-
Notifications
You must be signed in to change notification settings - Fork 28
/
train.py
452 lines (408 loc) · 19.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
#! /usr/bin/env python
# coding=utf-8
# ================================================================
#
# Author : miemie2013
# Created date: 2020-01-11 16:31:57
# Description : pytorch_yolov3
#
# ================================================================
import cv2
import sys
import time
import torch
import random
import threading
import numpy as np
import os
import platform
from model.darknet_yolo_pt import Darknet, YoloLoss
sysstr = platform.system()
use_cuda = torch.cuda.is_available()
print(torch.cuda.is_available())
print(torch.__version__)
# 禁用cudnn就能解决Windows报错问题。Windows用户如果删掉之后不报CUDNN_STATUS_EXECUTION_FAILED,那就可以删掉。
if sysstr == 'Windows':
torch.backends.cudnn.enabled = False
def get_classes(classes_path):
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def training_transform(height, width, output_height, output_width):
height_scale, width_scale = output_height / height, output_width / width
scale = min(height_scale, width_scale)
resize_height, resize_width = round(height * scale), round(width * scale)
pad_top = (output_height - resize_height) // 2
pad_left = (output_width - resize_width) // 2
A = np.float32([[scale, 0.0], [0.0, scale]])
B = np.float32([[pad_left], [pad_top]])
M = np.hstack([A, B])
return M, output_height, output_width
def image_preporcess(image, target_size, gt_boxes=None):
# 这里改变了一部分原作者的代码。可以发现,传入训练的图片是bgr格式
ih, iw = target_size
h, w = image.shape[:2]
M, h_out, w_out = training_transform(h, w, ih, iw)
# 填充黑边缩放
letterbox = cv2.warpAffine(image, M, (w_out, h_out))
pimage = np.float32(letterbox) / 255.
if gt_boxes is None:
return pimage
else:
scale = min(iw / w, ih / h)
nw, nh = int(scale * w), int(scale * h)
dw, dh = (iw - nw) // 2, (ih - nh) // 2
gt_boxes[:, [0, 2]] = gt_boxes[:, [0, 2]] * scale + dw
gt_boxes[:, [1, 3]] = gt_boxes[:, [1, 3]] * scale + dh
return pimage, gt_boxes
def random_fill(image, bboxes):
if random.random() < 0.5:
h, w, _ = image.shape
# 水平方向填充黑边,以训练小目标检测
if random.random() < 0.5:
dx = random.randint(int(0.5 * w), int(1.5 * w))
black_1 = np.zeros((h, dx, 3), dtype='uint8')
black_2 = np.zeros((h, dx, 3), dtype='uint8')
image = np.concatenate([black_1, image, black_2], axis=1)
bboxes[:, [0, 2]] += dx
# 垂直方向填充黑边,以训练小目标检测
else:
dy = random.randint(int(0.5 * h), int(1.5 * h))
black_1 = np.zeros((dy, w, 3), dtype='uint8')
black_2 = np.zeros((dy, w, 3), dtype='uint8')
image = np.concatenate([black_1, image, black_2], axis=0)
bboxes[:, [1, 3]] += dy
return image, bboxes
def random_horizontal_flip(image, bboxes):
if random.random() < 0.5:
_, w, _ = image.shape
image = image[:, ::-1, :]
bboxes[:, [0, 2]] = w - bboxes[:, [2, 0]]
return image, bboxes
def random_crop(image, bboxes):
if random.random() < 0.5:
h, w, _ = image.shape
max_bbox = np.concatenate([np.min(bboxes[:, 0:2], axis=0), np.max(bboxes[:, 2:4], axis=0)], axis=-1)
max_l_trans = max_bbox[0]
max_u_trans = max_bbox[1]
max_r_trans = w - max_bbox[2]
max_d_trans = h - max_bbox[3]
crop_xmin = max(0, int(max_bbox[0] - random.uniform(0, max_l_trans)))
crop_ymin = max(0, int(max_bbox[1] - random.uniform(0, max_u_trans)))
crop_xmax = max(w, int(max_bbox[2] + random.uniform(0, max_r_trans)))
