-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_loop.py
218 lines (201 loc) · 10.1 KB
/
run_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import datetime
import time
import torch
import torch.nn as nn
import torch.optim as opt
import torch.nn.functional as F
from sklearn.metrics import roc_curve, roc_auc_score
from ema import EMA
class SNTGRunLoop(object):
def __init__(self, net, dataloader=None, params=None, update_fn=None,
eval_loader=None, test_loader=None, has_cuda=True):
if has_cuda:
device = torch.device("cuda:0")
else:
device = torch.device('cpu')
self.net = net.to(device)
self.loader = dataloader
self.eval_loader = eval_loader
self.test_loader = test_loader
self.params = params
self.device = device
# self.net.to(device)
if params is not None:
n_data, num_classes = params['n_data'], params['num_classes']
n_eval_data, batch_size = params['n_eval_data'], params['batch_size']
self.ensemble_pred = torch.zeros(
(n_data, num_classes), device=device)
self.target_pred = torch.zeros(
(n_data, num_classes), device=device)
t_one = torch.ones(())
self.epoch_pred = t_one.new_empty(
(n_data, num_classes), dtype=torch.float32, device=device)
self.epoch_mask = t_one.new_empty(
(n_data), dtype=torch.float32, device=device)
self.train_epoch_loss = \
t_one.new_empty((n_data // batch_size, 4),
dtype=torch.float32, device=device)
self.train_epoch_acc = \
t_one.new_empty((n_data // batch_size), dtype=torch.float32,
device=device)
self.eval_epoch_loss = \
t_one.new_empty((n_eval_data // batch_size, 2),
dtype=torch.float32, device=device)
self.eval_epoch_acc = \
t_one.new_empty((n_eval_data // batch_size, 2),
dtype=torch.float32, device=device)
self.optimizer = opt.Adam(self.net.parameters())
self.update_fn = update_fn
self.ema = EMA(params['polyak_decay'], self.net, has_cuda)
self.unsup_weight = 0.0
# self.loss_fn = nn.CrossEntropyLoss()
def train(self):
# labeled_loss = nn.CrossEntropyLoss()
train_losses, train_accs = [], []
eval_losses, eval_accs = [], []
ema_eval_losses, ema_eval_accs = [], []
for epoch in range(self.params['num_epochs']):
# training phase
self.net.train()
train_time = -time.time()
self.epoch_pred.zero_()
self.epoch_mask.zero_()
# self.epoch_loss.zero_()
self.unsup_weight = self.update_fn(self.optimizer, epoch)
for i, data_batched in enumerate(self.loader, 0):
images, is_lens, mask, indices = \
data_batched['image'], data_batched['is_lens'], \
data_batched['mask'], data_batched['index']
targets = torch.index_select(self.target_pred, 0, indices)
# print(f"y value dimension:{is_lens.size()}")
self.optimizer.zero_grad()
outputs, h_x = self.net(images)
# print(f"output dimension: {outputs.size()}")
predicts = F.softmax(outputs, dim=1)
# update for ensemble
for k, j in enumerate(indices):
self.epoch_pred[j] = predicts[k]
self.epoch_mask[j] = 1.0
# labeled loss
labeled_mask = mask.eq(0)
# loss = self.loss_fn(
# outputs[labeled_mask], is_lens[labeled_mask])
# labeled loss with binary entropy with logits, use one_hot
one_hot = torch.zeros(
len(is_lens[labeled_mask]), is_lens[labeled_mask].max()+1,
device=self.device) \
.scatter_(1, is_lens[labeled_mask].unsqueeze(1), 1.)
loss = F.binary_cross_entropy_with_logits(outputs[labeled_mask],
one_hot)
