This repository has been archived by the owner on Jul 24, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultiplication.fractran
193 lines (144 loc) · 4.3 KB
/
Multiplication.fractran
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Multiplication in FRACTRAN
## The Program
INPUT (n): 2^a * 3^b
OUTPUT: 5^a * b
r2: a // first number
r3: b // second number
r5: Product // resulting product
r7: Temp // aids in the repeated addition
r11,r13: State Beta One and Two // changes to restart addition process
### Pseudocode
while true {
// Fraction A
if (b >= 1 && State Beta One >= 1) {
decrement a and State Beta One
increment Product, Temp, and State Beta Two
// Fraction B
} else if (State Beta Two >= 1) {
decrement State Beta Two
increment State Beta One
// Fraction C
} else if (State Beta One >= 1) {
decrement State Beta One
// Fraction D
} else if (Temp >= 1) {
decrement Temp
increment b
// Fraction E
} else if (a >= 1) {
decrement a
increment State Beta One
// Fraction F
} else if (b >= 1) {
decrement b
} else {
break
}
}
### FRACTRAN
(
5 * 7 * 13 / 3 * 11,
11 / 13,
1 / 11,
3 / 7,
11 / 2,
1 / 3,
)
## Analysis
### States
There are two states: State Alpha and State Beta.
- State Alpha: the default starting state, composed of fractions D, E, and F.
This prepares for the adding state, transferring the contents of r7
(Temp) => r3 (b).
- State Beta: the adding state, composed of fractions A, B, and C. This state
transfers the contents of r3 (b) => r5 (Total) and r7 (Temp).
(State Alpha is represented here as a *lack* of the State Beta flags being set.
You'll notice that the first three fractions contain a State Beta flag in the
denominator, flip-flopping in a way so that they will occur in order, even
with us resetting back to the beginning of the program with a new *n* each
step.)
After decrementing r2, we enter State Beta. Once r3 is empty, it switches back
to State Alpha.
## Examples
### Example 1
We will test that 2 * 2 == 4. Our initial value (n) should be 2^2 * 3^2. Our
result should be r5 == 4.
r2: 2
r3: 2
r5-r13: 0
n: 2^2 * 3^2
Decrement register a and enter State Beta.
E: (2^2 * 3^2) * (11 / 2)
n: 2^1 * 3^2 * 11
Decrement register b and increment Product and Temp.
A: (2^1 * 3^2 * 11^1) * (5 * 7 * 13 / 3 * 11)
n: 2^1 * 3^1 * 5^1 * 7^1 * 13^1
Ensure that we repeat the last step until register b is zero.
B: (2^1 * 3^1 * 5 * 7 * 13) * (11 / 13)
n: 2^1 * 3^1 * 5^1 * 7^1 * 11^1
Decrement register b and increment Product and Temp.
A: (2^1 * 3^1 * 5^1 * 7^1 * 11^1) * (5 * 7 * 13 / 3 * 11)
n: 2^1 * 5^2 * 7^2 * 13^1
Ensure that we repeat the last step until register b is zero.
B: (2 * 5^2 * 7^2 * 13^1) * (11 / 13)
n: 2^1 * 5^2 * 7^2 * 11^1
Exit State Beta, and enter State Alpha.
C: (2 * 5^2 * 7^2 * 11^1) * (1 / 11)
n: 2^1 * 5^2 * 7^2
Decrement Temp and increment register b.
D: (2 * 5^2 * 7^2) * (3 / 7)
n: 2^1 * 3^1 * 5^2 * 7^1
Decrement Temp and increment register b. Temp is now zero.
D: (2^1 * 3^1 * 5^2 * 7^1) * (3 / 7)
n: 2^1 * 3^2 * 5^2
Decrement register a and enter State Beta.
E: (2^1 * 3^2 * 5^2) * (11 / 2)
n: 3^2 * 5^2 * 11
Decrement register b and increment Product and Temp.
A: (3^2 * 5^2 * 11^1) * (5 * 7 * 13 / 3 * 11)
n: 3^1 * 5^3 * 7^1 * 13^1
Ensure that we repeat the last step until register b is zero.
B: (3^1 * 5^3 * 7^1 * 13^1) * (11 / 13)
n: 3^1 * 5^3 * 7^1 * 11^1
Decrement register b and increment Product and Temp.
A: (3^1 * 5^3 * 7^1 * 11^1) * (5 * 7 * 13 / 3 * 11)
n: 5^4 * 7^2 * 13^1
Ensure that we repeat the last step until register b is zero.
B: (5^4 * 7^2 * 13^1) * (11 / 13)
n: 5^4 * 7^2 * 11^1
Exit State Beta, and enter State Alpha.
C: (5^4 * 7^2 * 11^1) * (1 / 11)
n: 5^4 * 7^2
Decrement Temp and increment register b.
D: (5^4 * 7^2) * (3 / 7)
n: 3^1 * 5^4 * 7^1
Decrement Temp and increment register b.
D: (3 * 5^4 * 7^1) * (3 / 7)
n: 3^2 * 5^4
Decrement register b.
F: (3^2 * 5^4) * (1 / 3)
n: 3^1 * 5^4
Decrement register b. b is now zero.
F: (3^1 * 5^4) * (1 / 3)
n: 5^4
HALT
### Example 2
We will test that 2 * 0 == 0. Our initial value (n) should be 2^2 * 3^0. Our
result should be r5 == 0.
r2: 2
r3: 0
r5-r13: 0
n: 2^2 * 3^0
Decrement register a and enter State Beta.
E: (2^2) * (11 / 2)
n: 2^1 * 11^1
Exit State Beta, and enter State Alpha.
C: (2^1 * 11^1) * (1 / 11)
n: 2^1
Decrement register a and enter State Beta.
E: (2^1) * (11 / 2)
n: 11^1
Exit State Beta, and enter State Alpha.
C: (11^1) * (1 / 11)
n: 1 or 5^0
HALT