-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathtorsion_basis.c
572 lines (477 loc) · 17.9 KB
/
torsion_basis.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
/********************************************************************************************
* SIDH: an efficient supersingular isogeny cryptography library
* Copyright (c) Microsoft Corporation
*
* Website: https://github.com/microsoft/PQCrypto-SIDH
* Released under MIT license
*
* Abstract: Torsion basis generation for compression
*********************************************************************************************/
#define COMPRESSION 0
#define DECOMPRESSION 1
static void Elligator2(const f2elm_t a24, const unsigned int r, f2elm_t x, unsigned char *bit, const unsigned char COMPorDEC)
{ // Generate an x-coordinate of a point on curve with (affine) coefficient a24
// Use a precomputed Elligator table of size TABLE_V3_LEN and switch to online computations if table runs out of elements.
// Use the counter r
int i;
felm_t one_fp, a2, b2, N, temp0, temp1, rmonty = {0}, *U;
f2elm_t A, y2, *t_ptr, v;
fpcopy((digit_t*)&Montgomery_one, one_fp);
fp2add(a24, a24, A);
fpsub(A[0], one_fp, A[0]);
fp2add(A, A, A); // A = 4*a24-2
// Elligator computation
if (r < TABLE_V3_LEN) {
t_ptr = (f2elm_t *)&v_3_torsion[r];
fp2copy((felm_t*)t_ptr, v);
} else { // Compute v = 1/(1+U*r^2)
U = (felm_t *)U3;
rmonty[0] = r;
to_mont(rmonty, rmonty);
fpsqr_mont(rmonty, rmonty);
fpmul_mont(U[0], rmonty, v[0]);
fpmul_mont(U[1], rmonty, v[1]);
fpadd(v[0], (digit_t*)&Montgomery_one, v[0]);
fp2inv_mont_bingcd(v);
}
fp2mul_mont(A, v, x); // x = A*v; v := 1/(1 + U*r^2) table lookup
fp2neg(x); // x = -A*v;
if (COMPorDEC == COMPRESSION) {
fp2add(A, x, y2); // y2 = x + A
fp2mul_mont(y2, x, y2); // y2 = x*(x + A)
fpadd(y2[0], one_fp, y2[0]); // y2 = x(x + A) + 1
fp2mul_mont(x, y2, y2); // y2 = x*(x^2 + Ax + 1);
fpsqr_mont(y2[0], a2);
fpsqr_mont(y2[1], b2);
fpadd(a2, b2, N); // N := norm(y2);
fpcopy(N, temp0);
for (i = 0; i < OALICE_BITS - 2; i++) {
fpsqr_mont(temp0, temp0);
}
for (i = 0; i < OBOB_EXPON; i++) {
fpsqr_mont(temp0, temp1);
fpmul_mont(temp0, temp1, temp0);
}
fpsqr_mont(temp0, temp1); // z = N^((p + 1) div 4);
fpcorrection(temp1);
fpcorrection(N);
if (memcmp(temp1, N, NBITS_TO_NBYTES(NBITS_FIELD)) != 0) {
fp2neg(x);
fp2sub(x, A, x); // x = -x - A;
if (COMPorDEC == COMPRESSION)
*bit = 1;
}
} else {
if (*bit) {
fp2neg(x);
fp2sub(x,A,x); // x = -x - A;
}
}
}
static void TripleAndParabola_proj(const point_full_proj_t R, f2elm_t l1x, f2elm_t l1z)
{
fp2sqr_mont(R->X, l1z);
