forked from erlendb/Ascend-Techathon-2019
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rust_score.py
261 lines (178 loc) · 6.18 KB
/
rust_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import cv2 as cv
import numpy as np
#import matplotlib.pyplot as plt
def crop_base(image_array):
"""
Denne trengs IKKE aa brukes fra API
rust_score bruker denne
se nedenfor for aa finne rust_score
"""
#rename input variable
img = image_array
R,G,B = cv.split(img)
#Set hue, value, saturation parameters
low_hue = 10
low_sat = 135
low_val = 0
upp_hue = 36
upp_sat = 255
upp_val = 189
#to hue, value saturation img
hsv_img = cv.cvtColor(img, cv.COLOR_BGR2HSV)
#lower and upper bound for HSV mask
low_bound = np.array([low_hue,low_sat,low_val])
up_bound = np.array([upp_hue, upp_sat, upp_val])
#HSV mask
mask = cv.inRange(hsv_img, low_bound, up_bound)
#get contours
_, contours, _ = cv.findContours(mask, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
#quick fix for aa sette maxCountorData
'''
maxContourData = 0
for contor in contours:
maxContourData = contor
'''
#get max contour
maxContour = 0
flag = False
for contour in contours:
contourSize = cv.contourArea(contour)
if contourSize > maxContour:
maxContour = contourSize
maxContourData = contour
flag = True
if flag:
# Create a mask from the largest contour
mask = np.zeros_like(mask)
cv.fillPoly(mask,[maxContourData],1)
# Use mask to crop data from original image
finalImage = np.zeros_like(img)
finalImage[:,:,0] = np.multiply(R,mask)
finalImage[:,:,1] = np.multiply(G,mask)
finalImage[:,:,2] = np.multiply(B,mask)
else:
finalImage = img
return finalImage
def getCentreLocation(cropped_img):
gray_image = cv.cvtColor(cropped_img, cv.COLOR_BGR2GRAY)
_,finalImage = cv.threshold(gray_image,0,254, cv.THRESH_BINARY)
M = cv.moments(finalImage)
# calculate x,y coordinate of center
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
return (cX, cY)
def getWidthofRow(cropped_img, rowNum):
"""
get width of yellow base
"""
gray_image = cv.cvtColor(cropped_img, cv.COLOR_BGR2GRAY)
_,treshImage = cv.threshold(gray_image,0,255, cv.THRESH_BINARY)
mid_row = treshImage[rowNum]
n_white_pix = np.sum(mid_row == 255)
return n_white_pix
def getHeightOfBase(cropped_img, cX):
gray_image = cv.cvtColor(cropped_img, cv.COLOR_BGR2GRAY)
_,treshImage = cv.threshold(gray_image,0,255, cv.THRESH_BINARY)
transp_treshImage = np.transpose(treshImage)
mid_col = transp_treshImage[cX]
n_white_pix = np.sum(mid_col == 255)
return n_white_pix
def weighing_vertical(y, centreY, height_base, max_weight):
max_weight = float(max_weight)
height_base = float(height_base)
MOVE_CENTRE_Y = 120
centreY = centreY + MOVE_CENTRE_Y
#if y coordinate is below centre, dont weigh
if(y > centreY):
return 1.0
if(height_base < 400):
height_base = 400
#print("unexptected heigh of base, weighing vertical")
relative_y = centreY - y
relative_y = float(relative_y)
rate_of_change = max_weight / (height_base/2)
weighing = 1.0 + relative_y*rate_of_change
if(weighing > max_weight):
weighing = max_weight
return weighing
def weighing_horizontal(x, centreX, width, max_weight):
x = float(x)
centreX = float(centreX)
width = float(width)
x_local = x - centreX
if(abs(x_local) < 0.001):
return 1.0
if(x_local*2 == width):
return 1.0
if(x_local*2 > width):
#print("error in weighing func, x coordinate out of range")
return 1.0
x_local = abs(x_local)
r = width/2
if x_local/r >= 1.0:
return max_weight
theta = np.arccos(x_local/r)
weight = 1/(np.sin(theta))
if(weight > max_weight):
weight = max_weight
return weight
def addWeighing(rust_mask, centre, cropped_img):
cX, cY = centre
TRESHOLD_WIDTH_MAX = 250
TRESHOLD_WIDTH_MIN = 150
MAX_HORIZONTAL_WEIGHT = 6 #4 for 26. 5 for 26
MAX_VERTICAL_WEIGHT = 2.2
num_rows = len(rust_mask)
num_coloumns = len(rust_mask[0])
height_base = getHeightOfBase(cropped_img, cX)
score = 0
for row_index in range(num_rows):
for col_index in range(num_coloumns):
if rust_mask[row_index][col_index] == 255:
width_row = getWidthofRow(cropped_img, row_index)
if(width_row > TRESHOLD_WIDTH_MAX):
width_row = TRESHOLD_WIDTH_MAX
if(width_row < TRESHOLD_WIDTH_MIN):
width_row = TRESHOLD_WIDTH_MIN
weighing_hor = weighing_horizontal(col_index, cX, width_row, MAX_HORIZONTAL_WEIGHT)
weighing_vert = weighing_vertical(row_index, cY, height_base, MAX_VERTICAL_WEIGHT)
total_weight = weighing_vert * weighing_hor
#print("weighing: ", weighing)
score = score + total_weight
return score
def rust_score(image_array, weighing=True):
"""
Function that calculates the rust score for a picture.
input: image_array: pixel array in rgb format. Import cv2 and use cv2.imread("filename") then
pass it into this function
return: rust_score, this returns the total number of white pixels found
"""
#rename input variable
img = image_array
#crop image, get closest windmill base
img = crop_base(img)
#Set hue, value, saturation parameters
low_hue = 4
low_sat = 133
low_val = 10
upp_hue = 18
upp_sat = 255
upp_val = 100
#rgb image to hue, value saturation image
hsv_img = cv.cvtColor(img, cv.COLOR_BGR2HSV)
#set upper and lower bound for HSV values
low_bound = np.array([low_hue,low_sat,low_val])
up_bound = np.array([upp_hue, upp_sat, upp_val])
#mask
mask = cv.inRange(hsv_img, low_bound, up_bound)
#sum white pixels
n_white_pix = np.sum(mask == 255)
#calculate rust score
rust_score = n_white_pix
#testing weighing below this
centre = getCentreLocation(img)
if weighing:
final_score_with_weight = addWeighing(mask, centre, img)
else:
final_score_with_weight = rust_score
return final_score_with_weight