forked from neelabhpant/Deep-Learning-in-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRegresison_Using_Keras_NN.py
105 lines (82 loc) · 2.76 KB
/
Regresison_Using_Keras_NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import pandas as pd
import numpy as np
def get_data(csv_file):
cps = pd.read_csv(csv_file, header=1)
cps = cps.drop('race', 1)
cps = cps.drop('hispanic', 1)
# Cleaning the data
wage_per_hour = [round(i, 2) for i in cps['wage']]
union = []
education_yrs = [i for i in cps['educ']]
experience_yrs = [i for i in cps['exper']]
age = [i for i in cps['age']]
female = []
marr = []
south = []
manufacturing = []
construction = []
for i in cps['union']:
if i == 'Not':
union.append(0)
else:
union.append(1)
for sex in cps['sex']:
if sex == 'M':
female.append(0)
else:
female.append(1)
for marriage in cps['married']:
if marriage == 'Single':
marr.append(0)
else:
marr.append(1)
for i in cps['south']:
if i == 'NS':
south.append(0)
else:
south.append(1)
for i in cps['sector']:
if i == 'manuf':
manufacturing.append(1)
else:
manufacturing.append(0)
for i in cps['sector']:
if i == 'const':
construction.append(1)
else:
construction.append(0)
# Creating a dictionary for the final DataFrame
my_dict = {'wage_per_hour': wage_per_hour,
'union': union,
'education_yrs': education_yrs,
'experience_yrs': experience_yrs,
'age': age,
'female': female,
'marr': marr,
'south': south,
'manufacturing': manufacturing,
'construction': construction}
# Final DataFrame
df = pd.DataFrame(my_dict)
# Creating Predictors and Targets labels
predictors = df.as_matrix(columns=df.columns[:9])
targets = [i for i in df['wage_per_hour']]
target = np.array(targets)
return [df, predictors, target]
[df, predictors, target] = get_data('cps.csv') # Getting Data, Predictors and Target
import keras # i Importing required keras packages
from keras.layers import Dense
from keras.models import Sequential
n_cols = predictors.shape[1] # Setting up dimensions of an input
model = Sequential() # Setting up a Sequential model
# We have 2 hidden layers
model.add(Dense(50, activation='relu', input_shape=(
n_cols,))) # Setting up 1st Dense layers where each node is connected to every node in the next layer
model.add(Dense(32, activation='relu')) # Setting up 2nd layer
# 1 output layer
model.add(Dense(1)) # Setting up final layer
# Compiling the model using 'adam' optimizer and MSE as loss function
model.compile(optimizer='adam', loss='mean_squared_error')
print("Loss function: " + model.loss)
# Fitting the model
model.fit(predictors, target)