-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpred_segUNet_preprocess.py
355 lines (299 loc) · 17.4 KB
/
pred_segUNet_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import numpy as np, matplotlib.pyplot as plt, os, gc
import matplotlib
import tools21cm as t2c
import tensorflow as tf
from tqdm import tqdm
from glob import glob
import matplotlib.gridspec as gridspec
from sklearn.metrics import matthews_corrcoef, r2_score
from sklearn.metrics import confusion_matrix
from utils_pred.prediction import SegUnet2Predict, LoadSegUnetModel
title_a = '\t\t _ _ _ _ _ \n\t\t| | | | \ | | | | \n\t\t| | | | \| | ___| |_ \n\t\t| | | | . ` |/ _ \ __|\n\t\t| |__| | |\ | __/ |_ \n\t\t \____/|_| \_|\___|\__|\n'
title_b = ' _____ _ _ _ ___ __ \n| __ \ | (_) | | |__ \/_ | \n| |__) | __ ___ __| |_ ___| |_ ___ ) || | ___ _ __ ___ \n| ___/ `__/ _ \/ _` | |/ __| __/ __| / / | |/ __| `_ ` _ \ \n| | | | | __/ (_| | | (__| |_\__ \ / /_ | | (__| | | | | |\n|_| |_| \___|\__,_|_|\___|\__|___/ |____||_|\___|_| |_| |_|\n'
print(title_a+'\n'+title_b)
PLOT_STATS, PLOT_MEAN, PLOT_VISUAL, PLOT_ERROR, PLOT_SCORE = True, True, True, True, True
#PLOT_STATS, PLOT_MEAN, PLOT_VISUAL, PLOT_ERROR, PLOT_SCORE = True, True, True, False, False
#path_pred = '/store/ska/sk09/segunet/inputs/dataLC_128_pred_310822/'
#path_pred = '/store/ska/sk09/segunet/inputs/dataLC_128_pred_190922/'
#path_pred = '/store/ska/sk02/lightcones/EOS16/EOS16_dataset/'
#path_pred = '/store/ska/sk09/segunet/inputs/dataLC_128_train_190922/'
path_pred = '/store/ska/sk09/segunet/inputs/preprocess_dataLC_128_pred_190922/'
#pred_idx = np.arange(8328, 10000)
#pred_idx = np.arange(8328, 9150)
pred_idx = np.array([232])
#pred_idx = np.arange(11)
#path_model = '/scratch/snx3000/mibianco/output_segunet/outputs/dT4pca_12-09T16-07-57_128slice/'
#path_model = '/scratch/snx3000/mibianco/output_segunet/outputs/dT3_12-09T15-23-31_128slice/'
path_model = '/scratch/snx3000/mibianco/output_segunet/outputs/all24-09T23-36-45_128slice/'
#path_model = '/scratch/snx3000/mibianco/output_segunet/outputs/BTz24-09T23-36-45_128slice/'
config_file = path_model+'net_Unet_lc.ini'
#path_out = path_model+'prediction_testEOS/'
#path_out = path_model+'prediction_EOS_nr4/'
#path_out = path_model+'prediction_SERENEt/'
path_out = path_model+'prediction_preprocess/'
#path_out = path_model+'prediction_EOS16_nr7/'
#path_out = '/store/ska/sk09/mibianco/dataLC_128_pred_190922/images/'
try:
os.makedirs(path_out)
except:
pass
# load redshift
#redshift = np.loadtxt('%slc_redshifts.txt' %path_pred)
z, depth_MHz = 8, 20
redshift = np.loadtxt('%sredshifts_z%d_%dMHz.txt' %(path_pred, z, depth_MHz))
# Cosmology and Astrophysical parameters
with open(path_pred+'parameters/user_params.txt', 'r') as file:
params = eval(file.read())
dr_xy = np.linspace(0, params['BOX_LEN'], params['HII_DIM'])
with open(path_pred+'parameters/cosm_params.txt', 'r') as file:
c_params = eval(file.read())
astro_params = np.loadtxt('%sparameters/astro_params.txt' %path_pred)
