-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathMozafariDeep.py
306 lines (278 loc) · 11.9 KB
/
MozafariDeep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#################################################################################
# Reimplementation of the 10-Class Digit Recognition Experiment Performed in: #
# https://arxiv.org/abs/1804.00227 #
# #
# Reference: #
# Mozafari, Milad, et al., #
# "Combining STDP and Reward-Modulated STDP in #
# Deep Convolutional Spiking Neural Networks for Digit Recognition." #
# arXiv preprint arXiv:1804.00227 (2018). #
# #
# Original implementation (in C++/CUDA) is available upon request. #
#################################################################################
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torch.nn.parameter import Parameter
import torchvision
import numpy as np
from SpykeTorch import snn
from SpykeTorch import functional as sf
from SpykeTorch import visualization as vis
from SpykeTorch import utils
from torchvision import transforms
use_cuda = True
class MozafariMNIST2018(nn.Module):
def __init__(self):
super(MozafariMNIST2018, self).__init__()
self.conv1 = snn.Convolution(6, 30, 5, 0.8, 0.05)
self.conv1_t = 15
self.k1 = 5
self.r1 = 3
self.conv2 = snn.Convolution(30, 250, 3, 0.8, 0.05)
self.conv2_t = 10
self.k2 = 8
self.r2 = 1
self.conv3 = snn.Convolution(250, 200, 5, 0.8, 0.05)
self.stdp1 = snn.STDP(self.conv1, (0.004, -0.003))
self.stdp2 = snn.STDP(self.conv2, (0.004, -0.003))
self.stdp3 = snn.STDP(self.conv3, (0.004, -0.003), False, 0.2, 0.8)
self.anti_stdp3 = snn.STDP(self.conv3, (-0.004, 0.0005), False, 0.2, 0.8)
self.max_ap = Parameter(torch.Tensor([0.15]))
self.decision_map = []
for i in range(10):
self.decision_map.extend([i]*20)
self.ctx = {"input_spikes":None, "potentials":None, "output_spikes":None, "winners":None}
self.spk_cnt1 = 0
self.spk_cnt2 = 0
def forward(self, input, max_layer):
input = sf.pad(input.float(), (2,2,2,2), 0)
if self.training:
pot = self.conv1(input)
spk, pot = sf.fire(pot, self.conv1_t, True)
if max_layer == 1:
self.spk_cnt1 += 1
if self.spk_cnt1 >= 500:
self.spk_cnt1 = 0
ap = torch.tensor(self.stdp1.learning_rate[0][0].item(), device=self.stdp1.learning_rate[0][0].device) * 2
ap = torch.min(ap, self.max_ap)
an = ap * -0.75
self.stdp1.update_all_learning_rate(ap.item(), an.item())
pot = sf.pointwise_inhibition(pot)
spk = pot.sign()
winners = sf.get_k_winners(pot, self.k1, self.r1, spk)
self.ctx["input_spikes"] = input
self.ctx["potentials"] = pot
self.ctx["output_spikes"] = spk
self.ctx["winners"] = winners
return spk, pot
spk_in = sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1))
pot = self.conv2(spk_in)
spk, pot = sf.fire(pot, self.conv2_t, True)
if max_layer == 2:
self.spk_cnt2 += 1
if self.spk_cnt2 >= 500:
self.spk_cnt2 = 0
ap = torch.tensor(self.stdp2.learning_rate[0][0].item(), device=self.stdp2.learning_rate[0][0].device) * 2
ap = torch.min(ap, self.max_ap)
an = ap * -0.75
self.stdp2.update_all_learning_rate(ap.item(), an.item())
pot = sf.pointwise_inhibition(pot)
spk = pot.sign()
winners = sf.get_k_winners(pot, self.k2, self.r2, spk)
self.ctx["input_spikes"] = spk_in
self.ctx["potentials"] = pot
self.ctx["output_spikes"] = spk
self.ctx["winners"] = winners
return spk, pot
spk_in = sf.pad(sf.pooling(spk, 3, 3), (2,2,2,2))
pot = self.conv3(spk_in)
spk = sf.fire(pot)
winners = sf.get_k_winners(pot, 1, 0, spk)
self.ctx["input_spikes"] = spk_in
self.ctx["potentials"] = pot
self.ctx["output_spikes"] = spk
self.ctx["winners"] = winners
output = -1
if len(winners) != 0:
output = self.decision_map[winners[0][0]]
return output
else:
pot = self.conv1(input)
spk, pot = sf.fire(pot, self.conv1_t, True)
