diff --git a/.github/workflows/functional_tests.yaml b/.github/workflows/functional_tests.yaml index fb8a7ea1..4be0f73d 100644 --- a/.github/workflows/functional_tests.yaml +++ b/.github/workflows/functional_tests.yaml @@ -25,8 +25,8 @@ jobs: - name: Install dependencies run: | python -m pip install --upgrade pip - python -m pip install flake8 pytest qiskit-aer qiskit-ibmq-provider if [ -f requirements.txt ]; then pip install -r requirements.txt; fi + python -m pip install flake8 pytest qiskit-aer qiskit_ibm_runtime - name: Lint with flake8 run: | # stop the build if there are Python syntax errors or undefined names diff --git a/requirements.txt b/requirements.txt index 88a06d50..a43fc839 100644 --- a/requirements.txt +++ b/requirements.txt @@ -8,7 +8,7 @@ opt_einsum pathos>=0.2.7 pylatexenc>=2.10 pyscf>=2.0.1 -qiskit>=0.39.0 +qiskit>=0.39.0,<1.0.0 recommonmark scipy>=1.5.2 diff --git a/torchquantum/util/utils.py b/torchquantum/util/utils.py index 58ef4e03..caeee471 100644 --- a/torchquantum/util/utils.py +++ b/torchquantum/util/utils.py @@ -30,7 +30,7 @@ import torch.nn as nn import torch.nn.functional as F from opt_einsum import contract -from qiskit import IBMQ +from qiskit_ibm_runtime import QiskitRuntimeService from qiskit.exceptions import QiskitError from qiskit.providers.aer.noise.device.parameters import gate_error_values from torchpack.utils.config import Config @@ -738,7 +738,6 @@ def get_success_rate(properties, transpiled_circ): return success_rate - def get_provider(backend_name, hub=None): """ Get the provider object for a specific backend from IBM Quantum. @@ -753,13 +752,9 @@ def get_provider(backend_name, hub=None): # mass-inst-tech-1 or MIT-1 if backend_name in ["ibmq_casablanca", "ibmq_rome", "ibmq_bogota", "ibmq_jakarta"]: if hub == "mass" or hub is None: - provider = IBMQ.get_provider( - hub="ibm-q-research", group="mass-inst-tech-1", project="main" - ) + provider = QiskitRuntimeService(channel = "ibm_quantum", instance = "ibm-q-research/mass-inst-tech-1/main") elif hub == "mit": - provider = IBMQ.get_provider( - hub="ibm-q-research", group="MIT-1", project="main" - ) + provider = QiskitRuntimeService(channel = "ibm_quantum", instance = "ibm-q-research/MIT-1/main") else: raise ValueError(f"not supported backend {backend_name} in hub " f"{hub}") elif backend_name in [ @@ -769,33 +764,25 @@ def get_provider(backend_name, hub=None): "ibmq_guadalupe", "ibmq_montreal", ]: - provider = IBMQ.get_provider(hub="ibm-q-ornl", group="anl", project="csc428") + provider = QiskitRuntimeService(channel = "ibm_quantum", instance = "ibm-q-ornl/anl/csc428") else: if hub == "mass" or hub is None: try: - provider = IBMQ.get_provider( - hub="ibm-q-research", group="mass-inst-tech-1", project="main" - ) + provider = QiskitRuntimeService(channel = "ibm_quantum", instance = "ibm-q-research/mass-inst-tech-1/main") except QiskitError: # logger.warning(f"Cannot use MIT backend, roll back to open") logger.warning(f"Use the open backend") - provider = IBMQ.get_provider(hub="ibm-q", group="open", project="main") + provider = QiskitRuntimeService(channel = "ibm_quantum", instance = "ibm-q/open/main") elif hub == "mit": - provider = IBMQ.get_provider( - hub="ibm-q-research", group="MIT-1", project="main" - ) + provider = QiskitRuntimeService(channel = "ibm_quantum", instance = "ibm-q-research/MIT-1/main") else: - provider = IBMQ.get_provider(hub="ibm-q", group="open", project="main") + provider = QiskitRuntimeService(channel = "ibm_quantum", instance = "ibm-q/open/main") return provider def get_provider_hub_group_project(hub="ibm-q", group="open", project="main"): - provider = IBMQ.get_provider( - hub=hub, - group=group, - project=project, - ) + provider = QiskitRuntimeService(channel = "ibm_quantum", instance = f"{hub}/{group}/{project}") return provider @@ -1085,4 +1072,4 @@ def clone_model(model_to_clone):#i have to note:this clone_model function was ma state_dict_minus_shift[key] += shift_rate gradient_of_par[idx-2] = (expectation_plus_shift - expectation_minus_shift) * 0.5 - return gradient_of_par \ No newline at end of file + return gradient_of_par