forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
binaryTreeMaximumPathSum.java
95 lines (82 loc) · 2.57 KB
/
binaryTreeMaximumPathSum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
// Source : https://oj.leetcode.com/problems/binary-tree-maximum-path-sum/
// Inspired by : http://www.jiuzhang.com/solutions/binary-tree-maximum-path-sum/
// Author : Lei Cao
// Date : 2015-10-08
/**********************************************************************************
*
* Given a binary tree, find the maximum path sum.
*
* For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections.
* The path does not need to go through the root.
*
*
*
* For example:
* Given the below binary tree,
*
* 1
* / \
* 2 3
*
* Return 6.
*
*
**********************************************************************************/
package binaryTreeMaximumPathSum;
import java.util.Arrays;
import java.util.Collections;
/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
*/
public class binaryTreeMaximumPathSum {
/**
* @param root: The root of binary tree.
* @return: An integer.
*/
public int maxPathSum(TreeNode root) {
Result r = helper(root);
return r.sumToLeaf;
}
private class Result {
int sumToRoot = 0;
int sumToLeaf = 0;
Result(int sumToRoot, int sumToLeaf) {
this.sumToRoot = sumToRoot;
this.sumToLeaf = sumToLeaf;
}
}
// [9,6,-3,null,null,-6,2,null,null,2,null,-6,-6,-6]
private Result helper(TreeNode root) {
if (root == null) {
return new Result(0, Integer.MIN_VALUE);
}
if (root.left == null && root.right == null) {
return new Result(root.val, root.val);
}
Result left = helper(root.left);
Result right = helper(root.right);
// @todo refactor the logic below
int sumToRoot = root.val;
int sumsOfSTR = Math.max(left.sumToRoot, right.sumToRoot);
if (sumsOfSTR > 0) {
sumToRoot = root.val + sumsOfSTR;
}
int sumOfTree = root.val + left.sumToRoot + right.sumToRoot;
int sumToLeft = root.val + left.sumToRoot;
int sumToRight = root.val + right.sumToRoot;
int max1 = Math.max(root.val, sumOfTree);
int max2 = Math.max(sumToLeft, sumToRight);
int max3 = Math.max(left.sumToLeaf, right.sumToLeaf);
int max4 = Math.max(max1, max2);
int max = Math.max(max3, max4);
return new Result(sumToRoot, max);
}
}