# Load best model
model = LoadSegUnetModel(config_file)
nr = 4
for fname in ['pca4', 'pcafit', 'gpr', 'poly']:
# Prediction loop
for ii in tqdm(range(pred_idx.size)):
i_pred = pred_idx[ii]
idx, zeta, Rmfp, Tvir, rseed = astro_params[i_pred]
a_params = {'HII_EFF_FACTOR':zeta, 'R_BUBBLE_MAX':Rmfp, 'ION_Tvir_MIN':Tvir}
# Load input and target
fname = 'dT4%s_z%d_%dMHz_i%d.bin' %(fname, z, depth_MHz, i_pred)
x_input = t2c.read_cbin('%sdata/%s' %(path_pred, fname))
y_true = t2c.read_cbin('%sdata/xH_z%d_%dMHz_i%d.bin' %(path_pred, z, depth_MHz, i_pred))
xHI = t2c.read_cbin('%sdata/xHI_z%d_%dMHz_i%d.bin' %(path_pred, z, depth_MHz, i_pred))
mean_xHI = np.mean(xHI, axis=(0,1))
# Prediction on dataset
y_tta = SegUnet2Predict(unet=model, lc=x_input, tta=PLOT_ERROR)
if(PLOT_ERROR):
y_pred = np.round(np.mean(np.clip(y_tta, 0, 1), axis=0))
y_error = np.std(y_tta, axis=0)
t2c.save_cbin('%spredxH_from_%s' %(path_out, fname), y_pred)
t2c.save_cbin('%serrorxH_from_%s' %(path_out, fname), y_error)
y_tta = np.round(np.clip(y_tta, 0, 1))
TP_tta = np.sum(y_tta * y_true[np.newaxis,...], axis=(1,2))
TN_tta = np.sum((1-y_tta) * (1-y_true[np.newaxis,...]), axis=(1,2))
FP_tta = np.sum(y_tta * (1-y_true[np.newaxis,...]), axis=(1,2))
FN_tta = np.sum((1-y_tta) * y_true[np.newaxis,...], axis=(1,2))
TP_err = np.std(TP_tta, axis=0)
TN_err = np.std(TN_tta, axis=0)
FP_err = np.std(FP_tta, axis=0)
FN_err = np.std(FN_tta, axis=0)
mcc_err = np.std((TP_tta*TN_tta - FP_tta*FN_tta) / (np.sqrt((TP_tta+FP_tta)*(TP_tta+FN_tta)*(TN_tta+FP_tta)*(TN_tta+FN_tta)) + tf.keras.backend.epsilon()), axis=0)
mean_error = np.std(np.mean(y_tta, axis=(1,2)), axis=0)
else:
y_pred = np.round(np.clip(y_tta.squeeze(), 0, 1))
t2c.save_cbin('%spred_dT4pca%d_21cm_i%d.bin' %(path_out, nr, i_pred), y_pred)
assert x_input.shape == y_pred.shape
del y_tta, xHI; gc.collect()
# Statistical quantities
TP = np.sum(y_pred * y_true, axis=(0,1))
TN = np.sum((1-y_pred) * (1-y_true), axis=(0,1))
FP = np.sum(y_pred * (1-y_true), axis=(0,1))
FN = np.sum((1-y_pred) * y_true, axis=(0,1))
#TN, FP, FN, TP = confusion_matrix(y_true[..., 0], y_pred[..., 0]).ravel()
FNR = FN/(FN+TP)
FPR = FP/(FP+TN)
TNR = TN/(FP+TN) # a.k.a specificy
TPR = TP/(TP+FP) # a.k.a precision
acc = (TP+TN)/(TP+TN+FP+FN)
#rec = TP/(TP+FN) # very similar to precision
iou = TP/(TP+FP+FN)
mcc = (TP*TN - FP*FN) / (np.sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)) + tf.keras.backend.epsilon())
mean_pred = np.mean(y_pred, axis=(0,1))
mean_true = np.mean(y_true, axis=(0,1))
if(PLOT_ERROR):
np.savetxt('%sstats_i%d_from_%s.txt' %(path_out, i_pred, fname), np.array([redshift, acc, TPR, TNR, iou, mcc, mcc_err, mean_pred, mean_error, mean_true]).T, fmt='%.3f\t'+('%.3e\t'*9)[:-1], header='eff_fact=%.4f\tRmfp=%.4f\tTvir=%.4e\t\nz\tacc\t\tprec\t\tspec\t\tiou\t\tmcc\t\terr_mcc\t\tx_pred\t\terr_x_pred\t\ty_true' %(zeta, Rmfp, Tvir))
else:
