-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatmul_autotune_fp16acc.ttir
131 lines (125 loc) · 8.62 KB
/
matmul_autotune_fp16acc.ttir
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#pragma autotune BLOCK_SIZE_M {128, 256} default 128
#pragma autotune BLOCK_SIZE_N {128, 256} default 256
#pragma autotune BLOCK_SIZE_K {32, 64} default 64
#pragma autotune GROUP_SIZE_M {8, 12, 16, 20, 24} default 8
#pragma autotune intrinsic num_warps {4, 8} default 8
#pragma autotune intrinsic num_stages {3, 4, 5} default 3
#pragma argument 0 ptr cuMalloc(8192 * 8192 * 2)
#pragma argument 1 ptr cuMalloc(8192 * 8192 * 2)
#pragma argument 2 ptr cuMalloc(8192 * 8192 * 2)
#pragma argument 3 i32 8192
#pragma argument 4 i32 8192
#pragma argument 5 i32 8192
#pragma argument 6 i32 8192
#pragma argument 7 i32 8192
#pragma argument 8 i32 8192
#pragma grid x ((8192 / ${BLOCK_SIZE_M}) * (8192 / ${BLOCK_SIZE_N}))
#pragma launch matmul_kernel
module {
tt.func public @matmul_kernel(%arg0: !tt.ptr<f16> {tt.divisibility = 16 : i32},
%arg1: !tt.ptr<f16> {tt.divisibility = 16 : i32},
%arg2: !tt.ptr<f16> {tt.divisibility = 16 : i32},
%arg3: i32 {tt.divisibility = 16 : i32},
%arg4: i32 {tt.divisibility = 16 : i32},
%arg5: i32 {tt.divisibility = 16 : i32},
%arg6: i32 {tt.divisibility = 16 : i32},
%arg7: i32 {tt.divisibility = 16 : i32},
%arg8: i32 {tt.divisibility = 16 : i32}) attributes {noinline = false} {
%c31_i32 = arith.constant 31 : i32
%cst = arith.constant dense<0.000000e+00> : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf16>
%c255_i32 = arith.constant ${${BLOCK_SIZE_N} - 1} : i32
%c127_i32 = arith.constant ${${BLOCK_SIZE_M} - 1} : i32
%cst_0 = arith.constant dense<0.000000e+00> : tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xf16>
%cst_1 = arith.constant dense<0.000000e+00> : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xf16>
%c1_i32 = arith.constant 1 : i32
%c0_i32 = arith.constant 0 : i32
%cst_2 = arith.constant dense<${BLOCK_SIZE_K}> : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xi32>
%c32_i32 = arith.constant ${BLOCK_SIZE_K} : i32
%c256_i32 = arith.constant ${BLOCK_SIZE_N} : i32
%c128_i32 = arith.constant ${BLOCK_SIZE_M} : i32
%c8_i32 = arith.constant ${GROUP_SIZE_M} : i32
%0 = tt.get_program_id x : i32
%1 = arith.addi %arg3, %c127_i32 : i32
%2 = arith.divsi %1, %c128_i32 : i32
%3 = arith.addi %arg4, %c255_i32 : i32
%4 = arith.divsi %3, %c256_i32 : i32
%5 = arith.muli %4, %c8_i32 : i32
%6 = arith.divsi %0, %5 : i32
%7 = arith.muli %6, %c8_i32 : i32
%8 = arith.subi %2, %7 : i32
%9 = arith.minsi %8, %c8_i32 : i32
%10 = arith.remsi %0, %9 : i32
%11 = arith.addi %7, %10 : i32
%12 = arith.remsi %0, %5 : i32
%13 = arith.divsi %12, %9 : i32
%14 = arith.muli %11, %c128_i32 : i32
%15 = tt.make_range {end = ${BLOCK_SIZE_M} : i32, start = 0 : i32} : tensor<${BLOCK_SIZE_M}xi32>
%16 = tt.splat %14 : i32 -> tensor<${BLOCK_SIZE_M}xi32>
%17 = arith.addi %16, %15 : tensor<${BLOCK_SIZE_M}xi32>
%18 = tt.splat %arg3 : i32 -> tensor<${BLOCK_SIZE_M}xi32>
%19 = arith.remsi %17, %18 : tensor<${BLOCK_SIZE_M}xi32>
%20 = arith.muli %13, %c256_i32 : i32
%21 = tt.make_range {end = ${BLOCK_SIZE_N} : i32, start = 0 : i32} : tensor<${BLOCK_SIZE_N}xi32>
%22 = tt.splat %20 : i32 -> tensor<${BLOCK_SIZE_N}xi32>
%23 = arith.addi %22, %21 : tensor<${BLOCK_SIZE_N}xi32>
%24 = tt.splat %arg4 : i32 -> tensor<${BLOCK_SIZE_N}xi32>
%25 = arith.remsi %23, %24 : tensor<${BLOCK_SIZE_N}xi32>
%26 = tt.make_range {end = ${BLOCK_SIZE_K} : i32, start = 0 : i32} : tensor<${BLOCK_SIZE_K}xi32>
%27 = tt.expand_dims %19 {axis = 1 : i32} : tensor<${BLOCK_SIZE_M}xi32> -> tensor<${BLOCK_SIZE_M}x1xi32>
%28 = tt.splat %arg6 : i32 -> tensor<${BLOCK_SIZE_M}x1xi32>
%29 = arith.muli %27, %28 : tensor<${BLOCK_SIZE_M}x1xi32>
%30 = tt.expand_dims %26 {axis = 0 : i32} : tensor<${BLOCK_SIZE_K}xi32> -> tensor<1x${BLOCK_SIZE_K}xi32>
%31 = tt.broadcast %29 : tensor<${BLOCK_SIZE_M}x1xi32> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xi32>
%32 = tt.broadcast %30 : tensor<1x${BLOCK_SIZE_K}xi32> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xi32>
%33 = arith.addi %31, %32 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xi32>
%34 = tt.splat %arg0 : !tt.ptr<f16> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}x!tt.ptr<f16>>