if max_layer == 1:
return spk, pot
pot = self.conv2(sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1)))
spk, pot = sf.fire(pot, self.conv2_t, True)
if max_layer == 2:
return spk, pot
pot = self.conv3(sf.pad(sf.pooling(spk, 3, 3), (2,2,2,2)))
spk = sf.fire(pot)
winners = sf.get_k_winners(pot, 1, 0, spk)
output = -1
if len(winners) != 0:
output = self.decision_map[winners[0][0]]
return output
def stdp(self, layer_idx):
if layer_idx == 1:
self.stdp1(self.ctx["input_spikes"], self.ctx["potentials"], self.ctx["output_spikes"], self.ctx["winners"])
if layer_idx == 2:
self.stdp2(self.ctx["input_spikes"], self.ctx["potentials"], self.ctx["output_spikes"], self.ctx["winners"])
def update_learning_rates(self, stdp_ap, stdp_an, anti_stdp_ap, anti_stdp_an):
self.stdp3.update_all_learning_rate(stdp_ap, stdp_an)
self.anti_stdp3.update_all_learning_rate(anti_stdp_an, anti_stdp_ap)
def reward(self):
self.stdp3(self.ctx["input_spikes"], self.ctx["potentials"], self.ctx["output_spikes"], self.ctx["winners"])
def punish(self):
self.anti_stdp3(self.ctx["input_spikes"], self.ctx["potentials"], self.ctx["output_spikes"], self.ctx["winners"])
def train_unsupervise(network, data, layer_idx):
network.train()
for i in range(len(data)):
data_in = data[i]
if use_cuda:
data_in = data_in.cuda()
network(data_in, layer_idx)
network.stdp(layer_idx)
def train_rl(network, data, target):
network.train()
perf = np.array([0,0,0]) # correct, wrong, silence
for i in range(len(data)):
data_in = data[i]
target_in = target[i]
if use_cuda:
data_in = data_in.cuda()
target_in = target_in.cuda()
d = network(data_in, 3)
if d != -1:
if d == target_in:
perf[0]+=1
network.reward()
else:
perf[1]+=1
network.punish()
else:
perf[2]+=1
return perf/len(data)
def test(network, data, target):
network.eval()
perf = np.array([0,0,0]) # correct, wrong, silence
for i in range(len(data)):
data_in = data[i]
target_in = target[i]
if use_cuda:
data_in = data_in.cuda()
target_in = target_in.cuda()
d = network(data_in, 3)
if d != -1:
if d == target_in:
perf[0]+=1
else:
perf[1]+=1
else:
perf[2]+=1
return perf/len(data)
class S1C1Transform:
def __init__(self, filter, timesteps = 15):
self.to_tensor = transforms.ToTensor()
self.filter = filter
self.temporal_transform = utils.Intensity2Latency(timesteps)
self.cnt = 0
def __call__(self, image):
if self.cnt % 1000 == 0:
print(self.cnt)
self.cnt+=1
image = self.to_tensor(image) * 255
image.unsqueeze_(0)
image = self.filter(image)
image = sf.local_normalization(image, 8)
temporal_image = self.temporal_transform(image)
return temporal_image.sign().byte()
kernels = [ utils.DoGKernel(3,3/9,6/9),
utils.DoGKernel(3,6/9,3/9),
utils.DoGKernel(7,7/9,14/9),
utils.DoGKernel(7,14/9,7/9),
utils.DoGKernel(13,13/9,26/9),
utils.DoGKernel(13,26/9,13/9)]
filter = utils.Filter(kernels, padding = 6, thresholds = 50)
s1c1 = S1C1Transform(filter)
data_root = "data"
MNIST_train = utils.CacheDataset(torchvision.datasets.MNIST(root=data_root, train=True, download=True, transform = s1c1))
MNIST_test = utils.CacheDataset(torchvision.datasets.MNIST(root=data_root, train=False, download=True, transform = s1c1))
MNIST_loader = DataLoader(MNIST_train, batch_size=1000, shuffle=False)
MNIST_testLoader = DataLoader(MNIST_test, batch_size=len(MNIST_test), shuffle=False)
mozafari = MozafariMNIST2018()
if use_cuda:
mozafari.cuda()
# Training The First Layer
print("Training the first layer")
if os.path.isfile("saved_l1.net"):
mozafari.load_state_dict(torch.load("saved_l1.net"))
else:
for epoch in range(2):
print("Epoch", epoch)
iter = 0
for data,targets in MNIST_loader:
print("Iteration", iter)
train_unsupervise(mozafari, data, 1)
print("Done!")