np.savetxt('%sstats_i%d_from_%s.txt' %(path_out, i_pred, fname), np.array([redshift, acc, TPR, TNR, iou, mcc, mean_pred, mean_true]).T, fmt='%.3f\t'+('%.3e\t'*7)[:-1], header='eff_fact=%.4f\tRmfp=%.4f\tTvir=%.4e\t\nz\tacc\t\tprec\t\tspec\t\tiou\t\tmcc\t\tx_pred\t\ty_true' %(zeta, Rmfp, Tvir))
xHI_plot = np.arange(0.1, 1., 0.1)
redshift_plot = np.array([redshift[np.argmin(abs(mean_true - meanHI))] for meanHI in xHI_plot])
if(PLOT_STATS):
# PLOT MATTHEWS CORRELATION COEF
fig = plt.figure(figsize=(10, 8))
plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
plt.rcParams['font.size'] = 16
plt.plot(redshift, mcc, '-', label='PhiCoef')
if(PLOT_ERROR):
mcc_error_low = np.clip(mcc-mcc_err, 0, (mcc-mcc_err).max())
mcc_error_up = np.clip(mcc_err+mcc, (mcc_err+mcc).min(), 1)
plt.fill_between(redshift, mcc_error_low, mcc_error_up, color='lightblue', alpha=0.8)
plt.vlines(redshift_plot, ymin=0, ymax=1, color='black', ls='--')
plt.xlabel('z'), plt.ylabel(r'$r_{\phi}$')
plt.ylim(0, 1)
plt.legend()
for iplot in range(redshift_plot.size):
plt.text(redshift_plot[iplot]+0.03, 0.95, round(xHI_plot[iplot],1), rotation=90)
plt.savefig('%smcc_i%d_from_%s.png' %(path_out, i_pred, fname), bbox_inches='tight'), plt.clf()
plt.clf()
# PLOT STATS
fig = plt.figure(figsize=(10, 8))
plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
plt.rcParams['font.size'] = 16
plt.plot(redshift, acc, label='Accuracy', color='tab:blue')
plt.plot(redshift, TPR, label='Precision', color='tab:orange')
plt.plot(redshift, TNR, label='Specificy', color='tab:green')
plt.plot(redshift, iou, label='IoU', color='tab:red')
plt.vlines(redshift_plot, ymin=0, ymax=1, color='black', ls='--')
plt.xlabel('z'), plt.ylabel('%')
plt.ylim(0, 1)
for iplot in range(redshift_plot.size):
plt.text(redshift_plot[iplot]+0.03, 0.95, round(xHI_plot[iplot],1), rotation=90)
plt.legend()
plt.savefig('%sstats_i%d_from_%s.png' %(path_out, i_pred, fname), bbox_inches='tight'), plt.clf()
plt.clf()
# PLOT RATES
fig = plt.figure(figsize=(10, 8))
plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
plt.rcParams['font.size'] = 16
plt.plot(redshift, FNR, label='FNR', color='tab:blue')
plt.plot(redshift, FPR, label='FPR', color='tab:red')
plt.plot(redshift, TPR, label='TPR', color='tab:orange')
plt.plot(redshift, TNR, label='TNR', color='tab:green')
plt.vlines(redshift_plot, ymin=0, ymax=1, color='black', ls='--')
plt.xlabel('z'), plt.ylabel('%')
plt.ylim(0, 1)
for iplot in range(redshift_plot.size):
plt.text(redshift_plot[iplot]+0.03, 0.95, round(xHI_plot[iplot],1), rotation=90)
plt.legend()
plt.savefig('%srates_i%d_from_%s.png' %(path_out, i_pred, fname), bbox_inches='tight'), plt.clf()
plt.clf()
if(PLOT_MEAN):
# PLOTS AVERGE MASK HI
fig = plt.figure(figsize=(10, 8))
gs = gridspec.GridSpec(2, 1, height_ratios=[4, 1.8])
# Main plot
ax0 = plt.subplot(gs[0])
ax0.plot(redshift, mean_pred, ls='-', color='tab:orange', label='Prediction', lw=1.5)
ax0.plot(redshift, mean_true, ls='-', color='tab:blue', label='True', lw=1.5)
if(PLOT_ERROR):
mean_error_low = np.clip(mean_pred-mean_error, 0, (mean_pred-mean_error).max())