crop_ymax = max(h, int(max_bbox[3] + random.uniform(0, max_d_trans)))
image = image[crop_ymin: crop_ymax, crop_xmin: crop_xmax]
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] - crop_xmin
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] - crop_ymin
return image, bboxes
def random_translate(image, bboxes):
if random.random() < 0.5:
h, w, _ = image.shape
max_bbox = np.concatenate([np.min(bboxes[:, 0:2], axis=0), np.max(bboxes[:, 2:4], axis=0)], axis=-1)
max_l_trans = max_bbox[0]
max_u_trans = max_bbox[1]
max_r_trans = w - max_bbox[2]
max_d_trans = h - max_bbox[3]
tx = random.uniform(-(max_l_trans - 1), (max_r_trans - 1))
ty = random.uniform(-(max_u_trans - 1), (max_d_trans - 1))
M = np.array([[1, 0, tx], [0, 1, ty]])
image = cv2.warpAffine(image, M, (w, h))
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] + tx
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] + ty
return image, bboxes
def parse_annotation(annotation, train_input_size, annotation_type):
line = annotation.split()
image_path = line[0]
# image_path = '../'+line[0]
if not os.path.exists(image_path):
raise KeyError("%s does not exist ... " % image_path)
image = np.array(cv2.imread(image_path))
# 没有标注物品,即每个格子都当作背景处理
exist_boxes = True
if len(line) == 1:
bboxes = np.array([[10, 10, 101, 103, 0]])
exist_boxes = False
else:
bboxes = np.array([list(map(lambda x: int(float(x)), box.split(','))) for box in line[1:]])
if annotation_type == 'train':
# image, bboxes = random_fill(np.copy(image), np.copy(bboxes)) # 数据集缺乏小物体时打开
image, bboxes = random_horizontal_flip(np.copy(image), np.copy(bboxes))
image, bboxes = random_crop(np.copy(image), np.copy(bboxes))
image, bboxes = random_translate(np.copy(image), np.copy(bboxes))
image, bboxes = image_preporcess(np.copy(image), [train_input_size, train_input_size], np.copy(bboxes))
return image, bboxes, exist_boxes
def bbox_iou_data(boxes1, boxes2):
boxes1 = np.array(boxes1)
boxes2 = np.array(boxes2)
boxes1_area = boxes1[..., 2] * boxes1[..., 3]
boxes2_area = boxes2[..., 2] * boxes2[..., 3]
boxes1 = np.concatenate([boxes1[..., :2] - boxes1[..., 2:] * 0.5,
boxes1[..., :2] + boxes1[..., 2:] * 0.5], axis=-1)
boxes2 = np.concatenate([boxes2[..., :2] - boxes2[..., 2:] * 0.5,
boxes2[..., :2] + boxes2[..., 2:] * 0.5], axis=-1)
left_up = np.maximum(boxes1[..., :2], boxes2[..., :2])
right_down = np.minimum(boxes1[..., 2:], boxes2[..., 2:])
inter_section = np.maximum(right_down - left_up, 0.0)
inter_area = inter_section[..., 0] * inter_section[..., 1]
union_area = boxes1_area + boxes2_area - inter_area
return inter_area / union_area
def preprocess_true_boxes(bboxes, train_output_sizes, strides, num_classes, max_bbox_per_scale, anchors):
label = [np.zeros((train_output_sizes[i], train_output_sizes[i], 3,
5 + num_classes)) for i in range(3)]
bboxes_xywh = [np.zeros((max_bbox_per_scale, 4)) for _ in range(3)]
bbox_count = np.zeros((3,))
for bbox in bboxes:
bbox_coor = bbox[:4]
bbox_class_ind = bbox[4]
onehot = np.zeros(num_classes, dtype=np.float)
onehot[bbox_class_ind] = 1.0
bbox_xywh = np.concatenate([(bbox_coor[2:] + bbox_coor[:2]) * 0.5, bbox_coor[2:] - bbox_coor[:2]], axis=-1)
bbox_xywh_scaled = 1.0 * bbox_xywh[np.newaxis, :] / strides[:, np.newaxis]
iou = []
for i in range(3):
anchors_xywh = np.zeros((3, 4))
anchors_xywh[:, 0:2] = np.floor(bbox_xywh_scaled[i, 0:2]).astype(np.int32) + 0.5
