diff --git a/models/tensorflow/nnf_tf_freezer/convert_graph_fp16.py b/models/tensorflow/nnf_tf_freezer/convert_graph_fp16.py new file mode 100644 index 000000000..893de3f9e --- /dev/null +++ b/models/tensorflow/nnf_tf_freezer/convert_graph_fp16.py @@ -0,0 +1,58 @@ +import tensorflow as tf +from tensorflow.core.framework import types_pb2, graph_pb2, attr_value_pb2 +from tensorflow.tools.graph_transforms import TransformGraph +from google.protobuf import text_format +import numpy as np + + +def convert_graph_to_fp16(source_graph_def, target_type='fp16', input_name=None, output_names=None, keep_fp32_node_name=[]): + if target_type == 'fp16': + dtype = types_pb2.DT_HALF + elif target_type == 'fp64': + dtype = types_pb2.DT_DOUBLE + else: + dtype = types_pb2.DT_FLOAT + + target_graph_def = graph_pb2.GraphDef() + target_graph_def.versions.CopyFrom(source_graph_def.versions) + for node in source_graph_def.node: + # replicate node + new_node = target_graph_def.node.add() + new_node.op = node.op + new_node.name = node.name + new_node.input.extend(node.input) + attrs = list(node.attr.keys()) + # replace dtype in node attr with target dtype + for attr in attrs: + # keep special node in fp32 + new_node.attr[attr].CopyFrom(node.attr[attr]) + if node.name in keep_fp32_node_name: + continue + if node.attr[attr].type == types_pb2.DT_FLOAT: + # modify node dtype + new_node.attr[attr].type = dtype + if attr == "value": + tensor = node.attr[attr].tensor + if tensor.dtype == types_pb2.DT_FLOAT: + # if float_val exists + if tensor.float_val: + float_val = tf.make_ndarray(node.attr[attr].tensor) + new_node.attr[attr].tensor.CopyFrom(tf.make_tensor_proto(float_val, dtype=dtype)) + continue + # if tensor content exists + if tensor.tensor_content: + tensor_shape = [x.size for x in tensor.tensor_shape.dim] + tensor_weights = tf.make_ndarray(tensor) + # reshape tensor + tensor_weights = np.reshape(tensor_weights, tensor_shape) + new_node.attr[attr].tensor.CopyFrom(tf.make_tensor_proto(tensor_weights, dtype=dtype)) + continue + # transform graph + if output_names: + if not input_name: + input_name = [] + transforms = ["strip_unused_nodes"] + target_graph_def = TransformGraph(target_graph_def, input_name, output_names, transforms) + # write graph_def to model + print("Converting done ...") + return target_graph_def \ No newline at end of file diff --git a/models/tensorflow/nnf_tf_freezer/nnf_tf_freezer.py b/models/tensorflow/nnf_tf_freezer/nnf_tf_freezer.py index 836e7d019..45cdc9a1a 100644 --- a/models/tensorflow/nnf_tf_freezer/nnf_tf_freezer.py +++ b/models/tensorflow/nnf_tf_freezer/nnf_tf_freezer.py @@ -15,10 +15,11 @@ from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto from tensorflow.tools import graph_transforms from typing import List +from convert_graph_fp16 import* class nnf_tf_freezer(object): def __init__(self, frozen_graph= "frozen_graph.pb", const_folding=True, run_graph=True, xla=False, parallel=0, - warmup=5, num_iter=10, run_const_folded_graph=False, debug=False, is_training=False): + warmup=5, num_iter=10, run_const_folded_graph=False, debug=False, is_training=False, to_fp16=False): self.frozen_graph = frozen_graph self.const_folding = const_folding self.run_graph = run_graph @@ -30,7 +31,8 @@ def __init__(self, frozen_graph= "frozen_graph.pb", const_folding=True, run_grap self.run_const_folded_graph = run_const_folded_graph self.debug = debug self.is_training = is_training - + self.to_fp16 = to_fp16 + def execute(self, inputs : List[tf.placeholder], outputs : List[tf.identity], optimizer : tf.train.Optimizer=None): self.freeze(inputs, outputs, optimizer) if self.const_folding: @@ -83,7 +85,18 @@ def freeze(self, inputs : List[tf.placeholder], outputs : List[tf.identity], opt except: print('Not using existing checkpoint.') pass + saver_path = saver.save(sess, "/tmp/save/model.ckpt") + + if self.to_fp16: + # convert graph to fp16 model + print('convert to fp16 model') + input_name = [input.name for input in inputs] + output_names = [output.name for output in outputs] + + new_graph = convert_graph_to_fp16(sess.graph_def, target_type='fp16', input_name=input_name, output_names=output_names) + tf.train.write_graph(new_graph, '/tmp/save', 'model.pbtxt') + freeze_graph.freeze_graph( input_graph="/tmp/save/model.pbtxt", input_checkpoint="/tmp/save/model.ckpt", @@ -98,7 +111,6 @@ def freeze(self, inputs : List[tf.placeholder], outputs : List[tf.identity], opt variable_names_blacklist = varlist) ''' self.graphdef_to_json(self.frozen_graph, self.frozen_graph + ".json.gz") - ops_used = subprocess.getoutput("zgrep -v tensorContent " + self.frozen_graph + ".json.gz | grep '\"op\":' | sort | uniq | awk -F'\"' '{print $4}' | xargs echo").split() os.system('zgrep -v tensorContent ' + self.frozen_graph + '.json.gz > ' + self.frozen_graph + '.json.thin') print('>> Ops used by Graph `%s`:' % self.frozen_graph) @@ -107,7 +119,7 @@ def freeze(self, inputs : List[tf.placeholder], outputs : List[tf.identity], opt for op in ops_used: fp.write(op + '\n') ''' - + def tf_run_const_folding(self, file): print("run const folding----------------------------") tf.reset_default_graph() diff --git a/models/tensorflow/nnf_tf_freezer/tf_freeze_graph_example.py b/models/tensorflow/nnf_tf_freezer/tf_freeze_graph_example.py index 0d921c1b5..5febd54c4 100644 --- a/models/tensorflow/nnf_tf_freezer/tf_freeze_graph_example.py +++ b/models/tensorflow/nnf_tf_freezer/tf_freeze_graph_example.py @@ -42,7 +42,8 @@ help='Print log.') parser.add_argument('--is_training', action='store_true', help='Is training graph.') - +parser.add_argument('--to_fp16', action='store_true', + help='whether save frozen_graph in fp16 format') args = parser.parse_args() @@ -225,8 +226,6 @@ if __name__ == "__main__": freezer = nnf_tf_freezer(args.frozen_graph, args.const_folding, args.run_graph, args.xla, args.parallel, - args.warmup, args.num_iter, args.run_const_folded_graph, args.debug, args.is_training) + args.warmup, args.num_iter, args.run_const_folded_graph, args.debug, args.is_training, args.to_fp16) freezer.execute(inputs, outputs, optimizer) - -