mean_error_up = np.clip(mean_error+mean_pred, (mean_error+mean_pred).min(), 1)
ax0.fill_between(redshift, mean_error_low, mean_error_up, color='lightcoral', alpha=0.2)
ax0.set_ylim(-0.01, 1.01)
ax0.legend(loc=4)
ax0.set_ylabel(r'$x_{HI}$')
# plot relative difference
ax1 = plt.subplot(gs[1], sharex = ax0)
perc_diff = 100*(1-(mean_true + 1)/(mean_pred + 1)) # here is basically rescaling from 1 to 2 to avoid explosion of the numertor
ax1.plot(redshift, perc_diff, 'k-', lw=1.5)
ax1.set_ylabel('difference (%)')
ax1.set_xlabel('$z$')
#ax1.fill_between(z_quad, diff_s_avrgR_under, diff_s_avrgR_over, color='lightgreen', alpha=0.1)
ax1.axhline(y=0, color='black', ls='dashed')
plt.setp(ax0.get_xticklabels(), visible=False)
plt.subplots_adjust(hspace=.0)
plt.savefig('%smean_i%d_from_%s.png' %(path_out, i_pred, fname), bbox_inches='tight'), plt.clf()
plt.clf()
if(PLOT_VISUAL):
# Visual Plot
i_slice = np.argmin(abs(mean_true - 0.5))
i_lc = params['HII_DIM']//2
plt.rcParams['font.size'] = 20
plt.rcParams['xtick.direction'] = 'out'
plt.rcParams['ytick.direction'] = 'out'
plt.rcParams['xtick.top'] = True
plt.rcParams['ytick.right'] = True
plt.rcParams['axes.linewidth'] = 1.2
fig = plt.figure(figsize=(35, 15))
gs = gridspec.GridSpec(nrows=2, ncols=2, width_ratios=[3, 1], height_ratios=[1,1])
# FIRST LC PLOT
ax0 = fig.add_subplot(gs[0,0])
#ax0.set_title('$r_{\phi}=%.3f$ $t_{obs}=%d\,h$' %(mcc[i_slice], 1000), fontsize=20)
im = ax0.pcolormesh(redshift, dr_xy, x_input[:,i_lc,:], cmap='jet')
ax0.contour(redshift, dr_xy, y_true[:,i_lc,:])
ax0.set_ylabel('y [Mpc]', size=20)
ax0.set_xlabel('z', size=20)
# FIRST SLICE PLOT
ax01 = fig.add_subplot(gs[0,1])
ax01.set_title(r'$z$ = %.3f $x_{HI}=%.2f$' %(redshift[i_slice], mean_true[i_slice]), fontsize=20)
ax01.pcolormesh(dr_xy, dr_xy, x_input[...,i_slice], cmap='jet')
ax01.contour(dr_xy, dr_xy, y_true[...,i_slice])
#fig.colorbar(im, label=r'$\delta T_b$ [mK]', ax=ax01, pad=0.01, fraction=0.048)
# SECOND LC PLOT
ax1 = fig.add_subplot(gs[1,0])
ax1.pcolormesh(redshift, dr_xy, y_pred[:,i_lc,:] , cmap='jet', vmin=y_pred.min(), vmax=y_pred.max())
ax1.contour(redshift, dr_xy, y_true[:,i_lc,:])
ax1.set_ylabel('y [Mpc]', size=20)
ax1.set_xlabel('z', size=20)
# SECOND SLICE PLOT
ax11 = fig.add_subplot(gs[1,1])
ax11.set_title(r'$r_{\phi}$ = %.3f' %(mcc[i_slice]), fontsize=20)
im = ax11.pcolormesh(dr_xy, dr_xy, y_pred[...,i_slice], cmap='jet', vmin=y_pred.min(), vmax=y_pred.max())
ax11.contour(dr_xy, dr_xy, y_true[...,i_slice])
for ax in [ax01, ax11]:
ax.set_ylabel('y [Mpc]', size=20)
ax.set_xlabel('x [Mpc]', size=20)
plt.subplots_adjust(hspace=0.3, wspace=0.1)
plt.savefig('%svisual_i%d_from_%s.png' %(path_out, i_pred, fname), bbox_inches='tight')
plt.clf()
if(PLOT_ERROR):
# Visual Plot
i_slice = np.argmin(abs(mean_true - 0.5))
i_lc = params['HII_DIM']//2
plt.rcParams['font.size'] = 20
plt.rcParams['xtick.direction'] = 'out'
plt.rcParams['ytick.direction'] = 'out'
