Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Very close on this. I believe the majority of this code is setup correctly. cudaErrorInvalidValue:invalid argument #23149

Open
rlewkowicz opened this issue Dec 19, 2024 · 0 comments

Comments

@rlewkowicz
Copy link

Describe the issue

This is the last few steps in a journey to release something I think is going to be pretty amazing. Code is wip dont judge. Goal is global and NOT dry though. This is going to be a learning example too. I get frustrated trying to pull apart hyper OO code while trying to grasp the basic concepts. In case "write better code" is a comment :P.

TLDR: We have a 2dtexture which is converted to a RGB float* cuda array. I can provide that too, but I use similar code in pure tensorrt implementations, and I know it to work. I believe my cuda array and sizing is correct. But if at a glance my init and detect look good I can try to trim stuff up and provide more info.

Run failed: Non-zero status code returned while running Conv node. Name:'p2o.Conv.0' Status Message: CUDA error cudaErrorInvalidValue:invalid argument

#pragma once
#include "globals.h"
#include "cudaFunctions.cuh"

bool bound = false;
const OrtApi* api;
OrtSession* session = nullptr;
OrtEnv* env = nullptr;
OrtMemoryInfo* info_cuda = nullptr;
OrtStatus* status;
OrtValue* scoresValue = nullptr;
OrtValue* boxesValue = nullptr;
OrtValue* cudaTextureOrt = nullptr;
OrtAllocator* allocator;
OrtIoBinding* io_binding;
float* d_output0 = nullptr;
float* d_output1 = nullptr;

std::vector<std::string> readLabels(const std::string& labelPath) {
    std::vector<std::string> labels;
    std::ifstream infile(labelPath);
    std::string line;
    while (std::getline(infile, line)) {
        labels.push_back(line);
    }
    infile.close();
    return labels;
}

wchar_t* stringToWcharT(const std::string& str) {
    std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
    std::wstring wideStr = converter.from_bytes(str);
    wchar_t* wideCStr = new wchar_t[wideStr.size() + 1];
    std::copy(wideStr.begin(), wideStr.end(), wideCStr);
    wideCStr[wideStr.size()] = L'\0';
    return wideCStr;
}

float* TextureToCuda(ID3D11Texture2D* texture, unsigned int width, unsigned int height) {
    cudaArray* mappedArray;
    cudaGraphicsMapResources(1, &cudaResource);
    cudaGraphicsSubResourceGetMappedArray(&mappedArray, cudaResource, 0, 0);
    auto rgbCudaArray = KCuda::RemoveAlphaAndFlip(mappedArray, width, height);
    cudaGraphicsUnmapResources(1, &cudaResource);
    cudaFree(mappedArray);

    return rgbCudaArray;
}

void CreateOnnxValueFromTexture(ID3D11Texture2D* texture) {
    D3D11_TEXTURE2D_DESC d;
    texture->GetDesc(&d);
    unsigned int width = d.Width;
    unsigned int height = d.Height;
    rgbCudaArray = TextureToCuda(texture, width, height);
    int64_t shape[] = { 1, 3, height, width };
    size_t shape_len = sizeof(shape) / sizeof(shape[0]);
    size_t p_data_len = sizeof(float) * 1 * 3 * height * width;

    status = api->CreateTensorWithDataAsOrtValue(info_cuda,
        rgbCudaArray,
        p_data_len,
        shape,
        shape_len,
        ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT,
        &cudaTextureOrt
    );
    if (status != nullptr) {
        std::cerr << "Error creating tensor: " << api->GetErrorMessage(status) << std::endl;
        api->ReleaseStatus(status);
        exit(1);
    }
}

void UpdateOnnxValueFromTexture(ID3D11Texture2D* texture) {
    D3D11_TEXTURE2D_DESC d;
    texture->GetDesc(&d);
    unsigned int width = d.Width;
    unsigned int height = d.Height;
    cudaArray* mappedArray;
    cudaGraphicsMapResources(1, &cudaResource);
    cudaGraphicsSubResourceGetMappedArray(&mappedArray, cudaResource, 0, 0);
    KCuda::UpdateArray(mappedArray, rgbCudaArray, width, height);
    cudaGraphicsUnmapResources(1, &cudaResource);
    cudaFree(mappedArray);
}

void Detect() {
    if (!bound) {
        int64_t shape0[] = { 1, 300, 80 };
        int64_t shape1[] = { 1, 300, 4 };

        int output0_dims[] = { 1, 300, 80 };
        int output1_dims[] = { 1, 300, 4 };

        size_t output0_size = 1 * 300 * 80 * sizeof(float);
        size_t output1_size = 1 * 300 * 4 * sizeof(float);

        cudaMalloc(&d_output0, output0_size);
        cudaMalloc(&d_output1, output1_size);

        status = api->CreateTensorWithDataAsOrtValue(info_cuda, d_output0, output0_size, 
            shape0, 3, ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT, &scoresValue);
        if (status != nullptr) {
            std::cerr << "failed scores tensor" << api->GetErrorMessage(status) << std::endl;
            api->ReleaseStatus(status);
            cleanup();
            exit(1);
        }
        status = api->CreateTensorWithDataAsOrtValue(info_cuda, d_output1, output1_size,
            shape1, 3, ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT, &boxesValue);
        if (status != nullptr) {
            std::cerr << "failed boxes tensor" << api->GetErrorMessage(status) << std::endl;
            api->ReleaseStatus(status);
            cleanup();
            exit(1);
        }

        status = api->CreateIoBinding(session, &io_binding);
        if (status != nullptr) {
            std::cerr << "bad input binding" << api->GetErrorMessage(status) << std::endl;
            api->ReleaseStatus(status);
            cleanup();
            exit(1);
        }
      
