forked from elkayem/midi2cv
-
Notifications
You must be signed in to change notification settings - Fork 1
/
midi2cv.ino
332 lines (273 loc) · 8.83 KB
/
midi2cv.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/*
* MIDI2CV
* Copyright (C) 2017 Larry McGovern
* With additional features by Mike Kelly 2021
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License <http://www.gnu.org/licenses/> for more details.
*/
#include <MIDI.h>
#include <SPI.h>
#include <EEPROM.h>
// Note priority is set by pins A0 and A2
// Highest note priority: A0 and A2 high (open)
// Lowest note priority: A0 low (ground), A2 high (open)
// Last note priority: A2 low (ground)
#define NP_SEL1 A0 // Note priority is set by pins A0 and A2
#define NP_SEL2 A2
#define GATE 2
#define TRIG 3
#define CLOCK 4
#define DAC1 8
#define DAC2 9
#define MIDI_LEARN_SWITCH 6
#define LED 7
#define MEMORY_SLOT_CC_CHANNEL 0
#define MEMORY_SLOT_CC_NUMBER 1
bool notes[88] = {0};
bool learning=false;
int8_t noteOrder[20] = {0}, orderIndx = {0};
unsigned long trigTimer = 0;
unsigned long lastDebounceTime = 0;
unsigned long debounceDelay = 50;
int buttonState=0;
int lastButtonState=LOW;
byte ccChannel;
byte ccNumber;
int LEDstate=HIGH;
MIDI_CREATE_DEFAULT_INSTANCE();
void setup()
{
pinMode(NP_SEL1, INPUT_PULLUP);
pinMode(NP_SEL2, INPUT_PULLUP);
pinMode(GATE, OUTPUT);
pinMode(TRIG, OUTPUT);
pinMode(CLOCK, OUTPUT);
pinMode(DAC1, OUTPUT);
pinMode(DAC2, OUTPUT);
pinMode(MIDI_LEARN_SWITCH, INPUT);
pinMode(LED, OUTPUT);
digitalWrite(GATE,LOW);
digitalWrite(TRIG,LOW);
digitalWrite(CLOCK,LOW);
digitalWrite(DAC1,HIGH);
digitalWrite(DAC2,HIGH);
SPI.begin();
ccChannel = EEPROM.read(MEMORY_SLOT_CC_CHANNEL);
ccNumber = EEPROM.read(MEMORY_SLOT_CC_NUMBER);
MIDI.begin(MIDI_CHANNEL_OMNI);
// Set initial pitch bend voltage to 0.5V (mid point). With Gain = 1X, this is 1023
// Other DAC outputs will come up as 0V, so don't need to be initialized
setVoltage(DAC2, 0, 0, 1023);
}
void loop()
{
int type, noteMsg, velocity, channel, d1, d2;
static unsigned long clock_timer=0, clock_timeout=0;
static unsigned int clock_count=0;
bool S1, S2;
int reading = digitalRead(MIDI_LEARN_SWITCH);
if (reading != lastButtonState) {
// reset the debouncing timer
lastDebounceTime = millis();
}
if ((millis() - lastDebounceTime) > debounceDelay) {
// whatever the reading is at, it's been there for longer than the debounce
// delay, so take it as the actual current state:
// if the button state has changed:
if (reading != buttonState) {
buttonState = reading;
// only enter learning mode if the new button state is HIGH
if (buttonState == HIGH) {
learning = true;
}
}
}
if (learning) {
digitalWrite(LED, HIGH);
delay(100);
digitalWrite(LED, LOW);
delay(100);
}
lastButtonState = reading;
if ((trigTimer > 0) && (millis() - trigTimer > 20)) {
digitalWrite(TRIG,LOW); // Set trigger low after 20 msec
digitalWrite(LED,LOW);
trigTimer = 0;
}
if ((clock_timer > 0) && (millis() - clock_timer > 20)) {
digitalWrite(CLOCK,LOW); // Set clock pulse low after 20 msec
clock_timer = 0;
}
if (MIDI.read()) {
byte type = MIDI.getType();
switch (type) {
case midi::NoteOn:
case midi::NoteOff:
noteMsg = MIDI.getData1() - 21; // A0 = 21, Top Note = 108
channel = MIDI.getChannel();
if ((noteMsg < 0) || (noteMsg > 87)) break; // Only 88 notes of keyboard are supported
if (type == midi::NoteOn) velocity = MIDI.getData2();
else velocity = 0;
if (velocity == 0) {
notes[noteMsg] = false;
}
else {
notes[noteMsg] = true;
// velocity range from 0 to 4095 mV Left shift d2 by 5 to scale from 0 to 4095,
// and choose gain = 2X
setVoltage(DAC1, 1, 1, velocity<<5); // DAC1, channel 1, gain = 2X
}
// Pins NP_SEL1 and NP_SEL2 indictate note priority
S1 = digitalRead(NP_SEL1);
S2 = digitalRead(NP_SEL2);
if (!learning) {
if (S1 && S2) { // Highest note priority
commandTopNote();
}
else if (!S1 && S2) { // Lowest note priority
commandBottomNote();
}
else { // Last note priority
if (notes[noteMsg]) { // If note is on and using last note priority, add to ordered list
orderIndx = (orderIndx+1) % 20;
noteOrder[orderIndx] = noteMsg;
}
commandLastNote();
}
}
break;
case midi::PitchBend:
d1 = MIDI.getData1();
d2 = MIDI.getData2(); // d2 from 0 to 127, mid point = 64
// Pitch bend output from 0 to 1023 mV. Left shift d2 by 4 to scale from 0 to 2047.
