Skip to content

Latest commit

 

History

History
628 lines (569 loc) · 19.9 KB

builtin_models.md

File metadata and controls

628 lines (569 loc) · 19.9 KB

Configure the built-in models

NOTE: The built-in models described below are deprecated as of AIDE version 2.0 and above and will be removed in a future release. Please use official replacements accordingly.

AIDE comes with a number of built-in models for both the AI model and the ranker. These are, to a certain extent, customizable, which we will discuss below. If you instead wish to completely write your own module(s) for modeling and/or ranking, you can do so by referring to the instructions here.

AI models

AIDE ships with the following AI models built in:

  • Classification:
  • Object detection:
    • Points:
      • ai.models.pytorch.points.WSODPointModel (Kellenberger et al., 2019). Note that this model is special insofar as it accepts both spatially explicit point annotations as well as image-wide classification labels for training. In the second case, the model requires images where the label class is both present and completely absent in order to be able to localize the class objects. Also, the objects should be of similar size throughout the images. See the paper for details.
    • Bounding boxes:
  • Semantic segmentation:

All models are implemented using PyTorch and support a number of configuration parameters.

Options to configure the default model parameters through the GUI are currently being implemented. Please stay tuned.

Default model settings

This section presents the default parameters for each of the built-in models. You may use these as a template for your JSON file to override parameters.

Notes:

  • Not all of the arguments specified in the defaults are required. If an argument (or argument block) is missing in your custom JSON file, it will be replaced with the defaults listed below.
  • Any entry named kwargs accepts all arguments of the respective Python class (given by the class specifier in the same JSON block). For example, you could add the keyword eps to the kwargs entry of the optim section, since this is a valid parameter for e.g. the Adam optimizer.
  • You can further provide custom class executable paths. For example, to add a custom transform function:
    1. Create a new package on the Python path, such as custom.transforms.
    2. In your package, add a file with a certain name (e.g. classificationTransforms.py). In there, write down your custom class definition (e.g. MyCustomTransform).
    3. Link to your custom class by adding the following block to the JSON entry at the right position:
    {
        "class": "custom.transforms.classificationTransforms.MyCustomTransform",
        "kwargs": {}
    }
    Again, kwargs is optional, but may contain key-value pairs of class constructor arguments for your custom class.

Classification (labels)

ResNet
{
	"general": {
		"image_size": [224, 224],
		"device": "cuda",
        "seed": 0
	},
	"model": {
        "kwargs": {
			"featureExtractor": "resnet50",
			"pretrained": true
		}
	},
    "dataset": {
		"class": "ai.models.pytorch.LabelsDataset"
	},
	"train": {
        "dataLoader": {
            "kwargs": {
                "shuffle": true,
                "batch_size": 32
            }
        },
		"optim": {
			"class": "torch.optim.Adam",
			"kwargs": {
				"lr": 1e-7,
				"weight_decay": 0.0
			}
		},
        "transform": {
			"class": "torchvision.transforms.Compose",
			"kwargs": {
				"transforms": [{
						"class": "torchvision.transforms.Resize",
						"kwargs": {
							"size": [224, 224]
						}
					},
					{
						"class": "torchvision.transforms.RandomHorizontalFlip",
						"kwargs": {
							"p": 0.5
						}
					},
					{
                        "class": "torchvision.transforms.ToTensor"
                    },
                    {
                        "class": "torchvision.transforms.Normalize",
                        "kwargs": {
                            "mean": [0.485, 0.456, 0.406],
                            "std": [0.229, 0.224, 0.225]
                        }
                    }
				]
			}
		},
        "criterion": {
			"class": "torch.nn.CrossEntropyLoss"
		},
        "ignore_unsure": true
	},
	"inference": {
		"transform": {
			"class": "torchvision.transforms.Compose",
			"kwargs": {
				"transforms": [{
                        "class": "torchvision.transforms.Resize",
                        "kwargs": {
                            "size": [224, 224]
                        }
                    },
                    {
                        "class": "torchvision.transforms.ToTensor"
                    },
                    {
                        "class": "torchvision.transforms.Normalize",
                        "kwargs": {
                            "mean": [0.485, 0.456, 0.406],
                            "std": [0.229, 0.224, 0.225]
                        }
                    }
				]
			}
		},
		"dataLoader": {
            "kwargs": {
                "shuffle": false,
                "batch_size": 32
            }
        }
	}
}

Detection (points)