        status = api->BindInput(io_binding, "image", cudaTextureOrt);
        if (status != nullptr) {
            std::cerr << "bad binding input" << api->GetErrorMessage(status) << std::endl;
            api->ReleaseStatus(status);
            cleanup();
            exit(1);
        }
        status = api->BindOutput(io_binding, "boxes", boxesValue);
        if (status != nullptr) {
            std::cerr << "bad binding output boxes" << api->GetErrorMessage(status) << std::endl;
            api->ReleaseStatus(status);
            cleanup();
            exit(1);
        }
        status = api->BindOutput(io_binding, "scores", scoresValue);
        if (status != nullptr) {
            std::cerr << "bad output boxes" << api->GetErrorMessage(status) << std::endl;
            api->ReleaseStatus(status);
            cleanup();
            exit(1);
        }
        bound = true;
    }

    std::vector<const char*> outputNames = {"scores", "boxes"};
    std::vector<const char*> inputNames = { "image" };
    std::vector<OrtValue*> inputTensors = { cudaTextureOrt };
    std::vector<OrtValue*> outputTensors = { scoresValue , boxesValue };
    status = api->RunWithBinding(session, Ort::RunOptions(), io_binding);
    if (status != nullptr) {
        std::cerr << "Run failed: " << api->GetErrorMessage(status) << std::endl;
        api->ReleaseStatus(status);
        cleanup();
        exit(1);
    }
    else {
        std::cout << "doot";
    }
}

void InitializeOnnx() {
    std::cout << "[INFO] ONNXRuntime version: " << OrtGetApiBase()->GetVersionString() << std::endl;

    std::string labelPath = exeDir + "/labels.txt";
    std::string modelPath = exeDir + "/rtdetr_r18vd_6x_coco-modify.onnx";
    std::string instanceName = "rtdetr-r18";
    size_t deviceId = 0;
    size_t batchSize = 1;
    float confThreshold = 0.3;
    std::vector<std::string> labels = readLabels(labelPath);
    api = OrtGetApiBase()->GetApi(ORT_API_VERSION);
    status = api->CreateEnv(ORT_LOGGING_LEVEL_WARNING, instanceName.c_str(), &env);
    if (status != nullptr) {
        std::cerr << "Error creating environment: " << api->GetErrorMessage(status) << std::endl;
        api->ReleaseStatus(status);
        exit(1);
    }

    OrtSessionOptions* session_options = nullptr;
    status = api->CreateSessionOptions(&session_options);
    if (status != nullptr) {
        std::cerr << "Error creating session options: " << api->GetErrorMessage(status) << std::endl;
        api->ReleaseStatus(status);
        api->ReleaseEnv(env);
        exit(1);
    }

    OrtCUDAProviderOptions cuda_options;
    cuda_options.device_id = deviceId;

    status =  api->SessionOptionsAppendExecutionProvider_CUDA(session_options, &cuda_options);
    if (status != nullptr) {
        std::cerr << "Error appending provider: " << api->GetErrorMessage(status) << std::endl;
        api->ReleaseStatus(status);
        api->ReleaseEnv(env);
        exit(1);
    }

    api->SetSessionGraphOptimizationLevel(session_options, ORT_ENABLE_EXTENDED);
    api->SetIntraOpNumThreads(session_options, 1);

    status = api->CreateSession(env, stringToWcharT(modelPath), session_options, &session);
    if (status != nullptr) {
        std::cerr << "Error creating session: " << api->GetErrorMessage(status) << std::endl;
        api->ReleaseStatus(status);
        api->ReleaseSessionOptions(session_options);
        api->ReleaseEnv(env);
        exit(1);
    }

    const char* allocator_name = "Cuda";
    OrtAllocatorType allocator_type = OrtArenaAllocator;
    int device_id = 0; 
    OrtMemType mem_type = OrtMemTypeDefault;

    status = api->CreateMemoryInfo(allocator_name, allocator_type, device_id, mem_type, &info_cuda);
    if (status != nullptr) {
        std::cerr << "Error creating memory info: " << api->GetErrorMessage(status) << std::endl;
        api->ReleaseStatus(status);
        exit(1);
    }

    status = api->CreateAllocator(session, info_cuda, &allocator);
    if (status != nullptr) {
        std::cerr << "failed to get allocator " << api->GetErrorMessage(status) << std::endl;
        api->ReleaseStatus(status);
        cleanup();
        exit(1);
    }

    std::cout << "[INFO] Model was initialized." << std::endl;
}

Image

This is a modified rt-detr paddle paddle model. I can share the whole thing, but I think I modified this correctly.

To reproduce

I can minimize this too. Some people are human compilers, and someone might just spot it. If you don't see it at a glance, I'll try to do something. I'm not ready for the code to get out yet. I can provide the whole project I suppose. It's fairly nice.

Urgency

LOL this is an interesting one. I'm uh running out of time and money trying to start a company I guess. I have a fairly amazing demo that does some amazing things with screen cap, the windows display manager, and all sorts of stuff. A fairly profound architectural microcosm if you will. Then I also have a idea for a multi object tracking algo that might compete with SOTA so I just gotta get to that and then go get a job I guess. So uh, ya know, idk. It's just my life.

Platform

Windows

OS Version

Win 11 H2

ONNX Runtime Installation

Released Package

ONNX Runtime Version or Commit ID

ONNXRuntime version: 1.20.1

ONNX Runtime API

C

Architecture

X64

Execution Provider

CUDA

Execution Provider Library Version

CUDA 12.3

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant