-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlens_app.py
80 lines (66 loc) · 2.71 KB
/
lens_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from flask import Flask, request, jsonify
from flask_cors import CORS
import torch
import torch.nn.functional as F
from torch.utils.data.dataloader import DataLoader
from torchvision import transforms
import ground_based_dataset as gbd
import resnet_ssl_model as rsm
from data_transforms import Log10, Clamp, AugmentTranslate, WhitenInput
from run_loop import SNTGRunLoop
torch.manual_seed(770715)
torch.cuda.manual_seed_all(770715)
# data_path = '/home/milesx/datasets/deeplens'
data_path = '/data/mingx/datasets'
test_composed = transforms.Compose([WhitenInput(), Clamp(1e-9, 100)])
cpu_data = gbd.GroundBasedDataset(
data_path, length=1, transform=test_composed, use_cuda=False)
normal_net = rsm.SNTGModel(4)
sntg_net = rsm.SNTGModel(4)
normal_model = 'saved_model/ground_based2019-04-03-15-12.pth'
sntg_model = 'saved_model/ground_based2019-05-17-12-02.pth'
normal_net.load_state_dict(torch.load(normal_model))
sntg_net.load_state_dict(torch.load(sntg_model))
def classify_cpu():
pass
def classify(processor, type, start, length):
# print(processor, type, start, length)
if type == 'normal':
lens_net = normal_net
else:
lens_net = sntg_net
if processor == 'gpu':
# print('cuda used!')
dataset = gbd.GroundBasedDataset(data_path, offset=start, length=length,
transform=test_composed)
data_loader = DataLoader(dataset, batch_size=length,
shuffle=False, pin_memory=False)
run_loop = SNTGRunLoop(lens_net, test_loader=data_loader)
else:
dataset = gbd.GroundBasedDataset(data_path, offset=start, length=length,
transform=test_composed, use_cuda=False)
data_loader = DataLoader(dataset, batch_size=length,
shuffle=False, pin_memory=True)
run_loop = SNTGRunLoop(
lens_net, test_loader=data_loader, has_cuda=False)
# run_loop = SNTGRunLoop(stng_net, test_loader=data_loader)
result, label, time, accuracy = run_loop.test()
return result, label, time, accuracy
app = Flask(__name__)
CORS(app)
@app.route('/')
def hello_world():
return 'Hello, World! Developer!' + str(cpu_data.length)
@app.route('/classify')
def classify_api():
processor = request.args.get('processor').strip()
model = request.args.get('model').strip()
length = request.args.get('length')
start = request.args.get('start')
# return type(length)
result, label, time, accuracy = classify(
processor, model, int(start), int(length))
return jsonify({
'result': result, 'label': label, 'time': time, 'accuracy': accuracy})
if __name__ == "__main__":
app.run(debug=True, port=8080)