-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathrun.lens.py
92 lines (69 loc) · 3.21 KB
/
run.lens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import time
import numpy as np
from PIL import Image
import argparse
import math
from complex_kernels import *
from scipy import signal
from functools import reduce
def read_image(path):
img = np.array(Image.open(path))
arr = np.ascontiguousarray(img.transpose(2,0,1), dtype=np.float32)
arr /= 255
return arr
def write_image(img, path):
img *= 255
img = img.transpose(1,2,0).astype(np.uint8)
Image.fromarray(img).save(path)
def gamma_exposure(img, gamma):
np.power(img, gamma, out=img)
def gamma_exposure_inverse(img, gamma):
np.clip(img, 0, None, out=img)
np.power(img, 1.0/gamma, out=img)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--radius', nargs='?', type=int, default=32)
parser.add_argument('--components', nargs='?', type=int, default=2)
parser.add_argument('--exposure_gamma', nargs='?', type=float, default=3.0)
parser.add_argument("input_file", help="The input image file.")
parser.add_argument("output_file", help="The output image file.")
args = parser.parse_args()
# Read image - I'm using floats to store the image, this isn't necessary but saves casting etc. during convolution
img = read_image(args.input_file)
# Create output of the same size
output = np.zeros(img.shape, dtype=np.float32)
# Get current time - I believe perf_counter is a python 3 function
t0 = time.perf_counter()
# Obtain component parameters / scale values
radius = args.radius
parameters, scale = get_parameters(component_count = args.components)
# Create each component for size radius, using scale and other component parameters
components = [complex_kernel_1d(radius, scale, component_params['a'], component_params['b']) for component_params in parameters]
# Normalise all kernels together (the combination of all applied kernels in 2D must sum to 1)
normalise_kernels(components, parameters)
# Increase exposure to highlight bright spots
gamma_exposure(img, args.exposure_gamma)
# Process RGB channels for all components
component_output = []
for component, component_params in zip(components, parameters):
channels = []
for channel in range(img.shape[0]):
inter = signal.convolve2d(img[channel], component, boundary='symm', mode='same')
channels.append(signal.convolve2d(inter, component.transpose(), boundary='symm', mode='same'))
# The final component output is a stack of RGB, with weighted sums of real and imaginary parts
component_image = np.stack([weighted_sum(channel, component_params) for channel in channels])
component_output.append(component_image)
# Add all components together
output_image = reduce(np.add,component_output)
# Reverse exposure
gamma_exposure_inverse(output_image, args.exposure_gamma)
# Avoid out of range values - generally this only occurs with small negatives
# due to imperfect complex kernels
np.clip(output_image, 0, 1, out=output_image)
# Measure elapsed time
t1 = time.perf_counter()
print ("Elapsed: {0:.3f}s".format(t1-t0))
# Save final image
write_image(output_image, args.output_file)
if __name__ == "__main__":
main()