpKUnNmjXTnXfeqezsbMdegImc/Zwr995776l169Z1fvS2nLPy1rVrV3l5eWnKlCmyWq3KycnRJ598oquuukq+vr6OvQgTOCtvRUVFCggIqLQtMDBQhw4d0v79+x0QufkclbucnJyKY0jS8uXLKx1DkgYPHnxRr3d34qy81XeuypvNZlNeXl69ya2r8rZ+/XotW7ZM/fv3d1DktUMRdA42m00PPfSQ+vbtq5SUFEnS0aNH5efnV+X+nZiYGB09erTGxz5+/Lhuu+02ffjhhwoLC3Nk2KZzZt5CQkL00ksvafr06fr+++/Vr18/jRo1ql4UQs7M2969e7V//35Nnz5dH3/8sT788EOtXbtWN9xwgyMvwTTOzN3ZCgsLNXXqVE2YMOFiQ3YLzsxbUlKSfvzxRz3xxBPy9/dXgwYNdOjQIX355ZeOvARTODNvgwcP1owZMzR//nzZbDbt3LlTL730kqSyezfqOkflbtmyZfriiy/0+9//vmLb0aNHFRMTU+UYubm5On36tGMvxMWcmbf6zJV5+9e//qX8/HyNHj3aYfGbxRV5i4+Pl7+/v7p166Z7771Xd955p8OvoyZ8TDlrHXDvvfcqNTVVS5Yscfix77rrLt1000267LLLHH5sszkzb40aNdIjjzxS8X337t115MgRvfjiixo5cqTDz+dKzsybzWZTUVGRPv74Y7Vu3VqS9P7776tr167asWOH2rRp4/BzupIzc3e2b775Rnl5eRo/frxTz+Mqzszb0aNHddddd2n8+PEaO3as8vLy9PTTT+uGG27QvHnzZLFYHH5OV3H2/w179uzR8OHDVVJSorCwMD344IOaNGmSvLzq/meWjshdamqqrrnmGk2cOFGDBg1yYHTui7zZx1V5mzZtmiZPnqxvv/1W0dHRdp/LXbgib7/88ovy8/O1YsUK/d///Z9atmypsWPHXkzYdqn7/6o6wX333afvvvtOCxcuVHx8fMX22NhYFRcX6+TJk5X2z8jIUGxsbI2Pv2DBAv3rX/+Sj4+PfHx8NGHCBOXk5MjHx0cffPCBoy7D5Zydt+r07NlTu3fvvqhjmM3ZeYuLi5OPj09FASRJ7dq1kyQdOHDg4oI3mSufc++9956GDx9e5dPmusjZeXvjjTcUHh6uf/7zn+rcubMuu+wyffrpp5o/f75WrlzpqMtwOWfnzWKx6IUXXlB+fr7279+vo0ePVjQwad68uUOuwSyOyN3WrVt15ZVX6ve//72efPLJSo/FxsZW6caXkZGhsLAwBQYGOvZiXMjZeauvXJW3zz//XHfeeae+/PLLKtMx6yJX5S0pKUkdOnTQXXfdpYcffliTJk1y9KXUCEXQWQzD0H333advvvlGCxYsUFJSUqXHu3btKl9fX82fP79i244dO3TgwAH17t27xudZvny5NmzYUPH1zDPPKDQ0VBs2bNC1117rsOtxFVflrTobNmxQXFzcRR3DLK7KW9++fVVaWqo9e/ZUbNu5c6ckKTEx8SKvwhyufs6lpaVp4cKFdX4qnKvyVlBQUGXkwtvbW1LZyGRd4+rnm7e3t5o0aSI/Pz999tln6t27t6Kioi76OszgqNxt2bJFAwYM0Pjx46tt79+7d+9Kx5CkefPmXfT/MWZxVd7qG1fm7bPPPtPtt9+uzz77TMOGDXPOBbmImc+38tkqpjClHYObuueee4zw8HDj559/NtLT0yu+CgoKKvb5wx/+YDRt2tRYsGCBsWbNGqN3795G7969Kx1n165dxvr16427777baN26tbF+/Xpj/fr1RlFRUbXnrevd4VyVtw8//NCYNm2asW3bNmPbtm3Gc889Z3h5eRkffPCBS6/XUVyVN6vVanTp0sW47LLLjHXr1hlr1qwxevbsaQwcONCl1+tIrn6tPvnkk0bjxo2N0tJSl1yfs7gqb/PnzzcsFosxefJkY+fOncbatWuNwYMHG4mJiZXOVVe4Km/Hjh0z3nrrLWPbtm3G+vXrjQceeMAICAgwVq5c6dLrdSRH5G7z5s1GVFSUMW7cuErHyMzMrNhn7969RlBQkPHnP//Z2LZtm/HGG28Y3t7expw5c1x6vY7iqrwZhlHxPOzatatx0003GevXrze2bNnismt1JFflberUqYaPj4/xxhtvVNrn5MmTLr1eR3FV3l5//XVj5syZxs6dO42dO3ca7733nhEaGmr89a9/den1lqMIOoukar+mTJlSsc/p06eNP/7xj0bDhg2NoKAg49prrzXS09MrHad///7VHictLa3a89b1IshVefvwww+Ndu3aGUFBQUZYWJjRo0ePSu0a6xpXPt8OHz5sXHfddUZISIgRExNj3Hbbbcbx48dddKWO58rcWa1WIz4+3njiiSdcdHXO48q8ffbZZ0bnzp2N4OBgIyoqyhg5cqSxbds2F12pY7kqb8eOHTN69eplBAcHG0FBQcaVV15prFixwoVX6niOyN3EiROrPUZiYmKlcy1cuNC45JJLDD8/P6N58+aVzlHXuDJvNdmnrnBV3s71Wh4/frzrLtaBXJW3f//730b79u0r3sd17tzZePPNNystp+BKFsMwDAEAAACAh+CeIAAAAAAehSIIAAAAgEehCAIAAADgUSiCAAAAAHgUiiAAAAAAHoUiCAAAAIBHoQgCAAAA4FEoggAAAAB4FIogAAAAAB6FIggA4DYMw9BVV12lwYMHV3nszTffVIMGDXTo0CETIgMA1CcUQQAAt2GxWDRlyhStXLlS//3vfyu2p6Wl6bHHHtN//vMfxcfHO/ScJSUlDj0eAMD9UQQBANxKQkKCXnvtNT366KNKS0uTYRiaMGGCBg0apM6dO2vo0KEKCQlRTEyMbrnlFmVlZVX87Jw5c9SvXz81aNBAkZGRGj58uPbs2VPx+L59+2SxWPTFF1+of//+CggI0NSpU824TACAiSyGYRhmBwEAwG+NGjVKOTk5uu666/Tss89qy5Ytat++ve68807deuutOn36tP7yl7+otLRUCxYskCR9/fXXslgs6tixo/Lz8/X0009r37592rBhg7y8vLRv3z4lJSWpWbNmeumll9S5c2cFBAQoLi7O5KsFALgSRRAAwC1lZmaqffv2ys7O1tdff63U1FT98ssvmjt3bsU+hw4dUkJCgnbs2KHWrVtXOUZWVpaioqK0efNmpaSkVBRBr776qh588EFXXg4AwI0wHQ4A4Jaio6N19913q127dho1apQ2btyohQsXKiQkpOKrbdu2klQx5W3Xrl0aO3asmjdvrrCwMDVr1kySdODAgUrH7tatm0uvBQDgXnzMDgAAgHPx8fGRj0/Zf1X5+fkaMWKEXnjhhSr7lU9nGzFihBITE/Xuu++qcePGstlsSklJUXFxcaX9g4ODnR88AMBtUQQBAOqELl266Ouvv1azZs0qCqOzHT9+XDt27NC7776rSy+9VJK0ZMkSV4cJAKgDmA4HAKgT7r33XmVnZ2vs2LFavXq19uzZo7lz5+r222+X1WpVw4YNFRkZqXfeeUe7d+/WggUL9Mgjj5gdNgDADVEEAQDqhMaNG2vp0qWyWq0aNGiQOnTooIceekgNGjSQl5eXvLy89Pnnn2vt2rVKSUnRww8/rBdffNHssAEAbojucAAAAAA8CiNBAAAAADwKRRAAAAAAj0IRBAAAAMCjUAQBAAAA8CgUQQAAAAA8CkUQAAAAAI9CEQQAAADAo1AEAQAAAPAoFEEAAAAAPApFEAAAAACPQhEEAAAAwKP8P6KQ14ErFH3sAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Read the CSV file\n", + "df = pd.read_csv('/tmp/tmpco0s0o4_/LOdZoVp1inflation.csv')\n", + "\n", + "# Extract the year and inflation rate from the CSV file\n", + "df['Year'] = pd.to_datetime(df['Year'], format='%Y')\n", + "df = df.rename(columns={'Jan': 'Jan Rate', 'Feb': 'Feb Rate', 'Mar': 'Mar Rate', 'Apr': 'Apr Rate', 'May': 'May Rate', 'Jun': 'Jun Rate', 'Jul': 'Jul Rate', 'Aug': 'Aug Rate', 'Sep': 'Sep Rate', 'Oct': 'Oct Rate', 'Nov': 'Nov Rate', 'Dec': 'Dec Rate'})\n", + "\n", + "# Calculate the average yearly inflation rate\n", + "df['Yearly Inflation'] = df[['Jan Rate', 'Feb Rate', 'Mar Rate', 'Apr Rate', 'May Rate', 'Jun Rate', 'Jul Rate', 'Aug Rate', 'Sep Rate', 'Oct Rate', 'Nov Rate', 'Dec Rate']].mean(axis=1)\n", + "\n", + "# Plot the average yearly inflation rate as a time series\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(df['Year'], df['Yearly Inflation'], marker='o')\n", + "plt.title('Average Yearly Inflation Rate')\n", + "plt.xlabel('Year')\n", + "plt.ylabel('Inflation Rate (%)')\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "FJ85DUhgBZd7", + "metadata": { + "id": "FJ85DUhgBZd7" + }, + "source": [ + "## 3. Llama Stack Agent Evaluations\n" + ] + }, + { + "cell_type": "markdown", + "id": "ydeBDpDT5VHd", + "metadata": { + "id": "ydeBDpDT5VHd" + }, + "source": [ + "#### 3.1. Online Evaluation Dataset Collection Using Telemetry\n", + "\n", + "- Llama Stack offers built-in telemetry to collect traces and data about your agentic application.\n", + "- In this example, we will show how to build an Agent with Llama Stack, and query the agent's traces into an online dataset that can be used for evaluation. " + ] + }, + { + "cell_type": "markdown", + "id": "_JueJAKyJR5m", + "metadata": { + "id": "_JueJAKyJR5m" + }, + "source": [ + "##### 🚧 Patches 🚧\n", + "- The following cells are temporary patches to get `telemetry` working." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "klPkK1t7CzIY", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "klPkK1t7CzIY", + "outputId": "ab0c1490-7fa6-446c-8e35-7b42f57e8a04" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found existing installation: llama_stack 0.0.61\n", + "Uninstalling llama_stack-0.0.61:\n", + " Would remove:\n", + " /usr/local/bin/install-wheel-from-presigned\n", + " /usr/local/bin/llama\n", + " /usr/local/lib/python3.10/dist-packages/llama_stack-0.0.61.dist-info/*\n", + " /usr/local/lib/python3.10/dist-packages/llama_stack/*\n", + "Proceed (Y/n)? Y\n", + " Successfully uninstalled llama_stack-0.0.61\n", + "Collecting git+https://github.com/meta-llama/llama-stack.git@main\n", + " Cloning https://github.com/meta-llama/llama-stack.git (to revision main) to /tmp/pip-req-build-oryyzdm1\n", + " Running command git clone --filter=blob:none --quiet https://github.com/meta-llama/llama-stack.git /tmp/pip-req-build-oryyzdm1\n", + " Resolved https://github.com/meta-llama/llama-stack.git to commit 53b3a1e345c46d7d37c1af3d675092a4cbfe85f9\n", + " Running command git submodule update --init --recursive -q\n", + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: blobfile in /usr/local/lib/python3.10/dist-packages (from llama_stack==0.0.61) (3.0.0)\n", + "Requirement already satisfied: fire in /usr/local/lib/python3.10/dist-packages (from llama_stack==0.0.61) (0.7.0)\n", + "Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (from llama_stack==0.0.61) (0.28.1)\n", + "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from llama_stack==0.0.61) (0.26.5)\n", + "Requirement already satisfied: llama-models>=0.0.61 in /usr/local/lib/python3.10/dist-packages (from llama_stack==0.0.61) (0.0.61)\n", + "Requirement already satisfied: llama-stack-client>=0.0.61 in /usr/local/lib/python3.10/dist-packages (from llama_stack==0.0.61) (0.0.61)\n", + "Requirement already satisfied: prompt-toolkit in /usr/local/lib/python3.10/dist-packages (from llama_stack==0.0.61) (3.0.48)\n", + "Requirement already satisfied: python-dotenv in /usr/local/lib/python3.10/dist-packages (from llama_stack==0.0.61) (1.0.1)\n", + "Requirement already satisfied: pydantic>=2 in /usr/local/lib/python3.10/dist-packages (from llama_stack==0.0.61) (2.10.3)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from llama_stack==0.0.61) (2.32.3)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from llama_stack==0.0.61) (13.9.4)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from llama_stack==0.0.61) (75.1.0)\n", + "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from llama_stack==0.0.61) (2.5.0)\n", + "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama_stack==0.0.61) (6.0.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama_stack==0.0.61) (3.1.4)\n", + "Requirement already satisfied: tiktoken in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama_stack==0.0.61) (0.8.0)\n", + "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama_stack==0.0.61) (10.4.0)\n", + "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama_stack==0.0.61) (3.7.1)\n", + "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama_stack==0.0.61) (8.1.7)\n", + "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama_stack==0.0.61) (1.9.0)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama_stack==0.0.61) (2.2.2)\n", + "Requirement already satisfied: pyaml in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama_stack==0.0.61) (24.12.1)\n", + "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama_stack==0.0.61) (1.3.1)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama_stack==0.0.61) (4.66.6)\n", + "Requirement already satisfied: typing-extensions<5,>=4.7 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama_stack==0.0.61) (4.12.2)\n", + "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->llama_stack==0.0.61) (2024.8.30)\n", + "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx->llama_stack==0.0.61) (1.0.7)\n", + "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->llama_stack==0.0.61) (3.10)\n", + "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx->llama_stack==0.0.61) (0.14.0)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama_stack==0.0.61) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.27.1 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama_stack==0.0.61) (2.27.1)\n", + "Requirement already satisfied: pycryptodomex>=3.8 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama_stack==0.0.61) (3.21.0)\n", + "Requirement already satisfied: urllib3<3,>=1.25.3 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama_stack==0.0.61) (2.2.3)\n", + "Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama_stack==0.0.61) (5.3.0)\n", + "Requirement already satisfied: filelock>=3.0 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama_stack==0.0.61) (3.16.1)\n", + "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama_stack==0.0.61) (2024.9.0)\n", + "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama_stack==0.0.61) (24.2)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit->llama_stack==0.0.61) (0.2.13)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->llama_stack==0.0.61) (3.4.0)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama_stack==0.0.61) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama_stack==0.0.61) (2.18.0)\n", + "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->llama-stack-client>=0.0.61->llama_stack==0.0.61) (1.2.2)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->llama_stack==0.0.61) (0.1.2)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->llama-models>=0.0.61->llama_stack==0.0.61) (3.0.2)\n", + "Requirement already satisfied: numpy>=1.22.4 