plt.rcParams['xtick.top'] = True
plt.rcParams['ytick.right'] = True
plt.rcParams['axes.linewidth'] = 1.2
fig = plt.figure(figsize=(35, 15))
gs = gridspec.GridSpec(nrows=2, ncols=2, width_ratios=[3,1], height_ratios=[1,1])
# FIRST LC PLOT
ax0 = fig.add_subplot(gs[0,0])
#ax0.set_title('$r_{\phi}=%.3f$ $t_{obs}=%d\,h$' %(mcc[i_slice], 1000), fontsize=20)
ax0.pcolormesh(redshift, dr_xy, y_pred[:,i_lc,:], cmap='jet')
ax0.contour(redshift, dr_xy, y_true[:,i_lc,:])
ax0.set_ylabel('y [Mpc]', size=20)
ax0.set_xlabel('z', size=20)
# FIRST SLICE PLOT
ax01 = fig.add_subplot(gs[0,1])
ax01.set_title(r'$z$ = %.3f $x_{HI}=%.2f$' %(redshift[i_slice], mean_true[i_slice]), fontsize=20)
im = ax01.pcolormesh(dr_xy, dr_xy, y_pred[...,i_slice], cmap='jet')
ax01.contour(dr_xy, dr_xy, y_true[...,i_slice])
# SECOND LC PLOT
ax1 = fig.add_subplot(gs[1,0])
im = ax1.pcolormesh(redshift, dr_xy, y_error[:,i_lc,:], cmap='jet', vmin=y_error[:,i_lc,:].min(), vmax=y_error[:,i_lc,:].max())
ax1.contour(redshift, dr_xy, y_true[:,i_lc,:])
fig.colorbar(im, label=r'$\sigma_{std}$', ax=ax1, pad=0.01, fraction=0.048)
ax1.set_ylabel('y [Mpc]', size=20)
ax1.set_xlabel('z', size=20)
# SECOND SLICE PLOT
ax11 = fig.add_subplot(gs[1,1])
ax11.set_title(r'$r_{\phi}$ = %.3f' %(mcc[i_slice]), fontsize=20)
im = ax11.pcolormesh(dr_xy, dr_xy, y_error[...,i_slice], cmap='jet', vmin=y_error[...,i_slice].min(), vmax=y_error[...,i_slice].max())
ax11.contour(dr_xy, dr_xy, y_true[...,i_slice])
fig.colorbar(im, label=r'$\sigma_{std}$', ax=ax11, pad=0.01, fraction=0.048)
for ax in [ax01, ax11]:
ax.set_ylabel('y [Mpc]', size=20)
ax.set_xlabel('x [Mpc]', size=20)
plt.subplots_adjust(hspace=0.3, wspace=0.15)
plt.savefig('%serror_i%d_from_%s.png' %(path_out, i_pred, fname), bbox_inches='tight')
plt.clf()
if(PLOT_SCORE):
if(ii % 100 == 0):
if(ii == 0):
fig1, ax_s = plt.subplots(figsize=(10,8), ncols=1)
# get redshift color
cm = matplotlib.cm.plasma
sc = ax_s.scatter(mean_true, mcc, c=redshift, vmin=redshift.min(), vmax=redshift.max(), s=25, cmap=cm, marker='.')
norm = matplotlib.colors.Normalize(vmin=7, vmax=9, clip=True)
mapper = matplotlib.cm.ScalarMappable(norm=norm, cmap=cm)
redshift_color = np.array([(mapper.to_rgba(v)) for v in redshift])
#if(PLOT_ERROR):
# for x, y, e, clr, red in zip(mean_true, mcc, mcc_err, redshift_color, redshift):
# ax_s.errorbar(x=x, y=y, yerr=e, lw=1, marker='o', capsize=1, color=clr)
ax_s.set_xlim(mean_true.min()-0.02, mean_true.max()+0.02), ax_s.set_xlabel(r'$\rm x^v_{HI}$', size=20)
ax_s.set_ylim(-0.02, 1.02), ax_s.set_ylabel(r'$\rm r_{\phi}$', size=20)
ax_s.set_yticks(np.arange(0, 1.1, 0.1))
ax_s.set_xticks(np.arange(0, 1.1, 0.2))
ax_s.hlines(y=np.mean(mcc), xmin=-0.02, xmax=1.1, ls='--', label=r'$r_{\phi}$ = %.3f' %(np.mean(mcc)), alpha=0.8, color='tab:blue', zorder=3)
plt.legend(loc=1)
if(ii == pred_idx.size-1):
fig1.colorbar(sc, ax=ax_s, pad=0.01, label=r'$\rm z$')
fig1.savefig('%smcc_dataset.png' %path_out, bbox_inches='tight')
plt.clf()
print('... done.')