# one_hot = torch.zeros(
# len(is_lens), is_lens.max() + 1, device=self.device) \
# .scatter_(1, is_lens.unsqueeze(1), 1.)
# loss = F.binary_cross_entropy_with_logits(outputs, one_hot)
# print(loss.item())
self.train_epoch_acc[i] = \
torch.mean(torch.argmax(
outputs[labeled_mask], 1).eq(is_lens[labeled_mask])
.float()).item()
# train_acc = torch.mean(
# torch.argmax(outputs, 1).eq(is_lens).float())
self.train_epoch_loss[i, 0] = loss.item()
# unlabeled loss
unlabeled_loss = torch.mean((predicts - targets)**2)
self.train_epoch_loss[i, 1] = unlabeled_loss.item()
loss += unlabeled_loss * self.unsup_weight
# SNTG loss
if self.params['embed']:
half = int(h_x.size()[0] // 2)
eucd2 = torch.mean((h_x[:half] - h_x[half:])**2, dim=1)
eucd = torch.sqrt(eucd2)
target_hard = torch.argmax(targets, dim=1).int()
merged_tar = torch.where(
mask == 0, target_hard, is_lens.int())
neighbor_bool = torch.eq(
merged_tar[:half], merged_tar[half:])
eucd_y = torch.where(eucd < 1.0, (1.0 - eucd) ** 2,
torch.zeros_like(eucd))
embed_losses = torch.where(neighbor_bool, eucd2, eucd_y)
embed_loss = torch.mean(embed_losses)
self.train_epoch_loss[i, 2] = embed_loss.item()
loss += embed_loss * \
self.unsup_weight * self.params['embed_coeff']
self.train_epoch_loss[i, 3] = loss.item()
loss.backward()
self.optimizer.step()
self.ema.update()
self.ensemble_pred = \
self.params['pred_decay'] * self.ensemble_pred + \
(1 - self.params['pred_decay']) * self.epoch_pred
self.targets_pred = self.ensemble_pred / \
(1.0 - self.params['pred_decay'] ** (epoch + 1))
loss_mean = torch.mean(self.train_epoch_loss, 0)
train_losses.append(loss_mean[3].item())
acc_mean = torch.mean(self.train_epoch_acc)
train_accs.append(acc_mean.item())
print(f"epoch {epoch}, time cosumed: {time.time() + train_time}, "
f"labeled loss: {loss_mean[0].item()}, "
f"unlabeled loss: {loss_mean[1].item()}, "
f"SNTG loss: {loss_mean[2].item()}, "
f"total loss: {loss_mean[3].item()}")
# print(f"epoch {epoch}, time consumed: {time.time() + train_time}, "
# f"labeled loss: {loss_mean[0].item()}")
# eval phase
if self.eval_loader is not None:
# none ema evaluation
self.net.eval()
for i, data_batched in enumerate(self.eval_loader, 0):
images, is_lens = data_batched['image'], \
data_batched['is_lens']
# currently h_x in evalization is not used
eval_logits, _ = self.ema(images)
self.eval_epoch_acc[i, 0] = torch.mean(torch.argmax(
eval_logits, 1).eq(is_lens).float()).item()
# print(f"ema evaluation accuracy: {ema_eval_acc.item()}")
eval_lens = torch.zeros(
len(is_lens), is_lens.max()+1,
device=self.device) \
.scatter_(1, is_lens.unsqueeze(1), 1.)
# eval_loss = self.loss_fn(eval_logits, is_lens)
self.eval_epoch_loss[i, 0] = \
F.binary_cross_entropy_with_logits(
eval_logits, eval_lens).item()
# break
eval_logits, _ = self.net(images)
self.eval_epoch_acc[i, 1] = torch.mean(torch.argmax(
eval_logits, 1).eq(is_lens).float()).item()
# print(f"evaluation accuracy: {eval_acc.item()}")
self.eval_epoch_loss[i, 1] = \
F.binary_cross_entropy_with_logits(
eval_logits, eval_lens).item()
loss_mean = torch.mean(self.eval_epoch_loss, 0)
acc_mean = torch.mean(self.eval_epoch_acc, 0)
ema_eval_accs.append(acc_mean[0].item())
ema_eval_losses.append(loss_mean[0].item())
eval_accs.append(acc_mean[1].item())
eval_losses.append(loss_mean[1].item())
print(f"ema accuracy: {acc_mean[0].item()}"
f"normal accuracy: {acc_mean[1].item()}")
return train_losses, train_accs, eval_losses, eval_accs, \
ema_eval_losses, ema_eval_accs
def test(self):
self.net.eval()
with torch.no_grad():
for i, data_batched in enumerate(self.test_loader, 0):
images, is_lens = data_batched['image'], data_batched['is_lens']
start = time.time()
test_logits, _ = self.net(images)
end = time.time()
result = torch.argmax(
F.softmax(test_logits, dim=1), dim=1)
accuracy = torch.mean(result.eq(is_lens).float()).item()
# return roc_curve(is_lens, test_logits)
return result.tolist(), is_lens.tolist(), end - start, \
accuracy
def test_origin(self):
self.net.eval()
with torch.no_grad():
for i, data_batched in enumerate(self.test_loader, 0):
images, is_lens = data_batched['image'], data_batched['is_lens']
test_logits, _ = self.net(images)
return test_logits, is_lens