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama_stack==0.0.61) (1.26.4)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama_stack==0.0.61) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama_stack==0.0.61) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama_stack==0.0.61) (2024.2)\n", + "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken->llama-models>=0.0.61->llama_stack==0.0.61) (2024.9.11)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->llama-stack-client>=0.0.61->llama_stack==0.0.61) (1.17.0)\n", + "Building wheels for collected packages: llama_stack\n", + " Building wheel for llama_stack (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for llama_stack: filename=llama_stack-0.0.61-py3-none-any.whl size=464145 sha256=da71747aceef9aec43553f66c43095486d1a920e47bb0e47e2729a8e4328fff6\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-jquw5j7f/wheels/74/e4/3b/079983408fa9323c1f2807e404ee78b468c74bec381eb70d4f\n", + "Successfully built llama_stack\n", + "Installing collected packages: llama_stack\n", + "Successfully installed llama_stack-0.0.61\n" + ] + }, + { + "data": { + "application/vnd.colab-display-data+json": { + "id": "7701cb0c982f4250a46721fededf9647", + "pip_warning": { + "packages": [ + "llama_stack" + ] + } + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# need to install on latest main\n", + "!pip uninstall llama-stack\n", + "!pip install git+https://github.com/meta-llama/llama-stack.git@main" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9jJ75JlnETTH", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9jJ75JlnETTH", + "outputId": "76bd3912-f814-428c-88e1-c1113af77856" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Removed handler StreamHandler from root logger\n" + ] + } + ], + "source": [ + "# disable logging for clean server logs\n", + "import logging\n", + "def remove_root_handlers():\n", + " root_logger = logging.getLogger()\n", + " for handler in root_logger.handlers[:]:\n", + " root_logger.removeHandler(handler)\n", + " print(f\"Removed handler {handler.__class__.__name__} from root logger\")\n", + "\n", + "\n", + "remove_root_handlers()" + ] + }, + { + "cell_type": "markdown", + "id": "_t_tcWq0JcJ4", + "metadata": { + "id": "_t_tcWq0JcJ4" + }, + "source": [ + "##### 3.1.1. Building a Search Agent" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4iCO59kP20Zs", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4iCO59kP20Zs", + "outputId": "f6179de6-054d-4452-a893-8d9b64c5a0d1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "inference> Let me check the latest sports news.\n", + "inference> bravy_search.call(query=\"Bill Cosby South Park episode\")\n", + "CustomTool> Unknown tool `bravy_search` was called.\n", + "inference> brave_search.call(query=\"Andrew Tate kickboxing name\")\n", + "tool_execution> Tool:brave_search Args:{'query': 'Andrew Tate kickboxing name'}\n", + "tool_execution> Tool:brave_search Response:{\"query\": \"Andrew Tate kickboxing name\", \"top_k\": [{\"title\": \"Andrew Tate kickboxing record: How many championships ... - FirstSportz\", \"url\": \"https://firstsportz.com/mma-how-many-championships-does-andrew-tate-have/\", \"content\": \"Andrew Tate's Kickboxing career. During his kickboxing career, he used the nickname \\\"King Cobra,\\\" which he currently uses as his Twitter name. Tate had an unorthodox style of movement inside the ring. He kept his hands down most of the time and relied on quick jabs and an overhand right to land significant strikes.\", \"score\": 0.9996244, \"raw_content\": null}, {\"title\": \"Andrew Tate: Kickboxing Record, Facts, Height, Weight, Age, Biography\", \"url\": \"https://www.lowkickmma.com/andrew-tate-kickboxing-record-facts-height-weight-age-biography/\", \"content\": \"Birth Name: Emory Andrew Tate III: Date of Birth: 1 December 1986: Place of Birth: Washington, D.C., U.S. ... In his professional kickboxing career, Andrew Tate won 32 of his fights by knockout.\", \"score\": 0.99909246, \"raw_content\": null}, {\"title\": \"Who is Andrew Tate? MMA, kickboxing record and controversies of fighter ...\", \"url\": \"https://www.sportingnews.com/us/kickboxing/news/andrew-tate-mma-kickboxing-record-controversies/u50waalc9cfz7krjg9wnyb7p\", \"content\": \"Andrew Tate kickboxing record After launching his career as a 20-year-old in 2007, Tate built a formidable kickboxing record that included 76 wins across 85 fights in more than 13 years in the ring.\", \"score\": 0.9976586, \"raw_content\": null}, {\"title\": \"About Andrew Tate: A Journey from Champion to Controversy\", \"url\": \"https://reachmorpheus.com/andrew-tate/\", \"content\": \"Andrew Tate's kickboxing career, beginning in 2005, is a tale of determination and skill. He quickly made a name for himself in the sport, rising through the ranks with his unique fighting style and strategic approach, honed by his chess-playing background.\", \"score\": 0.99701905, \"raw_content\": null}, {\"title\": \"Andrew Tate Bio, Wiki, Net Worth, Age, Family, MMA Career - Next Biography\", \"url\": \"https://www.nextbiography.com/andrew-tate/\", \"content\": \"Andrew Tate Age. Andrew Tate is 36 years old as of 2023, born on December 1, 1986, in Washington, DC. By his mid-thirties, Andrew Tate has become an esteemed figure in the world of kickboxing, showcasing remarkable expertise and experience in the sport. Early Life of Andrew Tate. Andrew Tate was born on 01 December 1986 to an African-American\", \"score\": 0.99368566, \"raw_content\": null}]}\n", + "shield_call> No Violation\n", + "inference> Andrew Tate's kickboxing name is \"King Cobra.\"\n" + ] + } + ], + "source": [ + "from llama_stack_client.lib.agents.agent import Agent\n", + "from llama_stack_client.lib.agents.event_logger import EventLogger\n", + "from llama_stack_client.types.agent_create_params import AgentConfig\n", + "from google.colab import userdata\n", + "\n", + "agent_config = AgentConfig(\n", + " model=\"meta-llama/Llama-3.1-405B-Instruct\",\n", + " instructions=\"You are a helpful assistant. Use search tool to answer the questions. \",\n", + " tools=(\n", + " [\n", + " {\n", + " \"type\": \"brave_search\",\n", + " \"engine\": \"tavily\",\n", + " \"api_key\": userdata.get(\"TAVILY_SEARCH_API_KEY\")\n", + " }\n", + " ]\n", + " ),\n", + " input_shields=[],\n", + " output_shields=[],\n", + " enable_session_persistence=False,\n", + ")\n", + "agent = Agent(client, agent_config)\n", + "user_prompts = [\n", + " \"Which teams played in the NBA western conference finals of 2024\",\n", + " \"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title.\",\n", + " \"What is the British-American kickboxer Andrew Tate's kickboxing name?\",\n", + "]\n", + "\n", + "session_id = agent.create_session(\"test-session\")\n", + "\n", + "for prompt in user_prompts:\n", + " response = agent.create_turn(\n", + " messages=[\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": prompt,\n", + " }\n", + " ],\n", + " session_id=session_id,\n", + " )\n", + "\n", + " for log in EventLogger().log(response):\n", + " log.print()" + ] + }, + { + "cell_type": "markdown", + "id": "ekOS2kM4P0LM", + "metadata": { + "id": "ekOS2kM4P0LM" + }, + "source": [ + "##### 3.1.2 Query Telemetry" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "agkWgToGAsuA", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 760 + }, + "id": "agkWgToGAsuA", + "outputId": "647cd5d2-7610-4fd6-ef66-c3f2f782a1b0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Getting traces for session_id=ac651ce8-2281-47f2-8814-ef947c066e40\n" + ] + }, + { + "data": { + "text/html": [ + "
[\n",
+              "{\n",
+              "│   │   'input': [\n",
+              "│   │   │   '{\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"}',\n",
+              "│   │   │   '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}'\n",
+              "│   │   ],\n",
+              "│   │   'output': 'content: Let me check the latest sports news. tool_calls: []'\n",
+              "},\n",
+              "{\n",
+              "│   │   'input': [\n",
+              "│   │   │   '{\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"}',\n",
+              "│   │   │   '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}',\n",
+              "│   │   │   '{\"role\":\"assistant\",\"content\":\"Let me check the latest sports news.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[]}',\n",
+              "│   │   │   '{\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title.\",\"context\":null}'\n",
+              "│   │   ],\n",
+              "│   │   'output': \"content:  tool_calls: [ToolCall(call_id='19bd3554-e670-4856-89d0-c63f5b016245', tool_name='bravy_search', arguments={'query': 'Bill Cosby South Park episode'})]\"\n",
+              "},\n",
+              "{\n",
+              "│   │   'input': [\n",
+              "│   │   │   '{\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"}',\n",
+              "│   │   │   '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}',\n",
+              "│   │   │   '{\"role\":\"assistant\",\"content\":\"Let me check the latest sports news.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[]}',\n",
+              "│   │   │   '{\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title.\",\"context\":null}',\n",
+              "│   │   │   '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"19bd3554-e670-4856-89d0-c63f5b016245\",\"tool_name\":\"bravy_search\",\"arguments\":{\"query\":\"Bill Cosby South Park episode\"}}]}',\n",
+              "│   │   │   '{\"role\":\"user\",\"content\":\"What is the British-American kickboxer Andrew Tate\\'s kickboxing name?\",\"context\":null}'\n",
+              "│   │   ],\n",
+              "│   │   'output': \"content:  tool_calls: [ToolCall(call_id='526045a7-5f51-40fb-ba97-5ad29610e511', tool_name=<BuiltinTool.brave_search: 'brave_search'>, arguments={'query': 'Andrew Tate kickboxing name'})]\"\n",
+              "},\n",
+              "{\n",
+              "│   │   'input': '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"526045a7-5f51-40fb-ba97-5ad29610e511\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"Andrew Tate kickboxing name\"}}]}',\n",