anchors_xywh[:, 2:4] = anchors[i]
iou_scale = bbox_iou_data(bbox_xywh_scaled[i][np.newaxis, :], anchors_xywh)
iou.append(iou_scale)
best_anchor_ind = np.argmax(np.array(iou).reshape(-1), axis=-1)
best_detect = int(best_anchor_ind / 3)
best_anchor = int(best_anchor_ind % 3)
xind, yind = np.floor(bbox_xywh_scaled[best_detect, 0:2]).astype(np.int32)
# 防止越界
grid_r = label[best_detect].shape[0]
grid_c = label[best_detect].shape[1]
xind = max(0, xind)
yind = max(0, yind)
xind = min(xind, grid_r - 1)
yind = min(yind, grid_c - 1)
label[best_detect][yind, xind, best_anchor, :] = 0
label[best_detect][yind, xind, best_anchor, 0:4] = bbox_xywh
label[best_detect][yind, xind, best_anchor, 4:5] = 1.0
label[best_detect][yind, xind, best_anchor, 5:] = onehot
bbox_ind = int(bbox_count[best_detect] % max_bbox_per_scale)
bboxes_xywh[best_detect][bbox_ind, :4] = bbox_xywh
bbox_count[best_detect] += 1
label_sbbox, label_mbbox, label_lbbox = label
sbboxes, mbboxes, lbboxes = bboxes_xywh
return label_sbbox, label_mbbox, label_lbbox, sbboxes, mbboxes, lbboxes
def multi_thread_read(batch, num, train_input_size, annotation_type, train_output_sizes, strides, num_classes, max_bbox_per_scale, anchors, batch_image,
batch_label_sbbox, batch_label_mbbox, batch_label_lbbox,
batch_sbboxes, batch_mbboxes, batch_lbboxes):
image, bboxes, exist_boxes = parse_annotation(batch[num], train_input_size, annotation_type)
label_sbbox, label_mbbox, label_lbbox, sbboxes, mbboxes, lbboxes = preprocess_true_boxes(bboxes, train_output_sizes, strides, num_classes, max_bbox_per_scale, anchors)
batch_image[num, :, :, :] = image
if exist_boxes:
batch_label_sbbox[num, :, :, :, :] = label_sbbox
batch_label_mbbox[num, :, :, :, :] = label_mbbox
batch_label_lbbox[num, :, :, :, :] = label_lbbox
batch_sbboxes[num, :, :] = sbboxes
batch_mbboxes[num, :, :] = mbboxes
batch_lbboxes[num, :, :] = lbboxes
def generate_one_batch(annotation_lines, step, batch_size, anchors, num_classes, max_bbox_per_scale, annotation_type):
n = len(annotation_lines)
# 多尺度训练
train_input_sizes = [320, 352, 384, 416, 448, 480, 512, 544, 576, 608]
train_input_size = random.choice(train_input_sizes)
strides = np.array([8, 16, 32])
# 输出的网格数
train_output_sizes = train_input_size // strides
batch_image = np.zeros((batch_size, train_input_size, train_input_size, 3))
batch_label_sbbox = np.zeros((batch_size, train_output_sizes[0], train_output_sizes[0],
3, 5 + num_classes))
batch_label_mbbox = np.zeros((batch_size, train_output_sizes[1], train_output_sizes[1],
3, 5 + num_classes))
batch_label_lbbox = np.zeros((batch_size, train_output_sizes[2], train_output_sizes[2],
3, 5 + num_classes))
batch_sbboxes = np.zeros((batch_size, max_bbox_per_scale, 4))
batch_mbboxes = np.zeros((batch_size, max_bbox_per_scale, 4))
batch_lbboxes = np.zeros((batch_size, max_bbox_per_scale, 4))
if (step + 1) * batch_size > n:
batch = annotation_lines[n - batch_size:n]
else:
batch = annotation_lines[step * batch_size:(step + 1) * batch_size]
threads = []
for num in range(batch_size):
t = threading.Thread(target=multi_thread_read, args=(batch, num, train_input_size, annotation_type, train_output_sizes, strides, num_classes, max_bbox_per_scale, anchors, batch_image,
batch_label_sbbox, batch_label_mbbox, batch_label_lbbox,
batch_sbboxes, batch_mbboxes, batch_lbboxes))
threads.append(t)
t.start()