// With DAC gain = 1X, this will yield a range from 0 to 1023 mV.
if (!learning) {
setVoltage(DAC2, 0, 0, d2<<4); // DAC2, channel 0, gain = 1X
}
break;
case midi::ControlChange:
d1 = MIDI.getData1();
d2 = MIDI.getData2(); // From 0 to 127
if (learning) {
ccChannel = MIDI.getChannel();
ccNumber = MIDI.getData1();
EEPROM.write(MEMORY_SLOT_CC_CHANNEL, ccChannel);
EEPROM.write(MEMORY_SLOT_CC_NUMBER, ccNumber);
learning = false;
}
// CC range from 0 to 4095 mV Left shift d2 by 5 to scale from 0 to 4095,
// and choose gain = 2X
if (ccChannel == MIDI.getChannel() && ccNumber == MIDI.getData1() && !learning) {
setVoltage(DAC2, 1, 1, d2<<5); // DAC2, channel 1, gain = 2X
}
break;
case midi::Clock:
if (millis() > clock_timeout + 300) clock_count = 0; // Prevents Clock from starting in between quarter notes after clock is restarted!
clock_timeout = millis();
if (clock_count == 0) {
digitalWrite(CLOCK,HIGH); // Start clock pulse
clock_timer=millis();
}
clock_count++;
if (clock_count == 24) { // MIDI timing clock sends 24 pulses per quarter note. Sent pulse only once every 24 pulses
clock_count = 0;
}
break;
case midi::ActiveSensing:
break;
default:
d1 = MIDI.getData1();
d2 = MIDI.getData2();
}
}
}
void commandTopNote()
{
int topNote = 0;
bool noteActive = false;
for (int i=0; i<88; i++)
{
if (notes[i]) {
topNote = i;
noteActive = true;
}
}
if (noteActive)
commandNote(topNote);
else // All notes are off, turn off gate
digitalWrite(GATE,LOW);
}
void commandBottomNote()
{
int bottomNote = 0;
bool noteActive = false;
for (int i=87; i>=0; i--)
{
if (notes[i]) {
bottomNote = i;
noteActive = true;
}
}
if (noteActive)
commandNote(bottomNote);
else // All notes are off, turn off gate
digitalWrite(GATE,LOW);
}
void commandLastNote()
{
int8_t noteIndx;
for (int i=0; i<20; i++) {
noteIndx = noteOrder[ mod(orderIndx-i, 20) ];
if (notes[noteIndx]) {
commandNote(noteIndx);
return;
}
}
digitalWrite(GATE,LOW); // All notes are off
}
// Rescale 88 notes to 4096 mV:
// noteMsg = 0 -> 0 mV
// noteMsg = 87 -> 4096 mV
// DAC output will be (4095/87) = 47.069 mV per note, and 564.9655 mV per octive
// Note that DAC output will need to be amplified by 1.77X for the standard 1V/octave
// #define NOTE_SF 47.069f // This value can be tuned if CV output isn't exactly 1V/octave
#define NOTE_SF 45.069f // Tune lower intentionally and use trimmer to adjust
void commandNote(int noteMsg) {
digitalWrite(GATE,HIGH);
digitalWrite(TRIG,HIGH);
digitalWrite(LED,HIGH);
trigTimer = millis();
unsigned int mV = (unsigned int) ((float) noteMsg * NOTE_SF + 0.5);
setVoltage(DAC1, 0, 1, mV); // DAC1, channel 0, gain = 2X
}
// setVoltage -- Set DAC voltage output
// dacpin: chip select pin for DAC. Note and velocity on DAC1, pitch bend and CC on DAC2
// channel: 0 (A) or 1 (B). Note and pitch bend on 0, velocity and CC on 2.
// gain: 0 = 1X, 1 = 2X.
// mV: integer 0 to 4095. If gain is 1X, mV is in units of half mV (i.e., 0 to 2048 mV).
// If gain is 2X, mV is in units of mV
void setVoltage(int dacpin, bool channel, bool gain, unsigned int mV)
{
unsigned int command = channel ? 0x9000 : 0x1000;
command |= gain ? 0x0000 : 0x2000;
command |= (mV & 0x0FFF);
SPI.beginTransaction(SPISettings(8000000, MSBFIRST, SPI_MODE0));
digitalWrite(dacpin,LOW);
SPI.transfer(command>>8);
SPI.transfer(command&0xFF);
digitalWrite(dacpin,HIGH);
SPI.endTransaction();
}
int mod(int a, int b)
{
int r = a % b;
return r < 0 ? r + b : r;
}