+              "│   │   'output': '{\"role\":\"ipython\",\"call_id\":\"526045a7-5f51-40fb-ba97-5ad29610e511\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"Andrew Tate kickboxing name\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"Andrew Tate kickboxing record: How many championships ... - FirstSportz\\\\\", \\\\\"url\\\\\": \\\\\"https://firstsportz.com/mma-how-many-championships-does-andrew-tate-have/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate\\'s Kickboxing career. During his kickboxing career, he used the nickname \\\\\\\\\\\\\"King Cobra,\\\\\\\\\\\\\" which he currently uses as his Twitter name. Tate had an unorthodox style of movement inside the ring. He kept his hands down most of the time and relied on quick jabs and an overhand right to land significant strikes.\\\\\", \\\\\"score\\\\\": 0.9996244, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Andrew Tate: Kickboxing Record, Facts, Height, Weight, Age, Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.lowkickmma.com/andrew-tate-kickboxing-record-facts-height-weight-age-biography/\\\\\", \\\\\"content\\\\\": \\\\\"Birth Name: Emory Andrew Tate III: Date of Birth: 1 December 1986: Place of Birth: Washington, D.C., U.S. ... In his professional kickboxing career, Andrew Tate won 32 of his fights by knockout.\\\\\", \\\\\"score\\\\\": 0.99909246, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Who is Andrew Tate? MMA, kickboxing record and controversies of fighter ...\\\\\", \\\\\"url\\\\\": \\\\\"https://www.sportingnews.com/us/kickboxing/news/andrew-tate-mma-kickboxing-record-controversies/u50waalc9cfz7krjg9wnyb7p\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate kickboxing record After launching his career as a 20-year-old in 2007, Tate built a formidable kickboxing record that included 76 wins across 85 fights in more than 13 years in the ring.\\\\\", \\\\\"score\\\\\": 0.9976586, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"About Andrew Tate: A Journey from Champion to Controversy\\\\\", \\\\\"url\\\\\": \\\\\"https://reachmorpheus.com/andrew-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate\\'s kickboxing career, beginning in 2005, is a tale of determination and skill. He quickly made a name for himself in the sport, rising through the ranks with his unique fighting style and strategic approach, honed by his chess-playing background.\\\\\", \\\\\"score\\\\\": 0.99701905, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Andrew Tate Bio, Wiki, Net Worth, Age, Family, MMA Career - Next Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nextbiography.com/andrew-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate Age. Andrew Tate is 36 years old as of 2023, born on December 1, 1986, in Washington, DC. By his mid-thirties, Andrew Tate has become an esteemed figure in the world of kickboxing, showcasing remarkable expertise and experience in the sport. Early Life of Andrew Tate. Andrew Tate was born on 01 December 1986 to an African-American\\\\\", \\\\\"score\\\\\": 0.99368566, \\\\\"raw_content\\\\\": null}]}\"}'\n",
+              "},\n",
+              "{\n",
+              "│   │   'input': [\n",
+              "│   │   │   '{\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"}',\n",
+              "│   │   │   '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}',\n",
+              "│   │   │   '{\"role\":\"assistant\",\"content\":\"Let me check the latest sports news.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[]}',\n",
+              "│   │   │   '{\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title.\",\"context\":null}',\n",
+              "│   │   │   '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"19bd3554-e670-4856-89d0-c63f5b016245\",\"tool_name\":\"bravy_search\",\"arguments\":{\"query\":\"Bill Cosby South Park episode\"}}]}',\n",
+              "│   │   │   '{\"role\":\"user\",\"content\":\"What is the British-American kickboxer Andrew Tate\\'s kickboxing name?\",\"context\":null}',\n",
+              "│   │   │   '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"526045a7-5f51-40fb-ba97-5ad29610e511\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"Andrew Tate kickboxing name\"}}]}',\n",
+              "│   │   │   '{\"role\":\"ipython\",\"call_id\":\"526045a7-5f51-40fb-ba97-5ad29610e511\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"Andrew Tate kickboxing name\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"Andrew Tate kickboxing record: How many championships ... - FirstSportz\\\\\", \\\\\"url\\\\\": \\\\\"https://firstsportz.com/mma-how-many-championships-does-andrew-tate-have/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate\\'s Kickboxing career. During his kickboxing career, he used the nickname \\\\\\\\\\\\\"King Cobra,\\\\\\\\\\\\\" which he currently uses as his Twitter name. Tate had an unorthodox style of movement inside the ring. He kept his hands down most of the time and relied on quick jabs and an overhand right to land significant strikes.\\\\\", \\\\\"score\\\\\": 0.9996244, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Andrew Tate: Kickboxing Record, Facts, Height, Weight, Age, Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.lowkickmma.com/andrew-tate-kickboxing-record-facts-height-weight-age-biography/\\\\\", \\\\\"content\\\\\": \\\\\"Birth Name: Emory Andrew Tate III: Date of Birth: 1 December 1986: Place of Birth: Washington, D.C., U.S. ... In his professional kickboxing career, Andrew Tate won 32 of his fights by knockout.\\\\\", \\\\\"score\\\\\": 0.99909246, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Who is Andrew Tate? MMA, kickboxing record and controversies of fighter ...\\\\\", \\\\\"url\\\\\": \\\\\"https://www.sportingnews.com/us/kickboxing/news/andrew-tate-mma-kickboxing-record-controversies/u50waalc9cfz7krjg9wnyb7p\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate kickboxing record After launching his career as a 20-year-old in 2007, Tate built a formidable kickboxing record that included 76 wins across 85 fights in more than 13 years in the ring.\\\\\", \\\\\"score\\\\\": 0.9976586, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"About Andrew Tate: A Journey from Champion to Controversy\\\\\", \\\\\"url\\\\\": \\\\\"https://reachmorpheus.com/andrew-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate\\'s kickboxing career, beginning in 2005, is a tale of determination and skill. He quickly made a name for himself in the sport, rising through the ranks with his unique fighting style and strategic approach, honed by his chess-playing background.\\\\\", \\\\\"score\\\\\": 0.99701905, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Andrew Tate Bio, Wiki, Net Worth, Age, Family, MMA Career - Next Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nextbiography.com/andrew-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate Age. Andrew Tate is 36 years old as of 2023, born on December 1, 1986, in Washington, DC. By his mid-thirties, Andrew Tate has become an esteemed figure in the world of kickboxing, showcasing remarkable expertise and experience in the sport. Early Life of Andrew Tate. Andrew Tate was born on 01 December 1986 to an African-American\\\\\", \\\\\"score\\\\\": 0.99368566, \\\\\"raw_content\\\\\": null}]}\"}'\n",
+              "│   │   ],\n",
+              "│   │   'output': 'content: Andrew Tate\\'s kickboxing name is \"King Cobra.\" tool_calls: []'\n",
+              "}\n",
+              "]\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input'\u001b[0m: \u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'output'\u001b[0m: \u001b[32m'content: Let me check the latest sports news. tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32m]\u001b[0m\u001b[32m'\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input'\u001b[0m: \u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"Let me check the latest sports news.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby \u001b[0m\u001b[32m(\u001b[0m\u001b[32mBSM-471\u001b[0m\u001b[32m)\u001b[0m\u001b[32m first appear? Give me the number and title.\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'output'\u001b[0m: \u001b[32m\"content: tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32mToolCall\u001b[0m\u001b[32m(\u001b[0m\u001b[32mcall_id\u001b[0m\u001b[32m='19bd3554-e670-4856-89d0-c63f5b016245', \u001b[0m\u001b[32mtool_name\u001b[0m\u001b[32m='bravy_search', \u001b[0m\u001b[32marguments\u001b[0m\u001b[32m=\u001b[0m\u001b[32m{\u001b[0m\u001b[32m'query': 'Bill Cosby South Park episode'\u001b[0m\u001b[32m}\u001b[0m\u001b[32m)\u001b[0m\u001b[32m]\u001b[0m\u001b[32m\"\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input'\u001b[0m: \u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"Let me check the latest sports news.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby \u001b[0m\u001b[32m(\u001b[0m\u001b[32mBSM-471\u001b[0m\u001b[32m)\u001b[0m\u001b[32m first appear? Give me the number and title.\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"call_id\":\"19bd3554-e670-4856-89d0-c63f5b016245\",\"tool_name\":\"bravy_search\",\"arguments\":\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"query\":\"Bill Cosby South Park episode\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"What is the British-American kickboxer Andrew Tate\\'s kickboxing name?\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'output'\u001b[0m: \u001b[32m\"content: tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32mToolCall\u001b[0m\u001b[32m(\u001b[0m\u001b[32mcall_id\u001b[0m\u001b[32m='526045a7-5f51-40fb-ba97-5ad29610e511', \u001b[0m\u001b[32mtool_name\u001b[0m\u001b[32m=\u001b[0m\u001b[32m<\u001b[0m\u001b[32mBuiltinTool.brave_search:\u001b[0m\u001b[32m 'brave_search'\u001b[0m\u001b[32m>\u001b[0m\u001b[32m, \u001b[0m\u001b[32marguments\u001b[0m\u001b[32m=\u001b[0m\u001b[32m{\u001b[0m\u001b[32m'query': 'Andrew Tate kickboxing name'\u001b[0m\u001b[32m}\u001b[0m\u001b[32m)\u001b[0m\u001b[32m]\u001b[0m\u001b[32m\"\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"call_id\":\"526045a7-5f51-40fb-ba97-5ad29610e511\",\"tool_name\":\"brave_search\",\"arguments\":\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"query\":\"Andrew Tate kickboxing name\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'output'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"ipython\",\"call_id\":\"526045a7-5f51-40fb-ba97-5ad29610e511\",\"tool_name\":\"brave_search\",\"content\":\"\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"query\\\\\": \\\\\"Andrew Tate kickboxing name\\\\\", \\\\\"top_k\\\\\": \u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Andrew Tate kickboxing record: How many championships ... - FirstSportz\\\\\", \\\\\"url\\\\\": \\\\\"https://firstsportz.com/mma-how-many-championships-does-andrew-tate-have/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate\\'s Kickboxing career. During his kickboxing career, he used the nickname \\\\\\\\\\\\\"King Cobra,\\\\\\\\\\\\\" which he currently uses as his Twitter name. Tate had an unorthodox style of movement inside the ring. He kept his hands down most of the time and relied on quick jabs and an overhand right to land significant strikes.\\\\\", \\\\\"score\\\\\": 0.9996244, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Andrew Tate: Kickboxing Record, Facts, Height, Weight, Age, Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.lowkickmma.com/andrew-tate-kickboxing-record-facts-height-weight-age-biography/\\\\\", \\\\\"content\\\\\": \\\\\"Birth Name: Emory Andrew Tate III: Date of Birth: 1 December 1986: Place of Birth: Washington, D.C., U.S. ... In his professional kickboxing career, Andrew Tate won 32 of his fights by knockout.\\\\\", \\\\\"score\\\\\": 0.99909246, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Who is Andrew Tate? MMA, kickboxing record and controversies of fighter ...\\\\\", \\\\\"url\\\\\": \\\\\"https://www.sportingnews.com/us/kickboxing/news/andrew-tate-mma-kickboxing-record-controversies/u50waalc9cfz7krjg9wnyb7p\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate kickboxing record After launching his career as a 20-year-old in 2007, Tate built a formidable kickboxing record that included 76 wins across 85 fights in more than 13 years in the ring.\\\\\", \\\\\"score\\\\\": 0.9976586, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"About Andrew Tate: A Journey from Champion to Controversy\\\\\", \\\\\"url\\\\\": \\\\\"https://reachmorpheus.com/andrew-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate\\'s kickboxing career, beginning in 2005, is a tale of determination and skill. He quickly made a name for himself in the sport, rising through the ranks with his unique fighting style and strategic approach, honed by his chess-playing background.