# 等待所有线程任务结束。
for t in threads:
t.join()
batch_image = batch_image.transpose(0, 3, 1, 2)
return batch_image, [batch_label_sbbox, batch_label_mbbox, batch_label_lbbox, batch_sbboxes, batch_mbboxes,
batch_lbboxes]
if __name__ == '__main__':
train_path = 'annotation/voc2012_train.txt'
val_path = 'annotation/voc2012_val.txt'
classes_path = 'data/voc_classes.txt'
# train_path = 'annotation/coco2017_train.txt'
# val_path = 'annotation/coco2017_val.txt'
# classes_path = 'data/coco_classes.txt'
class_names = get_classes(classes_path)
num_classes = len(class_names)
anchors = np.array([
[[1.25, 1.625], [2.0, 3.75], [4.125, 2.875]],
[[1.875, 3.8125], [3.875, 2.8125], [3.6875, 7.4375]],
[[3.625, 2.8125], [4.875, 6.1875], [11.65625, 10.1875]]
])
# 模式。 0-从头训练,1-读取模型训练(包括解冻),2-读取coco预训练模型训练
pattern = 0
save_best_only = False
max_bbox_per_scale = 150
iou_loss_thresh = 0.7
# 经过试验发现,使用focal_loss会增加误判fp,所以默认使用二值交叉熵损失函数训练。下面这3个alpha请忽略。
# 经过试验发现alpha取>0.5的值时mAP会提高,但误判(False Predictions)会增加;alpha取<0.5的值时mAP会降低,误判会降低。
# 试验时alpha_1取0.95,alpha_2取0.85,alpha_3取0.75
# 小感受野输出层输出的格子最多,预测框最多,正样本很有可能占比是最少的,所以试验时alpha_1 > alpha_2 > alpha_3
alpha_1 = 0.5 # 小感受野输出层的focal_loss的alpha
alpha_2 = 0.5 # 中感受野输出层的focal_loss的alpha
alpha_3 = 0.5 # 大感受野输出层的focal_loss的alpha
# 初始卷积核个数
initial_filters = 8
net = Darknet(num_classes, initial_filters=initial_filters)
if pattern == 2:
lr = 0.0001
batch_size = 8
initial_epoch = 0
epochs = 999
# 冻结代码待补充
# 分支2还未完成
net.load_state_dict(torch.load('yolo_bgr_mAP_47.pt'))
elif pattern == 1:
lr = 0.000001
batch_size = 6
initial_epoch = 20
epochs = 50
# 解冻代码待补充
# 分支1可用
net.load_state_dict(torch.load('ep000006-loss1.095-val_loss0.872.pt'))
elif pattern == 0:
lr = 0.0001
batch_size = 6
initial_epoch = 0
epochs = 130
# 打印网络结构
# print(net)
device = torch.device('cuda' if use_cuda else 'cpu')
net_img = net.to(device)
from torchsummary import summary
summary(net_img, (3, 416, 416))
# 建立损失函数
yolo_loss = YoloLoss(num_classes, iou_loss_thresh, anchors, alpha_1, alpha_2, alpha_3)
if use_cuda:
yolo_loss = yolo_loss.cuda() # 如果有gpu可用,损失函数存放在gpu显存里
net = net.cuda() # 如果有gpu可用,模型(包括了权重weight)存放在gpu显存里
# 验证集和训练集
with open(train_path) as f:
train_lines = f.readlines()
with open(val_path) as f:
val_lines = f.readlines()
num_train = len(train_lines)
num_val = len(val_lines)
# 一轮的步数
train_steps = int(num_train / batch_size) if num_train % batch_size == 0 else int(num_train / batch_size) + 1
val_steps = int(num_val / batch_size) if num_val % batch_size == 0 else int(num_val / batch_size) + 1
optimizer = torch.optim.Adam(net.parameters(), lr=lr) # 传入 net 的所有参数, 学习率
best_val_loss = 0.0
for t in range(initial_epoch, epochs, 1):
print('Epoch %d/%d\n' % (t + 1, epochs))
epochStartTime = time.time()
start = time.time()
# 每个epoch之前洗乱
np.random.shuffle(train_lines)
train_epoch_loss, val_epoch_loss = [], []
# 训练阶段
net.train()
for step in range(train_steps):
batch_image, lables = generate_one_batch(train_lines, step, batch_size, anchors, num_classes,
max_bbox_per_scale, 'train')
if use_cuda:
batch_image = torch.Tensor(batch_image).cuda()
lables = [torch.Tensor(it).cuda() for it in lables]
else:
batch_image = torch.Tensor(batch_image)
lables = [torch.Tensor(it) for it in lables]
y1_pred, y2_pred, y3_pred = net(batch_image) # 直接卷积后的输出
args = [y1_pred, y2_pred, y3_pred] + lables
train_step_loss = yolo_loss(args)
step_loss = 0.