%35 = tt.addptr %34, %33 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xi32>
%36 = tt.expand_dims %26 {axis = 1 : i32} : tensor<${BLOCK_SIZE_K}xi32> -> tensor<${BLOCK_SIZE_K}x1xi32>
%37 = tt.splat %arg7 : i32 -> tensor<${BLOCK_SIZE_K}x1xi32>
%38 = arith.muli %36, %37 : tensor<${BLOCK_SIZE_K}x1xi32>
%39 = tt.expand_dims %25 {axis = 0 : i32} : tensor<${BLOCK_SIZE_N}xi32> -> tensor<1x${BLOCK_SIZE_N}xi32>
%40 = tt.broadcast %38 : tensor<${BLOCK_SIZE_K}x1xi32> -> tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xi32>
%41 = tt.broadcast %39 : tensor<1x${BLOCK_SIZE_N}xi32> -> tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xi32>
%42 = arith.addi %40, %41 : tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xi32>
%43 = tt.splat %arg1 : !tt.ptr<f16> -> tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}x!tt.ptr<f16>>
%44 = tt.addptr %43, %42 : tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xi32>
%45 = arith.addi %arg5, %c31_i32 : i32
%46 = arith.divsi %45, %c32_i32 : i32
%47 = arith.muli %arg7, %c32_i32 : i32
%48 = tt.splat %47 : i32 -> tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xi32>
%49:3 = scf.for %arg9 = %c0_i32 to %46 step %c1_i32 iter_args(%arg10 = %cst, %arg11 = %35, %arg12 = %44) -> (tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf16>, tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}x!tt.ptr<f16>>) : i32 {
%66 = arith.muli %arg9, %c32_i32 : i32
%67 = arith.subi %arg5, %66 : i32
%68 = tt.splat %67 : i32 -> tensor<1x${BLOCK_SIZE_K}xi32>
%69 = arith.cmpi slt, %30, %68 : tensor<1x${BLOCK_SIZE_K}xi32>
%70 = tt.broadcast %69 : tensor<1x${BLOCK_SIZE_K}xi1> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xi1>
%71 = tt.load %arg11, %70, %cst_1 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}x!tt.ptr<f16>>
%72 = tt.splat %67 : i32 -> tensor<${BLOCK_SIZE_K}x1xi32>
%73 = arith.cmpi slt, %36, %72 : tensor<${BLOCK_SIZE_K}x1xi32>
%74 = tt.broadcast %73 : tensor<${BLOCK_SIZE_K}x1xi1> -> tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xi1>
%75 = tt.load %arg12, %74, %cst_0 : tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}x!tt.ptr<f16>>
%76 = tt.dot %71, %75, %arg10, inputPrecision = tf32 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xf16> * tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xf16> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf16>
%77 = tt.addptr %arg11, %cst_2 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}xi32>
%78 = tt.addptr %arg12, %48 : tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}xi32>
scf.yield %76, %77, %78 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf16>, tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_K}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_K}x${BLOCK_SIZE_N}x!tt.ptr<f16>>
}
%50 = tt.expand_dims %17 {axis = 1 : i32} : tensor<${BLOCK_SIZE_M}xi32> -> tensor<${BLOCK_SIZE_M}x1xi32>
%51 = tt.splat %arg8 : i32 -> tensor<${BLOCK_SIZE_M}x1xi32>
%52 = arith.muli %51, %50 : tensor<${BLOCK_SIZE_M}x1xi32>
%53 = tt.splat %arg2 : !tt.ptr<f16> -> tensor<${BLOCK_SIZE_M}x1x!tt.ptr<f16>>
%54 = tt.addptr %53, %52 : tensor<${BLOCK_SIZE_M}x1x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_M}x1xi32>
%55 = tt.expand_dims %23 {axis = 0 : i32} : tensor<${BLOCK_SIZE_N}xi32> -> tensor<1x${BLOCK_SIZE_N}xi32>
%56 = tt.broadcast %54 : tensor<${BLOCK_SIZE_M}x1x!tt.ptr<f16>> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}x!tt.ptr<f16>>
%57 = tt.broadcast %55 : tensor<1x${BLOCK_SIZE_N}xi32> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xi32>
%58 = tt.addptr %56, %57 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xi32>
%59 = tt.splat %arg3 : i32 -> tensor<${BLOCK_SIZE_M}x1xi32>
%60 = arith.cmpi slt, %50, %59 : tensor<${BLOCK_SIZE_M}x1xi32>
%61 = tt.splat %arg4 : i32 -> tensor<1x${BLOCK_SIZE_N}xi32>
%62 = arith.cmpi slt, %55, %61 : tensor<1x${BLOCK_SIZE_N}xi32>
%63 = tt.broadcast %60 : tensor<${BLOCK_SIZE_M}x1xi1> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xi1>
%64 = tt.broadcast %62 : tensor<1x${BLOCK_SIZE_N}xi1> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xi1>
%65 = arith.andi %63, %64 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xi1>
tt.store %58, %49#0, %65 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}x!tt.ptr<f16>>
tt.return
}
}