\\\\\", \\\\\"score\\\\\": 0.99701905, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Andrew Tate Bio, Wiki, Net Worth, Age, Family, MMA Career - Next Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nextbiography.com/andrew-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate Age. Andrew Tate is 36 years old as of 2023, born on December 1, 1986, in Washington, DC. By his mid-thirties, Andrew Tate has become an esteemed figure in the world of kickboxing, showcasing remarkable expertise and experience in the sport. Early Life of Andrew Tate. Andrew Tate was born on 01 December 1986 to an African-American\\\\\", \\\\\"score\\\\\": 0.99368566, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input'\u001b[0m: \u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"Let me check the latest sports news.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby \u001b[0m\u001b[32m(\u001b[0m\u001b[32mBSM-471\u001b[0m\u001b[32m)\u001b[0m\u001b[32m first appear? Give me the number and title.\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"call_id\":\"19bd3554-e670-4856-89d0-c63f5b016245\",\"tool_name\":\"bravy_search\",\"arguments\":\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"query\":\"Bill Cosby South Park episode\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"What is the British-American kickboxer Andrew Tate\\'s kickboxing name?\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"call_id\":\"526045a7-5f51-40fb-ba97-5ad29610e511\",\"tool_name\":\"brave_search\",\"arguments\":\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"query\":\"Andrew Tate kickboxing name\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"ipython\",\"call_id\":\"526045a7-5f51-40fb-ba97-5ad29610e511\",\"tool_name\":\"brave_search\",\"content\":\"\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"query\\\\\": \\\\\"Andrew Tate kickboxing name\\\\\", \\\\\"top_k\\\\\": \u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Andrew Tate kickboxing record: How many championships ... - FirstSportz\\\\\", \\\\\"url\\\\\": \\\\\"https://firstsportz.com/mma-how-many-championships-does-andrew-tate-have/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate\\'s Kickboxing career. During his kickboxing career, he used the nickname \\\\\\\\\\\\\"King Cobra,\\\\\\\\\\\\\" which he currently uses as his Twitter name. Tate had an unorthodox style of movement inside the ring. He kept his hands down most of the time and relied on quick jabs and an overhand right to land significant strikes.\\\\\", \\\\\"score\\\\\": 0.9996244, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Andrew Tate: Kickboxing Record, Facts, Height, Weight, Age, Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.lowkickmma.com/andrew-tate-kickboxing-record-facts-height-weight-age-biography/\\\\\", \\\\\"content\\\\\": \\\\\"Birth Name: Emory Andrew Tate III: Date of Birth: 1 December 1986: Place of Birth: Washington, D.C., U.S. ... In his professional kickboxing career, Andrew Tate won 32 of his fights by knockout.\\\\\", \\\\\"score\\\\\": 0.99909246, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Who is Andrew Tate? MMA, kickboxing record and controversies of fighter ...\\\\\", \\\\\"url\\\\\": \\\\\"https://www.sportingnews.com/us/kickboxing/news/andrew-tate-mma-kickboxing-record-controversies/u50waalc9cfz7krjg9wnyb7p\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate kickboxing record After launching his career as a 20-year-old in 2007, Tate built a formidable kickboxing record that included 76 wins across 85 fights in more than 13 years in the ring.\\\\\", \\\\\"score\\\\\": 0.9976586, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"About Andrew Tate: A Journey from Champion to Controversy\\\\\", \\\\\"url\\\\\": \\\\\"https://reachmorpheus.com/andrew-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate\\'s kickboxing career, beginning in 2005, is a tale of determination and skill. He quickly made a name for himself in the sport, rising through the ranks with his unique fighting style and strategic approach, honed by his chess-playing background.\\\\\", \\\\\"score\\\\\": 0.99701905, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Andrew Tate Bio, Wiki, Net Worth, Age, Family, MMA Career - Next Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nextbiography.com/andrew-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate Age. Andrew Tate is 36 years old as of 2023, born on December 1, 1986, in Washington, DC. By his mid-thirties, Andrew Tate has become an esteemed figure in the world of kickboxing, showcasing remarkable expertise and experience in the sport. Early Life of Andrew Tate. Andrew Tate was born on 01 December 1986 to an African-American\\\\\", \\\\\"score\\\\\": 0.99368566, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'output'\u001b[0m: \u001b[32m'content: Andrew Tate\\'s kickboxing name is \"King Cobra.\" tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32m]\u001b[0m\u001b[32m'\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[1m]\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print(f\"Getting traces for session_id={session_id}\")\n", + "import json\n", + "from rich.pretty import pprint\n", + "\n", + "agent_logs = []\n", + "\n", + "for span in client.telemetry.query_spans(\n", + " attribute_filters=[\n", + " {\"key\": \"session_id\", \"op\": \"eq\", \"value\": session_id},\n", + " ],\n", + " attributes_to_return=[\"input\", \"output\"]\n", + " ):\n", + " if span.attributes[\"output\"] != \"no shields\":\n", + " agent_logs.append(span.attributes)\n", + "\n", + "pprint(agent_logs)" + ] + }, + { + "cell_type": "markdown", + "id": "QF30H7ufP2RE", + "metadata": { + "id": "QF30H7ufP2RE" + }, + "source": [ + "##### 3.1.3 Post-Process Telemetry Results & Evaluate\n", + "\n", + "- Now, we want to run evaluation to assert that our search agent succesfully calls brave_search from online traces.\n", + "- We will first post-process the agent's telemetry logs and run evaluation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "sy4Xaff_Avuu", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 411 + }, + "id": "sy4Xaff_Avuu", + "outputId": "cb68bae7-b21d-415d-8e71-612bd383c793" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
[\n",
+              "{\n",
+              "│   │   'input_query': '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}',\n",
+              "│   │   'generated_answer': 'content: Let me check the latest sports news. tool_calls: []',\n",
+              "│   │   'expected_answer': 'brave_search'\n",
+              "},\n",
+              "{\n",
+              "│   │   'input_query': '{\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title.\",\"context\":null}',\n",
+              "│   │   'generated_answer': \"content:  tool_calls: [ToolCall(call_id='19bd3554-e670-4856-89d0-c63f5b016245', tool_name='bravy_search', arguments={'query': 'Bill Cosby South Park episode'})]\",\n",
+              "│   │   'expected_answer': 'brave_search'\n",
+              "},\n",
+              "{\n",
+              "│   │   'input_query': '{\"role\":\"user\",\"content\":\"What is the British-American kickboxer Andrew Tate\\'s kickboxing name?\",\"context\":null}',\n",
+              "│   │   'generated_answer': \"content:  tool_calls: [ToolCall(call_id='526045a7-5f51-40fb-ba97-5ad29610e511', tool_name=<BuiltinTool.brave_search: 'brave_search'>, arguments={'query': 'Andrew Tate kickboxing name'})]\",\n",
+              "│   │   'expected_answer': 'brave_search'\n",
+              "}\n",
+              "]\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input_query'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'content: Let me check the latest sports news. tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32m]\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'expected_answer'\u001b[0m: \u001b[32m'brave_search'\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input_query'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby \u001b[0m\u001b[32m(\u001b[0m\u001b[32mBSM-471\u001b[0m\u001b[32m)\u001b[0m\u001b[32m first appear? Give me the number and title.\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"content: tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32mToolCall\u001b[0m\u001b[32m(\u001b[0m\u001b[32mcall_id\u001b[0m\u001b[32m='19bd3554-e670-4856-89d0-c63f5b016245', \u001b[0m\u001b[32mtool_name\u001b[0m\u001b[32m='bravy_search', \u001b[0m\u001b[32marguments\u001b[0m\u001b[32m=\u001b[0m\u001b[32m{\u001b[0m\u001b[32m'query': 'Bill Cosby South Park episode'\u001b[0m\u001b[32m}\u001b[0m\u001b[32m)\u001b[0m\u001b[32m]\u001b[0m\u001b[32m\"\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'expected_answer'\u001b[0m: \u001b[32m'brave_search'\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input_query'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"What is the British-American kickboxer Andrew Tate\\'s kickboxing name?\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"content: tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32mToolCall\u001b[0m\u001b[32m(\u001b[0m\u001b[32mcall_id\u001b[0m\u001b[32m='526045a7-5f51-40fb-ba97-5ad29610e511', \u001b[0m\u001b[32mtool_name\u001b[0m\u001b[32m=\u001b[0m\u001b[32m<\u001b[0m\u001b[32mBuiltinTool.brave_search:\u001b[0m\u001b[32m 'brave_search'\u001b[0m\u001b[32m>\u001b[0m\u001b[32m, \u001b[0m\u001b[32marguments\u001b[0m\u001b[32m=\u001b[0m\u001b[32m{\u001b[0m\u001b[32m'query': 'Andrew Tate kickboxing name'\u001b[0m\u001b[32m}\u001b[0m\u001b[32m)\u001b[0m\u001b[32m]\u001b[0m\u001b[32m\"\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'expected_answer'\u001b[0m: \u001b[32m'brave_search'\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[1m]\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
ScoringScoreResponse(\n",
+              "results={\n",
+              "│   │   'basic::subset_of': ScoringResult(\n",
+              "│   │   │   aggregated_results={'accuracy': {'accuracy': 0.3333333333333333, 'num_correct': 1.0, 'num_total': 3}},\n",
+              "│   │   │   score_rows=[{'score': 0.0}, {'score': 0.0}, {'score': 1.0}]\n",
+              "│   │   )\n",
+              "}\n",
+              ")\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1;35mScoringScoreResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mresults\u001b[0m=\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'basic::subset_of'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m0.3333333333333333\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m3\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m\u001b[1m]\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# post-process telemetry spance and prepare data for eval\n", + "# in this case, we want to assert that all user prompts is followed by a tool call\n", + "import ast\n", + "import json\n", + "\n", + "eval_rows = []\n", + "\n", + "for log in agent_logs:\n", + " last_msg = log['input'][-1]\n", + " if \"\\\"role\\\":\\\"user\\\"\" in last_msg:\n", + " eval_rows.append(\n", + " {\n", + " \"input_query\": last_msg,\n", + " \"generated_answer\": log[\"output\"],\n", + " # check if generated_answer uses tools brave_search\n", + " \"expected_answer\": \"brave_search\",\n", + " },\n", + " )\n", + "\n", + "pprint(eval_rows)\n", + "scoring_params = {\n", + " \"basic::subset_of\": None,\n", + "}\n", + "scoring_response = client.scoring.score(input_rows=eval_rows, scoring_functions=scoring_params)\n", + "pprint(scoring_response)" + ] + }, + { + "cell_type": "markdown", + "id": "IKbzhxcw5e_c", + "metadata": { + "id": "IKbzhxcw5e_c" + }, + "source": [ + "#### 3.2. Agentic Application Dataset Scoring\n", + "- Llama Stack offers a library of scoring functions and the `/scoring` API, allowing you to run evaluations on your pre-annotated AI application datasets.\n", + "\n", + "- In this example, we will work with an example RAG dataset you have built previously, label with an annotation, and use LLM-As-Judge with custom judge prompt for scoring. Please checkout our [Llama Stack Playground](https://llama-stack.readthedocs.io/en/latest/playground/index.html) for an interactive interface to upload datasets and run scorings." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "xG4Y84VQBb0g", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 298 + }, + "id": "xG4Y84VQBb0g", + "outputId": "f61cebdf-f614-440c-d170-f1e873b542ef" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