fp2add(l1z, l1z, l1x);
fp2add(l1x, l1z, l1x);
fpadd(l1x[0], (digit_t*)&Montgomery_one, l1x[0]);
fp2add(R->Y, R->Y, l1z);
}
static void Tate3_proj(const point_full_proj_t P, const point_full_proj_t Q, f2elm_t gX, f2elm_t gZ)
{
f2elm_t t0, l1x;
TripleAndParabola_proj(P, l1x, gZ);
fp2sub(Q->X, P->X, gX);
fp2mul_mont(l1x, gX, gX);
fp2sub(P->Y, Q->Y, t0);
fp2mul_mont(gZ, t0, t0);
fp2add(gX, t0, gX);
}
static void FinalExpo3_2way(f2elm_t *gX, f2elm_t *gZ)
{
unsigned int i, j;
f2elm_t f_[2], finv[2];
for(i = 0; i < 2; i++) {
fp2copy(gZ[i], f_[i]);
fpneg(f_[i][1]); // Conjugate
fp2mul_mont(gX[i], f_[i], f_[i]);
}
mont_n_way_inv(f_,2,finv);
for(i = 0; i < 2; i++) {
fpneg(gX[i][1]);
fp2mul_mont(gX[i], gZ[i], gX[i]);
fp2mul_mont(gX[i], finv[i], gX[i]);
for(j = 0; j < OALICE_BITS; j++)
fp2sqr_mont(gX[i], gX[i]);
for(j = 0; j < OBOB_EXPON-1; j++)
cube_Fp2_cycl(gX[i], (digit_t*)&Montgomery_one);
}
}
static void FinalExpo3(f2elm_t gX, f2elm_t gZ)
{
unsigned int i;
f2elm_t f_;
fp2copy(gZ, f_);
fpneg(f_[1]);
fp2mul_mont(gX, f_, f_);
fp2inv_mont_bingcd(f_);
fpneg(gX[1]);
fp2mul_mont(gX,gZ, gX);
fp2mul_mont(gX,f_, gX);
for(i = 0; i < OALICE_BITS; i++)
fp2sqr_mont(gX, gX);
for(i = 0; i < OBOB_EXPON-1; i++)
cube_Fp2_cycl(gX, (digit_t*)Montgomery_one);
}
static void make_positive(f2elm_t x)
{
unsigned long long nbytes = NBITS_TO_NBYTES(NBITS_FIELD);
felm_t zero = {0};
from_fp2mont(x, x);
if (memcmp(x[0], zero, (size_t)nbytes) != 0) {
if ((x[0][0] & 1) == 1)
fp2neg(x);
} else {
if ((x[1][0] & 1) == 1)
fp2neg(x);
}
to_fp2mont(x, x);
}
static bool FirstPoint_dual(const point_proj_t P, point_full_proj_t R, unsigned char *ind)
{
point_full_proj_t R3,S3;
f2elm_t gX[2],gZ[2];
felm_t zero = {0};
unsigned long long nbytes = NBITS_TO_NBYTES(NBITS_FIELD);
unsigned char alpha,beta;
fpcopy((digit_t*)B_gen_3_tors + 0*NWORDS_FIELD, (R3->X)[0]);
fpcopy((digit_t*)B_gen_3_tors + 1*NWORDS_FIELD, (R3->X)[1]);
fpcopy((digit_t*)B_gen_3_tors + 2*NWORDS_FIELD, (R3->Y)[0]);
fpcopy((digit_t*)B_gen_3_tors + 3*NWORDS_FIELD, (R3->Y)[1]);
fpcopy((digit_t*)B_gen_3_tors + 4*NWORDS_FIELD, (S3->X)[0]);
fpcopy((digit_t*)B_gen_3_tors + 5*NWORDS_FIELD, (S3->X)[1]);
fpcopy((digit_t*)B_gen_3_tors + 6*NWORDS_FIELD, (S3->Y)[0]);
fpcopy((digit_t*)B_gen_3_tors + 7*NWORDS_FIELD, (S3->Y)[1]);
CompletePoint(P,R);
Tate3_proj(R3,R,gX[0],gZ[0]);
Tate3_proj(S3,R,gX[1],gZ[1]);
FinalExpo3_2way(gX,gZ);
// Do small DLog with respect to g_R3_S3
fp2correction(gX[0]);
fp2correction(gX[1]);
if (memcmp(gX[0][1], zero, (size_t)nbytes) == 0) // = 1
alpha = 0;