Heatmap model (Kellenberger et al., 2019)
{
	"general": {
		"image_size": [800, 600],
		"device": "cuda",
        "seed": 0
	},
	"model": {
        "kwargs": {
			"featureExtractor": "resnet50",
			"pretrained": true
		}
	},
    "dataset": {
		"class": "ai.models.pytorch.PointsDataset"
	},
	"train": {
        "dataLoader": {
            "kwargs": {
                "shuffle": true,
                "batch_size": 1
            }
        },
		"optim": {
			"class": "torch.optim.Adam",
			"kwargs": {
				"lr": 1e-7,
				"weight_decay": 0.0
			}
		},
        "transform": {
			"class": "ai.models.pytorch.points.Compose",
			"kwargs": {
				"transforms": [{
						"class": "ai.models.pytorch.points.Resize",
						"kwargs": {
							"size": [800, 600]
						}
					},
					{
						"class": "ai.models.pytorch.points.RandomHorizontalFlip",
						"kwargs": {
							"p": 0.5
						}
					},
					{
						"class": "ai.models.pytorch.points.DefaultTransform",
						"kwargs": {
							"transform": {
								"class": "torchvision.transforms.ColorJitter",
								"kwargs": {
									"brightness": 0.25,
									"contrast": 0.25,
									"saturation": 0.25,
									"hue": 0.01
								}
							}
						}
					},
					{
						"class": "ai.models.pytorch.points.DefaultTransform",
						"kwargs": {
							"transform": {
								"class": "torchvision.transforms.ToTensor"
							}
						}
					},
					{
						"class": "ai.models.pytorch.points.DefaultTransform",
						"kwargs": {
							"transform": {
								"class": "torchvision.transforms.Normalize",
								"kwargs": {
									"mean": [0.485, 0.456, 0.406],
									"std": [0.229, 0.224, 0.225]
								}
							}
						}
					}
				]
			}
		},
        "criterion": {
			"class": "ai.models.pytorch.functional._wsodPoints.loss.PointsLoss",
			"kwargs": {
				"background_weight": 1.0
			}
		},
        "ignore_unsure": true
	},
	"inference": {
		"transform": {
			"class": "ai.models.pytorch.points.Compose",
			"kwargs": {
				"transforms": [{
						"class": "ai.models.pytorch.points.Resize",
						"kwargs": {
							"size": [800, 600]
						}
					},
					{
						"class": "ai.models.pytorch.points.DefaultTransform",
						"kwargs": {
							"transform": {
								"class": "torchvision.transforms.ToTensor"
							}
						}
					},
					{
						"class": "ai.models.pytorch.points.DefaultTransform",
						"kwargs": {
							"transform": {
								"class": "torchvision.transforms.Normalize",
								"kwargs": {
									"mean": [0.485, 0.456, 0.406],
									"std": [0.229, 0.224, 0.225]
								}
							}
						}
					}
				]
			}
		},
		"dataLoader": {
            "kwargs": {
                "shuffle": false,
                "batch_size": 1
            }
        }
	}
}

Detection (boundingBoxes)