ScoringScoreResponse(\n",
+              "results={\n",
+              "│   │   'llm-as-judge::base': ScoringResult(\n",
+              "│   │   │   aggregated_results={},\n",
+              "│   │   │   score_rows=[\n",
+              "│   │   │   │   {\n",
+              "│   │   │   │   │   'score': 'B',\n",
+              "│   │   │   │   │   'judge_feedback': 'Answer: B, Explanation: The GENERATED_RESPONSE is a superset of the EXPECTED_RESPONSE and is fully consistent with it. The GENERATED_RESPONSE provides more detailed information about the top 5 topics related to LoRA, while the EXPECTED_RESPONSE only mentions \"LoRA\". The GENERATED_RESPONSE expands on the topic, but does not conflict with the EXPECTED_RESPONSE.'\n",
+              "│   │   │   │   }\n",
+              "│   │   │   ]\n",
+              "│   │   ),\n",
+              "│   │   'basic::subset_of': ScoringResult(\n",
+              "│   │   │   aggregated_results={'accuracy': 1.0, 'num_correct': 1.0, 'num_total': 1.0},\n",
+              "│   │   │   score_rows=[{'score': 1.0}]\n",
+              "│   │   )\n",
+              "}\n",
+              ")\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1;35mScoringScoreResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mresults\u001b[0m=\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'llm-as-judge::base'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ │ │ \u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ │ \u001b[0m\u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'Answer: B, Explanation: The GENERATED_RESPONSE is a superset of the EXPECTED_RESPONSE and is fully consistent with it. The GENERATED_RESPONSE provides more detailed information about the top 5 topics related to LoRA, while the EXPECTED_RESPONSE only mentions \"LoRA\". The GENERATED_RESPONSE expands on the topic, but does not conflict with the EXPECTED_RESPONSE.'\u001b[0m\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1m]\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'basic::subset_of'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m\u001b[1m]\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import rich\n", + "from rich.pretty import pprint\n", + "\n", + "judge_model_id = \"meta-llama/Llama-3.1-405B-Instruct-FP8\"\n", + "\n", + "JUDGE_PROMPT = \"\"\"\n", + "Given a QUESTION and GENERATED_RESPONSE and EXPECTED_RESPONSE.\n", + "\n", + "Compare the factual content of the GENERATED_RESPONSE with the EXPECTED_RESPONSE. Ignore any differences in style, grammar, or punctuation.\n", + " The GENERATED_RESPONSE may either be a subset or superset of the EXPECTED_RESPONSE, or it may conflict with it. Determine which case applies. Answer the question by selecting one of the following options:\n", + " (A) The GENERATED_RESPONSE is a subset of the EXPECTED_RESPONSE and is fully consistent with it.\n", + " (B) The GENERATED_RESPONSE is a superset of the EXPECTED_RESPONSE and is fully consistent with it.\n", + " (C) The GENERATED_RESPONSE contains all the same details as the EXPECTED_RESPONSE.\n", + " (D) There is a disagreement between the GENERATED_RESPONSE and the EXPECTED_RESPONSE.\n", + " (E) The answers differ, but these differences don't matter from the perspective of factuality.\n", + "\n", + "Give your answer in the format \"Answer: One of ABCDE, Explanation: \".\n", + "\n", + "Your actual task:\n", + "\n", + "QUESTION: {input_query}\n", + "GENERATED_RESPONSE: {generated_answer}\n", + "EXPECTED_RESPONSE: {expected_answer}\n", + "\"\"\"\n", + "\n", + "input_query = \"What are the top 5 topics that were explained? Only list succinct bullet points.\"\n", + "generated_answer = \"\"\"\n", + "Here are the top 5 topics that were explained in the documentation for Torchtune:\n", + "\n", + "* What is LoRA and how does it work?\n", + "* Fine-tuning with LoRA: memory savings and parameter-efficient finetuning\n", + "* Running a LoRA finetune with Torchtune: overview and recipe\n", + "* Experimenting with different LoRA configurations: rank, alpha, and attention modules\n", + "* LoRA finetuning\n", + "\"\"\"\n", + "expected_answer = \"\"\"LoRA\"\"\"\n", + "\n", + "rows = [\n", + " {\n", + " \"input_query\": input_query,\n", + " \"generated_answer\": generated_answer,\n", + " \"expected_answer\": expected_answer,\n", + " },\n", + "]\n", + "\n", + "scoring_params = {\n", + " \"llm-as-judge::base\": {\n", + " \"judge_model\": judge_model_id,\n", + " \"prompt_template\": JUDGE_PROMPT,\n", + " \"type\": \"llm_as_judge\",\n", + " \"judge_score_regexes\": [\"Answer: (A|B|C|D|E)\"],\n", + " },\n", + " \"basic::subset_of\": None,\n", + "}\n", + "\n", + "response = client.scoring.score(input_rows=rows, scoring_functions=scoring_params)\n", + "pprint(response)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "rKtGo_v98UA2", + "metadata": { + "id": "rKtGo_v98UA2" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [ + "_JueJAKyJR5m" + ], + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.15" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "0243626d7ef44ef2b90e8fed5c13183d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "044d6d8dda1c4935b1752a9c71c6ee4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_63f34c3d43bb4fdd9faeb6161fd77285", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5cb841b49eaa429e8616ec4b78f501e9", + "value": 1 + } + }, + "0640b57408644741970dd958ca0e21e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6259ffc3ef674df985fd3fa4334f9c8e", + "IPY_MODEL_3d0376d2e574410eb4ef963d51cac0a6", + "IPY_MODEL_b66984cc5de541a5801a1e6e54d40daf" + ], + "layout": "IPY_MODEL_92135b9cb201475681ee0886887c84a8" + } + }, + "116139bfe7a44f969a2c97490c224d31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ab1f339cba094c918fc5507f8361de5c", + "placeholder": "​", + "style": "IPY_MODEL_a6a1eb412f204578b80e5b6717c1e3a5", + "value": " 1/1 [00:01<00:00,  1.27s/it]" + } + }, + "118b359b83304ae59fad57e28f621645": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "15d3ff07f1c54e58b51d452caca01209": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "17603dd7fedf4798a74533fbfd5bb421": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "186682be50c148c0826fa7c314087562": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1f427d4273e04e19b1bdb13388736c01", + "placeholder": "​", + "style": "IPY_MODEL_38897429b7cf4077aea3a981593ca866", + "value": " 1/1 [00:00<00:00, 15.09it/s]" + } + }, + "1f427d4273e04e19b1bdb13388736c01": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2082554eed6644a996f0e31545789e08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a0be415018644c3cac098ab9b19c2391", + "IPY_MODEL_6ede3649e8c24015b3ca77490568bfcd", + "IPY_MODEL_116139bfe7a44f969a2c97490c224d31" + ], + "layout": "IPY_MODEL_243d13828d854880a6adb861ea867734" + } + }, + "2100363a158b4488a58620983aa5bdd4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "243d13828d854880a6adb861ea867734": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "277101c35a784e6caf455a13cd9b8e59": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2924814bab5748ddbeeedc70d324195e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4738bccc6b384da5a20a8bcd61ecec59", + "IPY_MODEL_044d6d8dda1c4935b1752a9c71c6ee4a", + "IPY_MODEL_9277709ad9154d7b8f37d08db84ee425" + ], + "layout": "IPY_MODEL_f3f1f2487d6f455caeb6ec71a2d51ee2" + } + }, + "2958af7c9cdb46038e0336d6b7c6773e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "351928faa62543128e0bd29bf89bbf79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "38897429b7cf4077aea3a981593ca866": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3978f618c4f8467eb83c63a8f5aef98a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3d0376d2e574410eb4ef963d51cac0a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9054d3825edb49cb9c35d24023f50c03", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3978f618c4f8467eb83c63a8f5aef98a", + "value": 1 + } + }, + "425c6c0eaed741669551b9af77096c6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d124b09896934d289df649375f455a8e", + "IPY_MODEL_554cff1a83d44bd2bbd36fd43acac7e2", + "IPY_MODEL_d0381718fc8b49a6ac7e7fe85cabba90" + ], + "layout": "IPY_MODEL_fd3daaf9093d45d8a9d39b87835f4582" + } + }, + "457374ae3035496eb943ad21484f76a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bcf4679dda2d4767a0a24cbf236ca76e", + "IPY_MODEL_6e4ce98853c84beca11471e7ea9d97df", + "IPY_MODEL_186682be50c148c0826fa7c314087562" + ], + "layout": "IPY_MODEL_e1ef246e3e6c4359b7b61c341119e121" + } + }, + "45b569d733f944d29cefae8a5d13b215": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4738bccc6b384da5a20a8bcd61ecec59": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_66c92a8a89234a61a8c688cf1c3e29a1", + "placeholder": "​", + "style": "IPY_MODEL_ee1f4a0c85e44a3b849283337743a8d4", + "value": "Batches: 100%" + } + }, + "4a405d391b974e58a2c4fe00d4bb5815": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4ad57f5d8a824afab639e8606ee43ca6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "53865d3f918e468ab53504133b127973": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "554cff1a83d44bd2bbd36fd43acac7e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6c60c8291e734f549e6c5a46b427b974", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_de88640505c24928904a3c76bda31c70", + "value": 1 + } + }, + "5afdb88e0159462e98773560e3dad439": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f7bc4df675a141e380d965138552a142", + "IPY_MODEL_d7bf8b49145843ac98a6de424e628729", + "IPY_MODEL_8fb17faf68524de2b73321d71b80b407" + ], + "layout": "IPY_MODEL_45b569d733f944d29cefae8a5d13b215" + } + }, + "5cb841b49eaa429e8616ec4b78f501e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5f19dab8c6da4050bc47fd78838f7530": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6259ffc3ef674df985fd3fa4334f9c8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4a405d391b974e58a2c4fe00d4bb5815", + "placeholder": "​", + "style": "IPY_MODEL_2958af7c9cdb46038e0336d6b7c6773e", + "value": "Batches: 100%" + } + }, + "63f34c3d43bb4fdd9faeb6161fd77285": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "66c92a8a89234a61a8c688cf1c3e29a1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6c60c8291e734f549e6c5a46b427b974": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6e4ce98853c84beca11471e7ea9d97df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a0ac7ee92d994c7b9b74e580ab2acdf7", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_118b359b83304ae59fad57e28f621645", + "value": 1 + } + }, + "6ede3649e8c24015b3ca77490568bfcd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f10237315e794539a00ca82bfff930be", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ca09d2207b00456da4c37b5a782a190c", + "value": 1 + } + }, + "753dbe7891a143118b55eccf8c252e03": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8fb17faf68524de2b73321d71b80b407": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_277101c35a784e6caf455a13cd9b8e59", + "placeholder": "​", + "style": "IPY_MODEL_d06666f765764f949e1876f2d5d67242", + "value": " 1/1 [00:01<00:00,  1.68s/it]" + } + }, + "9054d3825edb49cb9c35d24023f50c03": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "92135b9cb201475681ee0886887c84a8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9277709ad9154d7b8f37d08db84ee425": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a447ea9af3e14e5e94eb14ed8dd3c0de", + "placeholder": "​", + "style": "IPY_MODEL_0243626d7ef44ef2b90e8fed5c13183d", + "value": " 1/1 [00:02<00:00,  2.65s/it]" + } + }, + "a0ac7ee92d994c7b9b74e580ab2acdf7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a0be415018644c3cac098ab9b19c2391": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e4b1dfe159304c5f88766b33e85a5c19", + "placeholder": "​", + "style": "IPY_MODEL_2100363a158b4488a58620983aa5bdd4", + "value": "Batches: 100%" + } + }, + "a447ea9af3e14e5e94eb14ed8dd3c0de": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a6a1eb412f204578b80e5b6717c1e3a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ab1f339cba094c918fc5507f8361de5c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b66984cc5de541a5801a1e6e54d40daf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_efd68f6dc0b3428e8f5fc830c1bf2341", + "placeholder": "​", + "style": "IPY_MODEL_4ad57f5d8a824afab639e8606ee43ca6", + "value": " 1/1 [00:00<00:00,  5.36it/s]" + } + }, + "bbb93c771a9c453bb90e729b1f73b931": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bcf4679dda2d4767a0a24cbf236ca76e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bbb93c771a9c453bb90e729b1f73b931", + "placeholder": "​", + "style": "IPY_MODEL_351928faa62543128e0bd29bf89bbf79", + "value": "Batches: 100%" + } + }, + "ca09d2207b00456da4c37b5a782a190c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ce7de1af99434ad38a9382e7253dbfc0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d0381718fc8b49a6ac7e7fe85cabba90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fc086d0dd1a745308c59ae219ae135c5", + "placeholder": "​", + "style": "IPY_MODEL_15d3ff07f1c54e58b51d452caca01209", + "value": " 1/1 [00:00<00:00, 14.36it/s]" + } + }, + "d06666f765764f949e1876f2d5d67242": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d124b09896934d289df649375f455a8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_753dbe7891a143118b55eccf8c252e03", + "placeholder": "​", + "style": "IPY_MODEL_ce7de1af99434ad38a9382e7253dbfc0", + "value": "Batches: 100%" + } + }, + "d7bf8b49145843ac98a6de424e628729": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_17603dd7fedf4798a74533fbfd5bb421", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5f19dab8c6da4050bc47fd78838f7530", + "value": 1 + } + }, + "de88640505c24928904a3c76bda31c70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e1ef246e3e6c4359b7b61c341119e121": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e4b1dfe159304c5f88766b33e85a5c19": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ee1f4a0c85e44a3b849283337743a8d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "efd68f6dc0b3428e8f5fc830c1bf2341": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f10237315e794539a00ca82bfff930be": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f3f1f2487d6f455caeb6ec71a2d51ee2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f7bc4df675a141e380d965138552a142": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fdd057a4506f4f119d945bab5b930799", + "placeholder": "​", + "style": "IPY_MODEL_53865d3f918e468ab53504133b127973", + "value": "Batches: 100%" + } + }, + "fc086d0dd1a745308c59ae219ae135c5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fd3daaf9093d45d8a9d39b87835f4582": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fdd057a4506f4f119d945bab5b930799": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/source/benchmark_evaluations/index.md b/docs/source/benchmark_evaluations/index.md new file mode 100644 index 0000000000..240555936e --- /dev/null +++ b/docs/source/benchmark_evaluations/index.md @@ -0,0 +1,167 @@ +# Benchmark Evaluations + +[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/10CHyykee9j2OigaIcRv47BKG9mrNm0tJ?usp=sharing) + +Llama Stack provides the building blocks needed to run benchmark and application evaluations. This guide will walk you through how to use these components to run open benchmark evaluations. Visit our [Evaluation Concepts](../concepts/evaluation_concepts.md) guide for more details on how evaluations work in Llama Stack, and our [Evaluation Reference](../references/evals_reference/index.md) guide for a comprehensive reference on the APIs. Check out our [Colab notebook](https://colab.research.google.com/drive/10CHyykee9j2OigaIcRv47BKG9mrNm0tJ?usp=sharing) on working examples on how you can use Llama Stack for running benchmark evaluations. + +### 1. Open Benchmark Model Evaluation + +This first example walks you through how to evaluate a model candidate served by Llama Stack on open benchmarks. We will use the following benchmark: +- [MMMU](https://arxiv.org/abs/2311.16502) (A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI): Benchmark designed to evaluate multimodal models. +- [SimpleQA](https://openai.com/index/introducing-simpleqa/): Benchmark designed to access models to answer short, fact-seeking questions. + +#### 1.1 Running MMMU +- We will use a pre-processed MMMU dataset from [llamastack/mmmu](https://huggingface.co/datasets/llamastack/mmmu). The preprocessing code is shown in in this [Github Gist](https://gist.github.com/yanxi0830/118e9c560227d27132a7fd10e2c92840). The dataset is obtained by transforming the original [MMMU/MMMU](https://huggingface.co/datasets/MMMU/MMMU) dataset into correct format by `inference/chat-completion` API. + +```python +import datasets +ds = datasets.load_dataset(path="llamastack/mmmu", name="Agriculture", split="dev") +ds = ds.select_columns(["chat_completion_input", "input_query", "expected_answer"]) +eval_rows = ds.to_pandas().to_dict(orient="records") +``` + +- Next, we will run evaluation on an model candidate, we will need to: + - Define a system prompt + - Define an EvalCandidate + - Run evaluate on the dataset + +```python +SYSTEM_PROMPT_TEMPLATE = """ +You are an expert in Agriculture whose job is to answer questions from the user using images. +First, reason about the correct answer. +Then write the answer in the following format where X is exactly one of A,B,C,D: +Answer: X +Make sure X is one of A,B,C,D. +If you are uncertain of the correct answer, guess the most likely one. +""" + +system_message = { + "role": "system", + "content": SYSTEM_PROMPT_TEMPLATE, +} + +client.eval_tasks.register( + eval_task_id="meta-reference::mmmu", + dataset_id=f"mmmu-{subset}-{split}", + scoring_functions=["basic::regex_parser_multiple_choice_answer"] +) + +response = client.eval.evaluate_rows( + task_id="meta-reference::mmmu", + input_rows=eval_rows, + scoring_functions=["basic::regex_parser_multiple_choice_answer"], + task_config={ + "type": "benchmark", + "eval_candidate": { + "type": "model", + "model": "meta-llama/Llama-3.2-90B-Vision-Instruct", + "sampling_params": { + "temperature": 0.0, + "max_tokens": 4096, + "top_p": 0.9, + "repeat_penalty": 1.0, + }, + "system_message": system_message + } + } +) +``` + +#### 1.2. Running SimpleQA +- We will use a pre-processed SimpleQA dataset from [llamastack/evals](https://huggingface.co/datasets/llamastack/evals/viewer/evals__simpleqa) which is obtained by transforming the input query into correct format accepted by `inference/chat-completion` API. +- Since we will be using this same dataset in our next example for Agentic evaluation, we will register it using the `/datasets` API, and interact with it through `/datasetio` API. + +```python +simpleqa_dataset_id = "huggingface::simpleqa" + +_ = client.datasets.register( + dataset_id=simpleqa_dataset_id, + provider_id="huggingface", + url={"uri": "https://huggingface.co/datasets/llamastack/evals"}, + metadata={ + "path": "llamastack/evals", + "name": "evals__simpleqa", + "split": "train", + }, + dataset_schema={ + "input_query": {"type": "string"}, + "expected_answer": {"type": "string"}, + "chat_completion_input": {"type": "chat_completion_input"}, + } +) + +eval_rows = client.datasetio.get_rows_paginated( + dataset_id=simpleqa_dataset_id, + rows_in_page=5, +) +``` + +```python +client.eval_tasks.register( + eval_task_id="meta-reference::simpleqa", + dataset_id=simpleqa_dataset_id, + scoring_functions=["llm-as-judge::405b-simpleqa"] +) + +response = client.eval.evaluate_rows( + task_id="meta-reference::simpleqa", + input_rows=eval_rows.rows, + scoring_functions=["llm-as-judge::405b-simpleqa"], + task_config={ + "type": "benchmark", + "eval_candidate": { + "type": "model", + "model": "meta-llama/Llama-3.2-90B-Vision-Instruct", + "sampling_params": { + "temperature": 0.0, + "max_tokens": 4096, + "top_p": 0.9, + "repeat_penalty": 1.0, + }, + } + } +) +``` + + +### 2. Agentic Evaluation +- In this example, we will demonstrate how to evaluate a agent candidate served by Llama Stack via `/agent` API. +- We will continue to use the SimpleQA dataset we used in previous example. +- Instead of running evaluation on model, we will run the evaluation on a Search Agent with access to search tool. We will define our agent evaluation candidate through `AgentConfig`. + +```python +agent_config = { + "model": "meta-llama/Llama-3.1-405B-Instruct", + "instructions": "You are a helpful assistant", + "sampling_params": { + "strategy": "greedy", + "temperature": 0.0, + "top_p": 0.95, + }, + "tools": [ + { + "type": "brave_search", + "engine": "tavily", + "api_key": userdata.get("TAVILY_SEARCH_API_KEY") + } + ], + "tool_choice": "auto", + "tool_prompt_format": "json", + "input_shields": [], + "output_shields": [], + "enable_session_persistence": False +} + +response = client.eval.evaluate_rows( + task_id="meta-reference::simpleqa", + input_rows=eval_rows.rows, + scoring_functions=["llm-as-judge::405b-simpleqa"], + task_config={ + "type": "benchmark", + "eval_candidate": { + "type": "agent", + "config": agent_config, + } + } +) +``` diff --git a/docs/source/building_applications/index.md b/docs/source/building_applications/index.md index 6e20622047..0b3a9a406c 100644 --- a/docs/source/building_applications/index.md +++ b/docs/source/building_applications/index.md @@ -1,6 +1,8 @@ # Building AI Applications -Llama Stack provides all the building blocks needed to create sophisticated AI applications. This guide will walk you through how to use these components effectively. +[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1F2ksmkoGQPa4pzRjMOE6BXWeOxWFIW6n?usp=sharing) + +Llama Stack provides all the building blocks needed to create sophisticated AI applications. This guide will walk you through how to use these components effectively. Check out our Colab notebook on to follow along working examples on how you can build LLM-powered agentic applications using Llama Stack. ## Basic Inference diff --git a/docs/source/concepts/evaluation_concepts.md b/docs/source/concepts/evaluation_concepts.md new file mode 100644 index 0000000000..399d99d92d --- /dev/null +++ b/docs/source/concepts/evaluation_concepts.md @@ -0,0 +1,40 @@ +# Evaluation Concepts + +The Llama Stack Evaluation flow allows you to run evaluations on your GenAI application datasets