else if (memcmp(gX[0][1], g_R_S_im, (size_t)nbytes) == 0) // = g_R3_S3
alpha = 1;
else // = g_R3_S3^2
alpha = 2;
if (memcmp(gX[1][1], zero, (size_t)nbytes) == 0) // = 1
beta = 0;
else if (memcmp(gX[1][1], g_R_S_im, (size_t)nbytes) == 0) // = g_R3_S3
beta = 1;
else // = g_R3_S3^2
beta = 2;
if (alpha == 0 && beta == 0) // Not full order
return false;
// Return the 3-torsion point that R lies above
if (alpha == 0) // Lies above R3
*ind = 0;
else if (beta == 0) // Lies above S3
*ind = 1;
else if (alpha + beta == 3) // Lies above R3+S3
*ind = 3;
else // Lies above R3-S3
*ind = 2;
return true;
}
static bool SecondPoint_dual(const point_proj_t P, point_full_proj_t R, unsigned char ind)
{
point_full_proj_t RS3;
f2elm_t gX, gZ;
felm_t zero = {0};
unsigned long long nbytes = NBITS_TO_NBYTES(NBITS_FIELD);
// Pair with 3-torsion point determined by first point
fpcopy((digit_t*)B_gen_3_tors + (4*ind + 0)*NWORDS_FIELD, (RS3->X)[0]);
fpcopy((digit_t*)B_gen_3_tors + (4*ind + 1)*NWORDS_FIELD, (RS3->X)[1]);
fpcopy((digit_t*)B_gen_3_tors + (4*ind + 2)*NWORDS_FIELD, (RS3->Y)[0]);
fpcopy((digit_t*)B_gen_3_tors + (4*ind + 3)*NWORDS_FIELD, (RS3->Y)[1]);
CompletePoint(P, R);
Tate3_proj(RS3, R, gX, gZ);
FinalExpo3(gX, gZ);
fp2correction(gX);
if (memcmp(gX[1], zero, (size_t)nbytes) != 0) // Not equal to 1
return true;
else
return false;
}
static void FirstPoint3n(const f2elm_t a24, const f2elm_t As[][5], f2elm_t x, point_full_proj_t R, unsigned int *r, unsigned char *ind, unsigned char *bitEll)
{
bool b = false;
point_proj_t P;
felm_t zero = {0};
*r = 0;
while (!b) {
*bitEll = 0;
Elligator2(a24, *r, x, bitEll, COMPRESSION); // Get x-coordinate on curve a24
fp2copy(x, P->X);
fpcopy((digit_t*)&Montgomery_one, (P->Z)[0]);
fpcopy(zero, (P->Z)[1]);
eval_full_dual_4_isog(As, P); // Move x over to A = 0
b = FirstPoint_dual(P, R, ind); // Compute DLog with 3-torsion points
*r = *r + 1;
}
}
static void SecondPoint3n(const f2elm_t a24, const f2elm_t As[][5], f2elm_t x, point_full_proj_t R, unsigned int *r, unsigned char ind, unsigned char *bitEll)
{
bool b = false;
point_proj_t P;
felm_t zero = {0};
while (!b) {
*bitEll = 0;
Elligator2(a24, *r, x, bitEll, COMPRESSION);
fp2copy(x, P->X);
fpcopy((digit_t*)&Montgomery_one, (P->Z)[0]);
fpcopy(zero, (P->Z)[1]);
eval_full_dual_4_isog(As, P); // Move x over to A = 0
b = SecondPoint_dual(P, R, ind);
*r = *r + 1;
}
}
static void makeDiff(const point_full_proj_t R, point_full_proj_t S, const point_proj_t D)
{
f2elm_t t0, t1, t2;
unsigned long long nbytes = NBITS_TO_NBYTES(NBITS_FIELD);
fp2sub(R->X, S->X, t0);
