This repository has been archived by the owner on Jun 22, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 8
/
preprocessing.py
203 lines (166 loc) · 6.2 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import bson
from math import ceil
import io
import numpy as np
from PIL import Image
from sklearn.base import BaseEstimator, TransformerMixin
import keras.backend as K
from keras.preprocessing.image import ImageDataGenerator, Iterator, img_to_array
from keras.utils.np_utils import to_categorical
class LabelEncoderMissing(BaseEstimator, TransformerMixin):
def fit(self, y):
y = np.asarray(y).astype(str)
self.classes_ = np.append(np.unique(y), 'other')
return self
def transform(self, y):
y = np.asarray(y).astype(str)
classes = np.unique(y)
set_diff = np.setdiff1d(classes, self.classes_)
if len(set_diff) > 0:
np.place(y, np.in1d(y, set_diff), 'other')
return np.searchsorted(self.classes_, y)
def inverse_transform(self, y):
y = np.asarray(y)
y_inv = self.classes_[y]
other_mask = y_inv == 'other'
np.place(y_inv, other_mask, -999)
return y_inv.astype(int)
class LabelEncoderWrapper(BaseEstimator, TransformerMixin):
def __init__(self, base_estimator):
self.base_estimator = base_estimator
self.encoder = LabelEncoderMissing()
def fit(self, X, y, validation_data=None, img_dataset_filepath=None):
y_ = self.encoder.fit_transform(y)
if validation_data is not None:
X_valid, y_valid = validation_data
y_valid_ = self.encoder.transform(y_valid)
else:
raise NotImplementedError
self.base_estimator.fit(X=X, y=y_, validation_data=(X_valid, y_valid_),
img_dataset_filepath=img_dataset_filepath)
return self
def predict(self, X, img_dataset_filepath=None):
y_pred_ = self.base_estimator.predict(X=X, img_dataset_filepath=img_dataset_filepath)
y_pred = self.encoder.inverse_transform(y_pred_)
return y_pred
class KerasDataLoader(BaseEstimator, TransformerMixin):
def __init__(self,
num_classes,
target_size,
batch_size):
self.num_classes = num_classes
self.target_size = (target_size, target_size)
self.batch_size = batch_size
def fit(self, X, y=None, validation_data=None, img_dataset_filepath=None):
return self
def transform(self, X, y=None, validation_data=None, img_dataset_filepath=None):
"""Todo:
pass datagen and flow args from experiment config
"""
if y is None:
y = np.zeros((X.shape[0], 1))
datagen_args = {'rescale': 1. / 255}
flow_args = {
'num_classes': self.num_classes,
'target_size': self.target_size,
'batch_size': self.batch_size,
'shuffle': False
}
else:
datagen_args = {
'rescale': 1. / 255,
'rotation_range': 10,
'width_shift_range': 0.2,
'height_shift_range': 0.2,
'shear_range': 0.2,
'zoom_range': 0.2,
'channel_shift_range': 0.2,
'fill_mode': 'nearest'
}
flow_args = {
'num_classes': self.num_classes,
'target_size': self.target_size,
'batch_size': self.batch_size,
'shuffle': True
}
X_flow, X_steps = build_bson_datagen(X, y, img_dataset_filepath, datagen_args, flow_args)
if validation_data is not None:
X_valid, y_valid = validation_data
valid_flow, valid_steps = build_bson_datagen(X_valid, y_valid, img_dataset_filepath, datagen_args,
flow_args)
else:
valid_flow, valid_steps = None, None
return {'X': (X_flow, X_steps),
'valid': (valid_flow, valid_steps)}
def build_bson_datagen(X, y, bson_filepath, datagen_args, flow_args):
datagen = bsonImageDataGenerator(**datagen_args)
flow = datagen.flow_from_bson(X, y, bson_filepath, **flow_args)
steps = ceil(X.shape[0] / flow_args['batch_size'])
return flow, steps
class bsonImageDataGenerator(ImageDataGenerator):
def flow_from_bson(self, X, y, bson_filepath, num_classes,
target_size=(64, 64), color_mode='rgb', channel_order='tf',
batch_size=32, shuffle=True, seed=None):
return bsonIterator(X, y, bson_filepath, num_classes, self,
target_size, color_mode, channel_order,
batch_size, shuffle, seed)
class bsonIterator(Iterator):
"""Note:
Tensorflow channels order only rgb only
"""
def __init__(self, X, y, bson_filepath, num_classes,
image_data_generator,
target_size, color_mode, channel_order,
batch_size, shuffle, seed):
self.X = X
self.y = y
self.bson_filepath = bson_filepath
self.num_classes = num_classes
self.image_data_generator = image_data_generator
self.target_size = tuple(target_size)
self.color_mode = color_mode
self.channel_order = channel_order
self.image_shape = self.target_size + (3,)
self.data_format = K.image_data_format()
self.samples = X.shape[0]
super().__init__(self.samples, batch_size, shuffle, seed)
def _get_batches_of_transformed_samples(self, index_array):
index_array_ = index_array[0]
batch_x = np.zeros((len(index_array_),) + self.image_shape, dtype=K.floatx())
batch_y_id = self.y[index_array_]
batch_y = to_categorical(batch_y_id, num_classes=self.num_classes)
with open(self.bson_filepath, 'rb') as bson_file:
grayscale = self.color_mode == 'grayscale'
# build batch of image data
for i, j in enumerate(index_array_):
img_metadata = self.X.iloc[j]
img = load_bson_img(bson_file, img_metadata, grayscale=grayscale, target_size=self.target_size)
x = img_to_array(img, data_format=self.data_format)
x = self.image_data_generator.random_transform(x)
x = self.image_data_generator.standardize(x)
batch_x[i] = x
return batch_x, batch_y
def next(self):
"""For python 2.x.
# Returns
The next batch.
"""
# Keeps under lock only the mechanism which advances
# the indexing of each batch.
with self.lock:
index_array = next(self.index_generator)
# The transformation of images is not under thread lock
# so it can be done in parallel
return self._get_batches_of_transformed_samples(index_array)
def load_bson_img(bson_file, img_metadata, grayscale=False, target_size=(64, 64)):
"""
Note:
This implementation is just taking the first image for the product, sometimes there are up to 4 images
"""
bson_file.seek(img_metadata['offset'])
item_data = bson_file.read(img_metadata['length'])
item = bson.BSON(item_data).decode()
img_byte = (item['imgs'][0]['picture'])
img = Image.open(io.BytesIO(img_byte))
img = img.resize(target_size)
return img