or pre-registered benchmarks. + +We introduce a set of APIs in Llama Stack for supporting running evaluations of LLM applications. +- `/datasetio` + `/datasets` API +- `/scoring` + `/scoring_functions` API +- `/eval` + `/eval_tasks` API + +This guide goes over the sets of APIs and developer experience flow of using Llama Stack to run evaluations for different use cases. Checkout our Colab notebook on working examples with evaluations [here](https://colab.research.google.com/drive/10CHyykee9j2OigaIcRv47BKG9mrNm0tJ?usp=sharing). + + +## Evaluation Concepts + +The Evaluation APIs are associated with a set of Resources as shown in the following diagram. Please visit the Resources section in our [Core Concepts](../concepts/index.md) guide for better high-level understanding. + +![Eval Concepts](../references/evals_reference/resources/eval-concept.png) + +- **DatasetIO**: defines interface with datasets and data loaders. + - Associated with `Dataset` resource. +- **Scoring**: evaluate outputs of the system. + - Associated with `ScoringFunction` resource. We provide a suite of out-of-the box scoring functions and also the ability for you to add custom evaluators. These scoring functions are the core part of defining an evaluation task to output evaluation metrics. +- **Eval**: generate outputs (via Inference or Agents) and perform scoring. + - Associated with `EvalTask` resource. + + +Use the following decision tree to decide how to use LlamaStack Evaluation flow. +![Eval Flow](../references/evals_reference/resources/eval-flow.png) + + +```{admonition} Note on Benchmark v.s. Application Evaluation +:class: tip +- **Benchmark Evaluation** is a well-defined eval-task consisting of `dataset` and `scoring_function`. The generation (inference or agent) will be done as part of evaluation. +- **Application Evaluation** assumes users already have app inputs & generated outputs. Evaluation will purely focus on scoring the generated outputs via scoring functions (e.g. LLM-as-judge). +``` + +## What's Next? + +- Check out our Colab notebook on working examples with evaluations [here](https://colab.research.google.com/drive/10CHyykee9j2OigaIcRv47BKG9mrNm0tJ?usp=sharing). +- Check out our [Evaluation Reference](../references/evals_reference/index.md) for more details on the APIs. diff --git a/docs/source/concepts/index.md b/docs/source/concepts/index.md index d7c88cbf94..32caa66a5f 100644 --- a/docs/source/concepts/index.md +++ b/docs/source/concepts/index.md @@ -62,3 +62,13 @@ While there is a lot of flexibility to mix-and-match providers, often users will **On-device Distro**: Finally, you may want to run Llama Stack directly on an edge device (mobile phone or a tablet.) We provide Distros for iOS and Android (coming soon.) + +## More Concepts +- [Evaluation Concepts](evaluation_concepts.md) + +```{toctree} +:maxdepth: 1 +:hidden: + +evaluation_concepts +``` diff --git a/docs/source/cookbooks/evals.md b/docs/source/cookbooks/evals.md deleted file mode 100644 index 12446e3ece..0000000000 --- a/docs/source/cookbooks/evals.md +++ /dev/null @@ -1,123 +0,0 @@ -# Evaluations - -The Llama Stack Evaluation flow allows you to run evaluations on your GenAI application datasets or pre-registered benchmarks. - -We introduce a set of APIs in Llama Stack for supporting running evaluations of LLM applications. -- `/datasetio` + `/datasets` API -- `/scoring` + `/scoring_functions` API -- `/eval` + `/eval_tasks` API - -This guide goes over the sets of APIs and developer experience flow of using Llama Stack to run evaluations for different use cases. - -## Evaluation Concepts - -The Evaluation APIs are associated with a set of Resources as shown in the following diagram. Please visit the Resources section in our [Core Concepts](../concepts/index.md) guide for better high-level understanding. - -![Eval Concepts](./resources/eval-concept.png) - -- **DatasetIO**: defines interface with datasets and data loaders. - - Associated with `Dataset` resource. -- **Scoring**: evaluate outputs of the system. - - Associated with `ScoringFunction` resource. We provide a suite of out-of-the box scoring functions and also the ability for you to add custom evaluators. These scoring functions are the core part of defining an evaluation task to output evaluation metrics. -- **Eval**: generate outputs (via Inference or Agents) and perform scoring. - - Associated with `EvalTask` resource. - - -## Running Evaluations -Use the following decision tree to decide how to use LlamaStack Evaluation flow. -![Eval Flow](./resources/eval-flow.png) - - -```{admonition} Note on Benchmark v.s. Application Evaluation -:class: tip -- **Benchmark Evaluation** is a well-defined eval-task consisting of `dataset` and `scoring_function`. The generation (inference or agent) will be done as part of evaluation. -- **Application Evaluation** assumes users already have app inputs & generated outputs. Evaluation will purely focus on scoring the generated outputs via scoring functions (e.g. LLM-as-judge). -``` - -The following examples give the quick steps to start running evaluations using the llama-stack-client CLI. - -#### Benchmark Evaluation CLI -Usage: There are 2 inputs necessary for running a benchmark eval -- `eval-task-id`: the identifier associated with the eval task. Each `EvalTask` is parametrized by - - `dataset_id`: the identifier associated with the dataset. - - `List[scoring_function_id]`: list of scoring function identifiers. -- `eval-task-config`: specifies the configuration of the model / agent to evaluate on. - - -``` -llama-stack-client eval run_benchmark \ ---eval-task-config ~/eval_task_config.json \ ---visualize -``` - - -#### Application Evaluation CLI -Usage: For running application evals, you will already have available datasets in hand from your application. You will need to specify: -- `scoring-fn-id`: List of ScoringFunction identifiers you wish to use to run on your application. -- `Dataset` used for evaluation: - - (1) `--dataset-path`: path to local file system containing datasets to run evaluation on - - (2) `--dataset-id`: pre-registered dataset in Llama Stack -- (Optional) `--scoring-params-config`: optionally parameterize scoring functions with custom params (e.g. `judge_prompt`, `judge_model`, `parsing_regexes`). - - -``` -llama-stack-client eval run_scoring ... ---dataset-path \ ---output-dir ./ -``` - -#### Defining EvalTaskConfig -The `EvalTaskConfig` are user specified config to define: -1. `EvalCandidate` to run generation on: - - `ModelCandidate`: The model will be used for generation through LlamaStack /inference API. - - `AgentCandidate`: The agentic system specified by AgentConfig will be used for generation through LlamaStack /agents API. -2. Optionally scoring function params to allow customization of scoring function behaviour. This is useful to parameterize generic scoring functions such as LLMAsJudge with custom `judge_model` / `judge_prompt`. - - -**Example Benchmark EvalTaskConfig** -```json -{ - "type": "benchmark", - "eval_candidate": { - "type": "model", - "model": "Llama3.2-3B-Instruct", - "sampling_params": { - "strategy": "greedy", - "temperature": 0, - "top_p": 0.95, - "top_k": 0, - "max_tokens": 0, - "repetition_penalty": 1.0 - } - } -} -``` - -**Example Application EvalTaskConfig** -```json -{ - "type": "app", - "eval_candidate": { - "type": "model", - "model": "Llama3.1-405B-Instruct", - "sampling_params": { - "strategy": "greedy", - "temperature": 0, - "top_p": 0.95, - "top_k": 0, - "max_tokens": 0, - "repetition_penalty": 1.0 - } - }, - "scoring_params": { - "llm-as-judge::llm_as_judge_base": { - "type": "llm_as_judge", - "judge_model": "meta-llama/Llama-3.1-8B-Instruct", - "prompt_template": "Your job is to look at a question, a gold target ........", - "judge_score_regexes": [ - "(A|B|C)" - ] - } - } -} -``` diff --git a/docs/source/cookbooks/index.md b/docs/source/cookbooks/index.md deleted file mode 100644 index 93405e76e6..0000000000 --- a/docs/source/cookbooks/index.md +++ /dev/null @@ -1,9 +0,0 @@ -# Cookbooks - -- [Evaluations Flow](evals.md) - -```{toctree} -:maxdepth: 2 -:hidden: -evals.md -``` diff --git a/docs/source/index.md b/docs/source/index.md index 19835cfc92..cf7c0b2365 100644 --- a/docs/source/index.md +++ b/docs/source/index.md @@ -59,8 +59,8 @@ getting_started/index concepts/index distributions/index building_applications/index +benchmark_evaluations/index playground/index contributing/index references/index -cookbooks/index ``` diff --git a/docs/source/references/evals_reference/index.md b/docs/source/references/evals_reference/index.md new file mode 100644 index 0000000000..9ba4f28485 --- /dev/null +++ b/docs/source/references/evals_reference/index.md @@ -0,0 +1,359 @@ +# Evaluations + +The Llama Stack Evaluation flow allows you to run evaluations on your GenAI application datasets or pre-registered benchmarks. + +We introduce a set of APIs in Llama Stack for supporting running evaluations of LLM applications. +- `/datasetio` + `/datasets` API +- `/scoring` + `/scoring_functions` API +- `/eval` + `/eval_tasks` API + +This guide goes over the sets of APIs and developer experience flow of using Llama Stack to run evaluations for different use cases. Checkout our Colab notebook on working examples with evaluations [here](https://colab.research.google.com/drive/10CHyykee9j2OigaIcRv47BKG9mrNm0tJ?usp=sharing). + + +## Evaluation Concepts + +The Evaluation APIs are associated with a set of Resources as shown in the following diagram. Please visit the Resources section in our [Core Concepts](../concepts/index.md) guide for better high-level understanding. + +![Eval Concepts](./resources/eval-concept.png) + +- **DatasetIO**: defines interface with datasets and data loaders. + - Associated with `Dataset` resource. +- **Scoring**: evaluate outputs of the system. + - Associated with `ScoringFunction` resource. We provide a suite of out-of-the box scoring functions and also the ability for you to add custom evaluators. These scoring functions are the core part of defining an evaluation task to output evaluation metrics. +- **Eval**: generate outputs (via Inference or Agents) and perform scoring. + - Associated with `EvalTask` resource. + + +Use the following decision tree to decide how to use LlamaStack Evaluation flow. +![Eval Flow](./resources/eval-flow.png) + + +```{admonition} Note on Benchmark v.s. Application Evaluation +:class: tip +- **Benchmark Evaluation** is a well-defined eval-task consisting of `dataset` and `scoring_function`. The generation (inference or agent) will be done as part of evaluation. +- **Application Evaluation** assumes users already have app inputs & generated outputs. Evaluation will purely focus on scoring the generated outputs via scoring functions (e.g. LLM-as-judge). +``` + +## Evaluation Examples Walkthrough + +[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/10CHyykee9j2OigaIcRv47BKG9mrNm0tJ?usp=sharing) + +It is best to open this notebook in Colab to follow along with the examples. + +### 1. Open Benchmark Model Evaluation + +This first example walks you through how to evaluate a model candidate served by Llama Stack on open benchmarks. We will use the following benchmark: +- [MMMU](https://arxiv.org/abs/2311.16502) (A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI)]: Benchmark designed to evaluate multimodal models. +- [SimpleQA](https://openai.com/index/introducing-simpleqa/): Benchmark designed to access models to answer short, fact-seeking questions. + +#### 1.1 Running MMMU +- We will use a pre-processed MMMU dataset from [llamastack/mmmu](https://huggingface.co/datasets/llamastack/mmmu). The preprocessing code is shown in in this [Github Gist](https://gist.github.com/yanxi0830/118e9c560227d27132a7fd10e2c92840). The dataset is obtained by transforming the original [MMMU/MMMU](https://huggingface.co/datasets/MMMU/MMMU) dataset into correct format by `inference/chat-completion` API. + +```python +import datasets +ds = datasets.load_dataset(path="llamastack/mmmu", name="Agriculture", split="dev") +ds = ds.select_columns(["chat_completion_input", "input_query", "expected_answer"]) +eval_rows = ds.to_pandas().to_dict(orient="records") +``` + +- Next, we will run evaluation on an model candidate, we will need to: + - Define a system prompt + - Define an EvalCandidate + - Run evaluate on the dataset + +```python +SYSTEM_PROMPT_TEMPLATE = """ +You are an expert in Agriculture whose job is to answer questions from the user using images. +First, reason about the correct answer. +Then write the answer in the following format where X is exactly one of A,B,C,D: +Answer: X +Make sure X is one of A,B,C,D. +If you are uncertain of the correct answer, guess the most likely one. +""" + +system_message = { + "role": "system", + "content": SYSTEM_PROMPT_TEMPLATE, +} + +client.eval_tasks.register( + eval_task_id="meta-reference::mmmu", + dataset_id=f"mmmu-{subset}-{split}", + scoring_functions=["basic::regex_parser_multiple_choice_answer"] +) + +response = client.eval.evaluate_rows( + task_id="meta-reference::mmmu", + input_rows=eval_rows, + scoring_functions=["basic::regex_parser_multiple_choice_answer"], + task_config={ + "type": "benchmark", + "eval_candidate": { + "type": "model", + "model": "meta-llama/Llama-3.2-90B-Vision-Instruct", + "sampling_params": { + "temperature": 0.0, + "max_tokens": 4096, + "top_p": 0.9, + "repeat_penalty": 1.0, + }, + "system_message": system_message + } + } +) +``` + +#### 1.2. Running SimpleQA +- We will use a pre-processed SimpleQA dataset from [llamastack/evals](https://huggingface.co/datasets/llamastack/evals/viewer/evals__simpleqa) which is obtained by transforming the input query into correct format accepted by `inference/chat-completion` API. +- Since we will be using this same dataset in our next example for Agentic evaluation, we will register it using the `/datasets` API, and interact with it through `/datasetio` API. + +```python +simpleqa_dataset_id = "huggingface::simpleqa" + +_ = client.datasets.register( + dataset_id=simpleqa_dataset_id, + provider_id="huggingface", + url={"uri": "https://huggingface.co/datasets/llamastack/evals"}, + metadata={ + "path": "llamastack/evals", + "name": "evals__simpleqa", + "split": "train", + }, + dataset_schema={ + "input_query": {"type": "string"}, + "expected_answer": {"type": "string"}, + "chat_completion_input": {"type": "chat_completion_input"}, + } +) + +eval_rows = client.datasetio.get_rows_paginated( + dataset_id=simpleqa_dataset_id, + rows_in_page=5, +) +``` + +```python +client.eval_tasks.register( + eval_task_id="meta-reference::simpleqa", + dataset_id=simpleqa_dataset_id, + scoring_functions=["llm-as-judge::405b-simpleqa"] +) + +response = client.eval.evaluate_rows( + task_id="meta-reference::simpleqa", + input_rows=eval_rows.rows, + scoring_functions=["llm-as-judge::405b-simpleqa"], + task_config={ + "type": "benchmark", + "eval_candidate": { + "type": "model", + "model": "meta-llama/Llama-3.2-90B-Vision-Instruct", + "sampling_params": { + "temperature": 0.0, + "max_tokens": 4096, + "top_p": 0.9, + "repeat_penalty": 1.0, + }, + } + } +) +``` + + +### 2. Agentic Evaluation +- In this example, we will demonstrate how to evaluate a agent candidate served by Llama Stack via `/agent` API. +- We will continue to use the SimpleQA dataset we used in previous example. +- Instead of running evaluation on model, we will run the evaluation on a Search Agent with access to search tool. We will define our agent evaluation candidate through `AgentConfig`. + +```python +agent_config = { + "model": "meta-llama/Llama-3.1-405B-Instruct", + "instructions": "You are a helpful assistant", + "sampling_params": { + "strategy": "greedy", + "temperature": 0.0, + "top_p": 0.95, + }, + "tools": [ + { + "type": "brave_search", + "engine": "tavily", + "api_key": userdata.get("TAVILY_SEARCH_API_KEY") + } + ], + "tool_choice": "auto", + "tool_prompt_format": "json", + "input_shields": [], + "output_shields": [], + "enable_session_persistence": False +} + +response = client.eval.evaluate_rows( + task_id="meta-reference::simpleqa", + input_rows=eval_rows.rows, + scoring_functions=["llm-as-judge::405b-simpleqa"], + task_config={ + "type": "benchmark", + "eval_candidate": { + "type": "agent", + "config": agent_config, + } + } +) +``` + +### 3. Agentic Application Dataset Scoring +- Llama Stack offers a library of scoring functions and the `/scoring` API, allowing you to run evaluations on your pre-annotated AI application datasets. + +- In this example, we will work with an example RAG dataset and couple of scoring functions for evaluation. + - `llm-as-judge::base`: LLM-As-Judge with custom judge prompt & model. + - `braintrust::factuality`: Factuality scorer from [braintrust](https://github.com/braintrustdata/autoevals). + - `basic::subset_of`: Basic checking if generated answer is a subset of expected answer. + +- Please checkout our [Llama Stack Playground](https://llama-stack.readthedocs.io/en/latest/playground/index.html) for an interactive interface to upload datasets and run scorings. + +```python +judge_model_id = "meta-llama/Llama-3.1-405B-Instruct-FP8" + +JUDGE_PROMPT = """ +Given a QUESTION and GENERATED_RESPONSE and EXPECTED_RESPONSE. + +Compare the factual content of the GENERATED_RESPONSE with the EXPECTED_RESPONSE. Ignore any differences in style, grammar, or punctuation. + The GENERATED_RESPONSE may either be a subset or superset of the EXPECTED_RESPONSE, or it may conflict with it. Determine which case applies. Answer the question by selecting one of the following options: + (A) The GENERATED_RESPONSE is a subset of the EXPECTED_RESPONSE and is fully consistent with it. + (B) The GENERATED_RESPONSE is a superset of the EXPECTED_RESPONSE and is fully consistent with it. + (C) The GENERATED_RESPONSE contains all the same details as the EXPECTED_RESPONSE. + (D) There is a disagreement between the GENERATED_RESPONSE and the EXPECTED_RESPONSE. + (E) The answers differ, but these differences don't matter from the perspective of factuality. + +Give your answer in the format "Answer: One of ABCDE, Explanation: ". + +Your actual task: + +QUESTION: {input_query} +GENERATED_RESPONSE: {generated_answer} +EXPECTED_RESPONSE: {expected_answer} +""" + +input_query = "What are the top 5 topics that were explained? Only list succinct bullet points." +generated_answer = """ +Here are the top 5 topics that were explained in the documentation for Torchtune: + +* What is LoRA and how does it work? +* Fine-tuning with LoRA: memory savings and parameter-efficient finetuning +* Running a LoRA finetune with Torchtune: overview and recipe +* Experimenting with different LoRA configurations: rank, alpha, and attention modules +* LoRA finetuning +""" +expected_answer = """LoRA""" + +dataset_rows = [ + { + "input_query": input_query, + "generated_answer": generated_answer, + "expected_answer": expected_answer, + }, +] + +scoring_params = { + "llm-as-judge::base": { + "judge_model": judge_model_id, + "prompt_template": JUDGE_PROMPT, + "type": "llm_as_judge", + "judge_score_regexes": ["Answer: (A|B|C|D|E)"], + }, + "basic::subset_of": None, + "braintrust::factuality": None, +} + +response = client.scoring.score(input_rows=dataset_rows, scoring_functions=scoring_params) +``` + +## Running Evaluations via CLI +The following examples give the quick steps to start running evaluations using the llama-stack-client CLI. + +#### Benchmark Evaluation CLI +Usage: There are 2 inputs necessary for running a benchmark eval +- `eval-task-id`: the identifier associated with the eval task. Each `EvalTask` is parametrized by + - `dataset_id`: the identifier associated with the dataset. + - `List[scoring_function_id]`: list of scoring function identifiers. +- `eval-task-config`: specifies the configuration of the model / agent to evaluate on. + + +``` +llama-stack-client eval run_benchmark \ +--eval-task-config ~/eval_task_config.json \ +--visualize +``` + + +#### Application Evaluation CLI +Usage: For running application evals, you will already have available datasets in hand from your application. You will need to specify: +- `scoring-fn-id`: List of ScoringFunction identifiers you wish to use to run on your application. +- `Dataset` used for evaluation: + - (1) `--dataset-path`: path to local file system containing datasets to run evaluation on + - (2) `--dataset-id`: pre-registered dataset in Llama Stack +- (Optional) `--scoring-params-config`: optionally parameterize scoring functions with custom params (e.g. `judge_prompt`, `judge_model`, `parsing_regexes`). + + +``` +llama-stack-client eval run_scoring ... +--dataset-path \ +--output-dir ./ +``` + +#### Defining EvalTaskConfig +The `EvalTaskConfig` are user specified config to define: +1. `EvalCandidate` to run generation on: + - `ModelCandidate`: The model will be used for generation through LlamaStack /inference API. + - `AgentCandidate`: The agentic system specified by AgentConfig will be used for generation through LlamaStack /agents API. +2. Optionally scoring function params to allow customization of scoring function behaviour. This is useful to parameterize generic scoring functions such as LLMAsJudge with custom `judge_model` / `judge_prompt`. + + +**Example Benchmark EvalTaskConfig** +```json +{ + "type": "benchmark", + "eval_candidate": { + "type": "model", + "model": "Llama3.2-3B-Instruct", + "sampling_params": { + "strategy": "greedy", + "temperature": 0, + "top_p": 0.95, + "top_k": 0, + "max_tokens": 0, + "repetition_penalty": 1.0 + } + } +} +``` + +**Example Application EvalTaskConfig** +```json +{ + "type": "app", + "eval_candidate": { + "type": "model", + "model": "Llama3.1-405B-Instruct", + "sampling_params": { + "strategy": "greedy", + "temperature": 0, + "top_p": 0.95, + "top_k": 0, + "max_tokens": 0, + "repetition_penalty": 1.0 + } + }, + "scoring_params": { + "llm-as-judge::llm_as_judge_base": { + "type": "llm_as_judge", + "judge_model": "meta-llama/Llama-3.1-8B-Instruct", + "prompt_template": "Your job is to look at a question, a gold target ........", + "judge_score_regexes": [ + "(A|B|C)" + ] + } + } +} +``` diff --git a/docs/source/cookbooks/resources/eval-concept.png b/docs/source/references/evals_reference/resources/eval-concept.png similarity index 100% rename from docs/source/cookbooks/resources/eval-concept.png rename to docs/source/references/evals_reference/resources/eval-concept.png diff --git a/docs/source/cookbooks/resources/eval-flow.png b/docs/source/references/evals_reference/resources/eval-flow.png similarity index 100% rename from docs/source/cookbooks/resources/eval-flow.png rename to docs/source/references/evals_reference/resources/eval-flow.png diff --git a/docs/source/references/index.md b/docs/source/references/index.md index d85bb7820a..51e3dd0ba0 100644 --- a/docs/source/references/index.md +++ b/docs/source/references/index.md @@ -14,4 +14,5 @@ python_sdk_reference/index llama_cli_reference/index llama_stack_client_cli_reference llama_cli_reference/download_models +evals_reference/index ```