fp2sub(R->Y, S->Y, t1);
fp2sqr_mont(t0, t0);
fp2sqr_mont(t1, t1);
fp2add(R->X, S->X, t2);
fp2mul_mont(t0, t2, t2);
fp2sub(t1, t2, t1);
fp2mul_mont(D->Z, t1, t1);
fp2mul_mont(D->X, t0, t0);
fp2correction(t0);
fp2correction(t1);
if (memcmp(t0[0], t1[0], (size_t)nbytes) == 0 && memcmp(t0[1], t1[1], (size_t)nbytes) == 0)
fp2neg(S->Y);
}
static void BiQuad_affine(const f2elm_t a24, const f2elm_t x0, const f2elm_t x1, point_proj_t R)
{
f2elm_t Ap2, aa, bb, cc, t0, t1;
fp2add(a24, a24, Ap2);
fp2add(Ap2, Ap2, Ap2); // Ap2 = a+2 = 4*a24
fp2sub(x0, x1, aa);
fp2sqr_mont(aa, aa);
fp2mul_mont(x0, x1, cc);
fpsub(cc[0], (digit_t*)Montgomery_one, cc[0]);
fp2sqr_mont(cc, cc);
fpsub(x0[0], (digit_t*)Montgomery_one, bb[0]);
fpcopy(x0[1], bb[1]);
fp2sqr_mont(bb, bb);
fp2mul_mont(Ap2, x0, t0);
fp2add(bb, t0, bb);
fp2mul_mont(x1, bb, bb);
fpsub(x1[0], (digit_t*)Montgomery_one, t0[0]);
fpcopy(x1[1], t0[1]);
fp2sqr_mont(t0, t0);
fp2mul_mont(Ap2, x1, t1);
fp2add(t0, t1, t0);
fp2mul_mont(x0, t0, t0);
fp2add(bb, t0, bb);
fp2add(bb, bb, bb);
fp2sqr_mont(bb, t0);
fp2mul_mont(aa, cc, t1);
fp2add(t1, t1, t1);
fp2add(t1, t1, t1);
fp2sub(t0, t1, t0);
sqrt_Fp2(t0, t0);
make_positive(t0); // Make the sqrt "positive"
fp2add(bb, t0, R->X);
fp2add(aa, aa, R->Z);
}
static void BuildOrdinary3nBasis_dual(const f2elm_t a24, const f2elm_t As[][5], point_full_proj_t *R, unsigned int *r, unsigned int *bitsEll)
{
point_proj_t D;
f2elm_t xs[2];
unsigned char ind, bit;
FirstPoint3n(a24, As, xs[0], R[0], r, &ind, &bit);
*bitsEll = (unsigned int)bit;
*(r+1) = *r;
SecondPoint3n(a24, As, xs[1], R[1], r+1, ind, &bit);
*bitsEll |= ((unsigned int)bit << 1);
// Get x-coordinate of difference
BiQuad_affine(a24, xs[0], xs[1], D);
eval_full_dual_4_isog(As, D); // Move x over to A = 0
makeDiff(R[0], R[1], D);
}
static void BuildOrdinary3nBasis_Decomp_dual(const f2elm_t A24, point_proj_t *Rs, unsigned char *r, const unsigned char bitsEll)
{
unsigned char bitEll[2];
bitEll[0] = bitsEll & 0x1;
bitEll[1] = (bitsEll >> 1) & 0x1;
// Elligator2 both x-coordinates
Elligator2(A24, (unsigned int)r[0]-1, Rs[0]->X, &bitEll[0], DECOMPRESSION);
Elligator2(A24, (unsigned int)r[1]-1, Rs[1]->X, &bitEll[1], DECOMPRESSION);
// Get x-coordinate of difference
BiQuad_affine(A24, Rs[0]->X, Rs[1]->X, Rs[2]);
}
static void get2mPointonEA(const f2elm_t A, f2elm_t x, felm_t r, f2elm_t t, unsigned char *vqnr, unsigned char *ind)
{// Given a Montgomery curve EA, find a point of order 2^m using precomputed tables of size TABLE_R_LEN and switch to online computations if table runs out of elements.