RetinaNet
{
	"general": {
		"image_size": [800, 600],
		"device": "cuda",
		"seed": 1234
	},
	"model": {
		"kwargs": {
			"backbone": "resnet50",
			"pretrained": false,
			"out_planes": 256,
			"convertToInstanceNorm": false
		}
	},
	"train": {
		"dataLoader": {
			"kwargs": {
				"shuffle": true,
				"batch_size": 32
			}
		},
		"optim": {
			"class": "torch.optim.Adam",
			"kwargs": {
				"lr": 1e-7,
				"weight_decay": 0.0
			}
		},
		"transform": {
			"class": "ai.models.pytorch.boundingBoxes.Compose",
			"kwargs": {
				"transforms": [{
						"class": "ai.models.pytorch.boundingBoxes.Resize",
						"kwargs": {
							"size": [800, 600]
						}
					},
					{
						"class": "ai.models.pytorch.boundingBoxes.RandomHorizontalFlip",
						"kwargs": {
							"p": 0.5
						}
					},
					{
						"class": "ai.models.pytorch.boundingBoxes.DefaultTransform",
						"kwargs": {
							"transform": {
								"class": "torchvision.transforms.ColorJitter",
								"kwargs": {
									"brightness": 0.25,
									"contrast": 0.25,
									"saturation": 0.25,
									"hue": 0.01
								}
							}
						}
					},
					{
						"class": "ai.models.pytorch.boundingBoxes.DefaultTransform",
						"kwargs": {
							"transform": {
								"class": "torchvision.transforms.ToTensor"
							}
						}
					},
					{
						"class": "ai.models.pytorch.boundingBoxes.DefaultTransform",
						"kwargs": {
							"transform": {
								"class": "torchvision.transforms.Normalize",
								"kwargs": {
									"mean": [0.485, 0.456, 0.406],
									"std": [0.229, 0.224, 0.225]
								}
							}
						}
					}
				]
			}
		},
		"criterion": {
			"class": "ai.models.pytorch.functional._retinanet.loss.FocalLoss",
			"kwargs": {
				"gamma": 2.0,
				"alpha": 0.25,
				"background_weight": 1.0
			}
		},
		"ignore_unsure": true
	},
	"inference": {
		"transform": {
			"class": "ai.models.pytorch.boundingBoxes.Compose",
			"kwargs": {
				"transforms": [{
						"class": "ai.models.pytorch.boundingBoxes.Resize",
						"kwargs": {
							"size": [800, 600]
						}
					},
					{
						"class": "ai.models.pytorch.boundingBoxes.DefaultTransform",
						"kwargs": {
							"transform": {
								"class": "torchvision.transforms.ToTensor"
							}
						}
					},
					{
						"class": "ai.models.pytorch.boundingBoxes.DefaultTransform",
						"kwargs": {
							"transform": {
								"class": "torchvision.transforms.Normalize",
								"kwargs": {
									"mean": [0.485, 0.456, 0.406],
									"std": [0.229, 0.224, 0.225]
								}
							}
						}
					}
				]
			}
		},
		"dataLoader": {
			"kwargs": {
				"shuffle": false,
				"batch_size": 32
			}
		}
	}
}

Semantic Segmentation

U-Net
{
    "general": {
        "image_size": [224, 224],
        "device": "cuda",
        "seed": 0
    },
    "model": {
        "kwargs": {
            "in_channels": 3,
            "depth": 5,
            "numFeaturesExponent": 6,
            "batch_norm": false,
            "upsamplingMode": "upconv"
        }
    },
    "dataset": {
        "class": "ai.models.pytorch.SegmentationDataset",
        "kwargs": {}
    },
    "train": {
        "dataLoader": {
            "kwargs": {
                "shuffle": true,
                "batch_size": 1
            }
        },
        "optim": {
            "class": "torch.optim.SGD",
            "kwargs": {
                "lr": 1e-3,
                "weight_decay": 0.0
            }
        },
        "transform": {
            "class": "ai.models.pytorch.segmentationMasks.Compose",
            "kwargs": {
                "transforms": [{
                        "class": "ai.models.pytorch.segmentationMasks.Resize",
                        "kwargs": {
                            "size": [224, 224]
                        }
                    },
                    {
                        "class": "ai.models.pytorch.segmentationMasks.RandomHorizontalFlip",
                        "kwargs": {
                            "p": 0.5
                        }
                    },
                    {
                        "class": "ai.models.pytorch.segmentationMasks.JointTransform",
                        "kwargs": {
                            "transform": {
                                "class": "torchvision.transforms.ToTensor"
                            }
                        }
                    },
                    {
                        "class": "ai.models.pytorch.segmentationMasks.DefaultTransform",
                        "kwargs": {
                            "transform": {
                                "class": "torchvision.transforms.Normalize",
                                "kwargs": {
                                    "mean": [0.485, 0.456, 0.406],
                                    "std": [0.229, 0.224, 0.225]
                                }
                            }
                        }
                    }
                ]
            }
        },
        "criterion": {
            "class": "torch.nn.CrossEntropyLoss",
            "kwargs": {}
        }
    },
    "inference": {
        "transform": {
            "class": "ai.models.pytorch.segmentationMasks.Compose",
            "kwargs": {
                "transforms": [{
                        "class": "ai.models.pytorch.segmentationMasks.Resize",
                        "kwargs": {
                            "size": [224, 224]
                        }
                    },
                    {
                        "class": "ai.models.pytorch.segmentationMasks.JointTransform",
                        "kwargs": {
                            "transform": {
                                "class": "torchvision.transforms.ToTensor"
                            }
                        }
                    },
                    {
                        "class": "ai.models.pytorch.segmentationMasks.DefaultTransform",
                        "kwargs": {
                            "transform": {
                                "class": "torchvision.transforms.Normalize",
                                "kwargs": {
                                    "mean": [0.485, 0.456, 0.406],
                                    "std": [0.229, 0.224, 0.225]
                                }
                            }
                        }
                    }
                ]
            }
        },
        "dataLoader": {
            "kwargs": {
                "shuffle": false,
                "batch_size": 1
            }
        }
    }
}

About object detection and semantic segmentation transforms

For object detection (i.e., points and bounding boxes), as well as semantic image segmentation, certain transforms naturally should not be carried out on the image alone. For example, random horizontal flips affect both the image and the labeled points, bounding boxes, or segmentation masks.