iter+=1
torch.save(mozafari.state_dict(), "saved_l1.net")
# Training The Second Layer
print("Training the second layer")
if os.path.isfile("saved_l2.net"):
mozafari.load_state_dict(torch.load("saved_l2.net"))
else:
for epoch in range(4):
print("Epoch", epoch)
iter = 0
for data,targets in MNIST_loader:
print("Iteration", iter)
train_unsupervise(mozafari, data, 2)
print("Done!")
iter+=1
torch.save(mozafari.state_dict(), "saved_l2.net")
# initial adaptive learning rates
apr = mozafari.stdp3.learning_rate[0][0].item()
anr = mozafari.stdp3.learning_rate[0][1].item()
app = mozafari.anti_stdp3.learning_rate[0][1].item()
anp = mozafari.anti_stdp3.learning_rate[0][0].item()
adaptive_min = 0
adaptive_int = 1
apr_adapt = ((1.0 - 1.0 / 10) * adaptive_int + adaptive_min) * apr
anr_adapt = ((1.0 - 1.0 / 10) * adaptive_int + adaptive_min) * anr
app_adapt = ((1.0 / 10) * adaptive_int + adaptive_min) * app
anp_adapt = ((1.0 / 10) * adaptive_int + adaptive_min) * anp
# perf
best_train = np.array([0.0,0.0,0.0,0.0]) # correct, wrong, silence, epoch
best_test = np.array([0.0,0.0,0.0,0.0]) # correct, wrong, silence, epoch
# Training The Third Layer
print("Training the third layer")
for epoch in range(680):
print("Epoch #:", epoch)
perf_train = np.array([0.0,0.0,0.0])
for data,targets in MNIST_loader:
perf_train_batch = train_rl(mozafari, data, targets)
print(perf_train_batch)
#update adaptive learning rates
apr_adapt = apr * (perf_train_batch[1] * adaptive_int + adaptive_min)
anr_adapt = anr * (perf_train_batch[1] * adaptive_int + adaptive_min)
app_adapt = app * (perf_train_batch[0] * adaptive_int + adaptive_min)
anp_adapt = anp * (perf_train_batch[0] * adaptive_int + adaptive_min)
mozafari.update_learning_rates(apr_adapt, anr_adapt, app_adapt, anp_adapt)
perf_train += perf_train_batch
perf_train /= len(MNIST_loader)
if best_train[0] <= perf_train[0]:
best_train = np.append(perf_train, epoch)
print("Current Train:", perf_train)
print(" Best Train:", best_train)
for data,targets in MNIST_testLoader:
perf_test = test(mozafari, data, targets)
if best_test[0] <= perf_test[0]:
best_test = np.append(perf_test, epoch)
torch.save(mozafari.state_dict(), "saved.net")
print(" Current Test:", perf_test)
print(" Best Test:", best_test)