f2elm_t *tv_ptr, v, tmp;
felm_t *tr_ptr, *u;
u = (felm_t *)u_entang;
// Select the correct tables, i.e., if A is a QR then v must be QNR, and vice-versa
if (is_sqr_fp2(A, tmp[0])) {
tv_ptr = (f2elm_t *)table_v_qnr;
tr_ptr = (felm_t *)table_r_qnr;
*vqnr = 1;
} else {
tv_ptr = (f2elm_t *)table_v_qr;
tr_ptr = (felm_t *)table_r_qr;
*vqnr = 0;
}
*ind = 0;
do {
if (*ind <= TABLE_R_LEN-1) {
fp2copy((felm_t *)*tv_ptr++, v);
fpcopy(tr_ptr[*ind], r);
} else {
do {
fpadd(r, (digit_t*)Montgomery_one, r);
fpmul_mont(r, r, tmp[1]);
fpmul_mont(u[0], tmp[1], tmp[0]);
fpmul_mont(u[1], tmp[1], tmp[1]);
fpadd(tmp[0], (digit_t*)Montgomery_one, tmp[0]);
fp2inv_mont_bingcd(tmp);
fp2copy(tmp, v); // v = 1/(1 + u*r^2)
*ind += 1; // store the number of attempts for r so that we skip them during decompression
} while (is_sqr_fp2(v, tmp[0]) == *vqnr);
}
fp2mul_mont(A, v, x);
fp2neg(x); // x = -A*v
fp2add(x, A, tmp);
fp2mul_mont(x, tmp, tmp);
fpadd(tmp[0], (digit_t*)Montgomery_one, tmp[0]);
fp2mul_mont(x, tmp, t); // t = x^3 + A*x^2 + x
if (*ind < TABLE_R_LEN)
*ind += 1;
} while (!is_sqr_fp2(t, tmp[0]));
*ind -= 1;
}
static void BuildEntangledXonly(const f2elm_t A, point_proj_t *R, unsigned char *qnr, unsigned char *ind)
{
f2elm_t r, t;
get2mPointonEA(A, R[0]->X, r[0], t, qnr, ind);
// Get x1 = -x-A
fp2add(R[0]->X, A, R[1]->X);
fp2neg(R[1]->X);
// Get difference x2, z2
fp2sub(R[0]->X, R[1]->X, R[2]->Z);
fp2sqr_mont(R[2]->Z, R[2]->Z);
fpcopy(r[0], r[1]); // (1+i)*r
fpadd((digit_t*)Montgomery_one, r[0], r[0]);
fp2sqr_mont(r, r);
fp2mul_mont(t, r, R[2]->X);
}
static void BuildOrdinary2nBasis_dual(const f2elm_t A, const f2elm_t Ds[][2], point_full_proj_t *Rs, unsigned char *qnr, unsigned char *ind)
{
unsigned int i;
felm_t t0;
f2elm_t A6 = {0};
point_proj_t xs[3] = {0};
// Generate x-only entangled basis
BuildEntangledXonly(A, xs, qnr, ind);
fpcopy((digit_t*)Montgomery_one, (xs[0]->Z)[0]);
fpcopy((digit_t*)Montgomery_one, (xs[1]->Z)[0]);
// Move them back to A = 6
for(i = 0; i < MAX_Bob; i++) {
eval_3_isog(xs[0], Ds[MAX_Bob-1-i]);
eval_3_isog(xs[1], Ds[MAX_Bob-1-i]);
eval_3_isog(xs[2], Ds[MAX_Bob-1-i]);
}
// Recover y-coordinates with a single sqrt on A = 6
fpcopy((digit_t*)Montgomery_one, A6[0]);
fpadd(A6[0], A6[0], t0);
fpadd(t0, t0, A6[0]);
fpadd(A6[0], t0, A6[0]);
CompleteMPoint(A6, xs[0]->X, xs[0]->Z, Rs[0]);
RecoverY(A6, xs, Rs);
}
static void getrvOf2mPoint_Decomp(const unsigned char vqnr, const unsigned char ind, felm_t r, f2elm_t v)
{// Given a Montgomery curve EA, find Elligator values r, v leading to a point of order 2^m.
// Use precomputed tables of size TABLE_R_LEN and switch to online computations if table runs out of elements.
f2elm_t *tv_ptr, tmp;
felm_t *tr_ptr, *u;
u = (felm_t *)u_entang;
// Select the correct tables
if (vqnr == 1) {
tv_ptr = (f2elm_t *)table_v_qnr;
tr_ptr = (felm_t *)table_r_qnr;
} else {
tv_ptr = (f2elm_t *)table_v_qr;
tr_ptr = (felm_t *)table_r_qr;
}
if (ind < TABLE_R_LEN) {
fp2copy(tv_ptr[ind], v);
fpcopy(tr_ptr[ind], r);
} else {
fpcopy(tr_ptr[TABLE_R_LEN-1], r);
for (int k = 0; k < ind - TABLE_R_LEN + 1; k++)
fpadd(r, (digit_t*)Montgomery_one, r);
fpmul_mont(r, r, tmp[1]);
fpmul_mont(u[0], tmp[1], tmp[0]);
fpmul_mont(u[1], tmp[1], v[1]);
fpadd(tmp[0], (digit_t*)Montgomery_one, v[0]); // v^-1 = (1 + u*r^2)
}
}
static void BuildEntangledXonly_Decomp(const f2elm_t A, point_proj_t *R, unsigned char qnr, unsigned char ind)
{
f2elm_t r, t, v;
getrvOf2mPoint_Decomp(qnr, ind, r[0], v);
if (ind < TABLE_R_LEN) {
// Get x0 = -A*v
fp2mul_mont(A, v, R[0]->X);
fp2neg(R[0]->X);
fp2add(R[0]->X, A, t);
fp2mul_mont(R[0]->X, t, t);
fpadd(t[0], (digit_t*)Montgomery_one, t[0]);
fp2mul_mont(R[0]->X, t, t); // t = x0^3 + A*x0^2 + x0
// Get x1 = -x0-A
fp2add(R[0]->X, A, R[1]->X);
fp2neg(R[1]->X);
// Get difference x2,z2
fp2sub(R[0]->X, R[1]->X, R[2]->Z);
fp2sqr_mont(R[2]->Z, R[2]->Z);
fpcopy(r[0],r[1]); // (1+i)*r
fpadd((digit_t*)Montgomery_one, r[0], r[0]);
fp2sqr_mont(r, r);
fp2mul_mont(t, r, R[2]->X);
} else {
// Get X0, Z0
fp2copy(A, R[0]->X);
fp2neg(R[0]->X);
fp2copy(v, R[0]->Z);
// Get X1, Z1
fp2copy(v, R[1]->X);
fp2neg(R[1]->X);
fpadd((digit_t*)Montgomery_one, R[1]->X[0], R[1]->X[0]);
fp2mul_mont(R[1]->X, A, R[1]->X);
fp2copy(v, R[1]->Z);
// Get difference X2,Z2
fpcopy(r[0],r[1]); // (1+i)*r
fpadd((digit_t*)Montgomery_one, r[0], r[0]);
fp2sqr_mont(r, R[2]->X);
fp2copy(v, r);
fpsub(r[0], (digit_t*)Montgomery_one, r[0]);
fp2sqr_mont(A, t);
fp2mul_mont(t, r, r);
fp2sqr_mont(v, t);
fp2sub(r, t, r);
fp2mul_mont(R[2]->X, r, R[2]->X);
fp2mul_mont(A, v, R[2]->Z);
fp2copy(v, r);
fpsub(r[0], (digit_t*)Montgomery_one, r[0]);
fpsub(r[0], (digit_t*)Montgomery_one, r[0]);
fp2sqr_mont(r, r);
fp2mul_mont(R[2]->Z, r, R[2]->Z);
}
}