AIDE therefore applies transforms to the image, points/bounding boxes, and class labels or segmentation masks. This means that object detection and segmentation models, such as RetinaNet and U-Net, only accept specific transforms as top-level objects. These are very similar between bounding boxes and segmentation masks, but the appropriate variant needs to be called with respect to the annotation type. In the list below, <annotationType> needs to be replaced with either boundingBoxes, points, or segmentationMasks, where applicable.

The following transforms that work on both images and annotations (bounding boxes, points, or segmentation masks) are supported for the built-in models:

  • ai.models.pytorch.<annotationType>.Compose Accepts an iterable of custom, detection-ready transforms and applies them in order.

    Args:

    • transforms (iterable): Iterable (list, tuple, etc.) of transforms from this list here.
  • ai.models.pytorch.<annotationType>.DefaultTransform Receives one of the standard PyTorch transforms (e.g. from torchvision.transforms) and, at runtime, applies it to the image or tensor only (not to bounding boxes or labels, resp. segmentation masks). This is useful for image manipulations that do not result in a geometric change, such as color distortions.

    Args:

    • transform: a callable object that works on either PIL images or torch tensors, depending on where in the transform stack the 'DefaultTransform' is inserted.
  • ai.models.pytorch.segmentationMasks.JointTransform Only applicable for semantic image segmentation. Applies the same transformation to both the image and associated segmentation mask.

    Args:

    • transform: a callable object that works on either PIL images or torch tensors, depending on where in the transform stack the 'JointTransform' is inserted.
  • ai.models.pytorch.<annotationType>.Resize Resize an image and associated bounding boxes or segmentation mask to a given size.

    Args:

    • size (sequence or int): int (square side) or iterable of size 2 (width, height) denoting the image's absolute target size.
    • interpolation (int, optional): Desired interpolation. Default is PIL.Image.BILINEAR. Note that segmentation masks are always interpolated with the nearest neighbor procedure (i.e., PIL.Image.NEAREST).
  • ai.models.pytorch.<annotationType>.RandomHorizontalFlip Horizontally flip the given PIL Image and bounding boxes or segmentation mask randomly with a given probability.

    Args:

    • p (float): probability of the image and annotations being flipped. Default value is 0.5
  • ai.models.pytorch.<annotationType>.RandomFlip Horizontally and/or vertically flip the given PIL Image and annotations randomly with a given probability.

    Args:

    • p_h (float): probability of the image and annotations being flipped horizontally. Default value is 0.5
    • p_v (float): probability of the image and annotations being flipped vertically. Default value is 0.5
  • ai.models.pytorch.<annotationType>.RandomClip Random image clip of fixed size with custom properties.

    Args:

    • patchSize (sequence or int): int (square side) or iterable of size 2 (width, height) denoting the size of the patch to be clipped from the full image
    • jitter (sequence, int or float): int, float (both directions) or iterable (x, y) denoting the maximum pixel values that are randomly added or subtracted to the X and Y coordinates of the patch center. Useful to maximize variability.
    • limitBorders (boolean): boolean. If True, patches are always fully inside the parent image and never exceed its boundaries.
    • objectProbability (float, for points and bounding boxes only): either a scalar in [0, 1], or None. If a scalar value is chosen, the patch will be clipped with position from one of the label bounding boxes (if available) at random, under the condition that a uniform, random value is <= this scalar. If set to None, the patch will be clipped completely at random. Not specified for segmentation masks.
  • ai.models.pytorch.<annotationType>.RandomSizedClip Random image clip with custom size and custom properties. Similar to ai.models.pytorch.<annotationType>.RandomClip, but with two additional parameters.

    Args:

    • patchSizeMin (sequence or int): int (square side) or iterable of size 2 (width, height) denoting the minimum patch size to be clipped
    • patchSizeMax (sequence or int): int (square side) or iterable of size 2 (width, height) denoting the maximum patch size to be clipped
    • jitter (sequence, int or float)
    • limitBorders (boolean)
    • objectProbability (float, for points and bounding boxes only)