forked from neelabhpant/Deep-Learning-in-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSGD_ADAM_MNIST.py
93 lines (80 loc) · 3.37 KB
/
SGD_ADAM_MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Wed May 10 12:00:48 2017
@author: neelabhpant
"""
import numpy as np
import os
import scipy.misc
from keras.layers import Dense
from keras.models import Sequential
from keras.utils.np_utils import to_categorical
import matplotlib.pyplot as plt
def get_input(path):
input_matrix = np.zeros((20000, 784))
i = 0
for filename in os.listdir(path):
infilename = os.path.join(path, filename)
img = scipy.misc.imread(infilename).astype(np.float32)
temp = img.reshape(-1)
input_matrix[i, :] = temp
i += 1
return input_matrix
def get_target(path):
T = np.zeros((20000, 10))
Target_matrix = np.zeros((1, 20000))
Basic_path, directory, files = os.walk(path).next()
i = 0
for targets in files:
Target_matrix[0, i] = float(targets[0])
i += 1
T = to_categorical(Target_matrix)
return T
X = get_input('set1_20k')
X = X / X.max()
y = get_target('set1_20k')
Data_Matrix = np.concatenate((X, y), axis=1)
Data_Matrix = np.random.permutation(Data_Matrix)
X_new = Data_Matrix[:, 0:784]
y_new = Data_Matrix[:, 784:794]
model_1 = Sequential()
model_1.add(Dense(50, activation='relu', input_shape=(784,)))
model_1.add(Dense(50, activation='relu'))
model_1.add(Dense(10, activation='softmax'))
model_1.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
model_1_training = model_1.fit(X_new, y_new, epochs=20, validation_split=0.3, verbose=False)
model_2 = Sequential()
model_2.add(Dense(100, activation='relu', input_shape=(784,)))
model_2.add(Dense(100, activation='relu'))
model_2.add(Dense(10, activation='softmax'))
model_2.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
model_2_training = model_2.fit(X_new, y_new, epochs=20, validation_split=0.3, verbose=False)
model_3 = Sequential()
model_3.add(Dense(50, activation='relu', input_shape=(784,)))
model_3.add(Dense(50, activation='relu'))
model_3.add(Dense(10, activation='softmax'))
model_3.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_3_training = model_3.fit(X_new, y_new, epochs=20, validation_split=0.3, verbose=False)
model_4 = Sequential()
model_4.add(Dense(100, activation='relu', input_shape=(784,)))
model_4.add(Dense(100, activation='relu'))
model_4.add(Dense(10, activation='softmax'))
model_4.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_4_training = model_4.fit(X_new, y_new, epochs=20, validation_split=0.3, verbose=False)
plt.plot(model_1_training.history['val_loss'], 'r', label='Model 1 SGD-2_50')
plt.plot(model_2_training.history['val_loss'], 'b', label='Model 2 SGD-2_100')
plt.plot(model_3_training.history['val_loss'], 'g', label='Model 3 ADAM-2_50')
plt.plot(model_4_training.history['val_loss'], 'c', label='Model 3 ADAM-2_100')
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.xlabel('Epochs')
plt.ylabel('Validation Loss')
plt.show()
plt.plot(model_1_training.history['val_acc'], 'r', label='Model 1 SGD-2_50')
plt.plot(model_2_training.history['val_acc'], 'b', label='Model 2 SGD-2_100')
plt.plot(model_3_training.history['val_acc'], 'g', label='Model 3 ADAM-2_50')
plt.plot(model_4_training.history['val_acc'], 'c', label='Model 3 ADAM-2_100')
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.xlabel('Epochs')
plt.ylabel('Validation Accuracy')
plt.show()