if use_cuda:
step_loss = train_step_loss.cpu().data.numpy()
else:
step_loss = train_step_loss.data.numpy()
train_epoch_loss.append(step_loss)
# 自定义进度条
percent = ((step + 1) / train_steps) * 100
num = int(29 * percent / 100)
time.sleep(0.1)
ETA = int((time.time() - epochStartTime) * (100 - percent) / percent)
sys.stdout.write('\r{0}'.format(' ' * (len(str(train_steps)) - len(str(step + 1)))) + \
'{0}/{1} [{2}>'.format(step + 1, train_steps, '=' * num) + '{0}'.format(
'.' * (29 - num)) + ']' + \
' - ETA: ' + str(ETA) + 's' + ' - loss: %.4f' % (step_loss,))
sys.stdout.flush()
# 更新权重
optimizer.zero_grad() # 清空上一步的残余更新参数值
train_step_loss.backward() # 误差反向传播, 计算参数更新值
optimizer.step() # 将参数更新值施加到 net 的 parameters 上
# 验证阶段
net.eval()
for step in range(val_steps):
batch_image, lables = generate_one_batch(val_lines, step, batch_size, anchors, num_classes,
max_bbox_per_scale, 'val')
if use_cuda:
batch_image = torch.Tensor(batch_image).cuda()
lables = [torch.Tensor(it).cuda() for it in lables]
else:
batch_image = torch.Tensor(batch_image)
lables = [torch.Tensor(it) for it in lables]
y1_pred, y2_pred, y3_pred = net(batch_image) # 直接卷积后的输出
args = [y1_pred, y2_pred, y3_pred] + lables
val_step_loss = yolo_loss(args)
step_loss = 0.
if use_cuda:
step_loss = val_step_loss.cpu().data.numpy()
else:
step_loss = val_step_loss.data.numpy()
val_epoch_loss.append(step_loss)
train_epoch_loss, val_epoch_loss = np.mean(train_epoch_loss), np.mean(val_epoch_loss)
# 保存模型
content = '%d\tloss = %.4f\tval_loss = %.4f\n' % ((t + 1), train_epoch_loss, val_epoch_loss)
with open('yolov3_pytorch_logs.txt', 'a', encoding='utf-8') as f:
f.write(content)
f.close()
path_dir = os.listdir('./')
eps = []
names = []
for name in path_dir:
if name[len(name) - 2:len(name)] == 'pt' and name[0:2] == 'ep':
sss = name.split('-')
ep = int(sss[0][2:])
eps.append(ep)
names.append(name)
if len(eps) >= 10:
i2 = eps.index(min(eps))
os.remove(names[i2])
if t == initial_epoch:
best_val_loss = val_epoch_loss
torch.save(net.state_dict(),
'ep%.6d-loss%.3f-val_loss%.3f.pt' % ((t + 1), train_epoch_loss, val_epoch_loss))
else:
if save_best_only:
if val_epoch_loss < best_val_loss:
best_val_loss = val_epoch_loss
torch.save(net.state_dict(),
'ep%.6d-loss%.3f-val_loss%.3f.pt' % ((t + 1), train_epoch_loss, val_epoch_loss))
else:
torch.save(net.state_dict(),
'ep%.6d-loss%.3f-val_loss%.3f.pt' % ((t + 1), train_epoch_loss, val_epoch_loss))
# 打印本轮训练结果
sys.stdout.write(
'\r{0}/{1} [{2}='.format(train_steps, train_steps, '=' * num) + '{0}'.format('.' * (29 - num)) + ']' + \
' - %ds' % (int(time.time() - epochStartTime),) + ' - loss: %.4f' % (
train_epoch_loss,) + ' - val_loss: %.4f\n' % (val_epoch_loss,))
sys.stdout.flush()