Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Maybe there's a bug in 'apply_unitary_density_bmm' function? #254

Open
TuDouuuuu opened this issue Mar 27, 2024 · 3 comments
Open

Maybe there's a bug in 'apply_unitary_density_bmm' function? #254

TuDouuuuu opened this issue Mar 27, 2024 · 3 comments
Assignees

Comments

@TuDouuuuu
Copy link

https://github.com/mit-han-lab/torchquantum/blob/c8a1ab64e2c0e9a6b570e2307e5ad10a5560f2b1/torchquantum/functional/gate_wrapper.py
LIne 301

    """
    Compute \rho U^\dagger 
    """
    matdag = torch.conj(mat)
    matdag = matdag.type(C_DTYPE).to(density.device)

maybe matdag = torch.conj(mat) is not $U^\dagger$.

@TuDouuuuu
Copy link
Author

I use $\ket{\psi}=\ket{0} \oplus \ket{0}$, and apply Y gate in $q0$.

import torch
import numpy as np
import torchquantum as tq
import torchquantum.functional as tqf


def apply_unitary_density_bmm(density, mat, wires):
    """Apply the unitary to the DensityMatrix using torch.bmm method.
    Args:
        state (torch.Tensor): The statevector.
        mat (torch.Tensor): The unitary matrix of the operation.
        wires (int or List[int]): Which qubit the operation is applied to.
    Returns:
        torch.Tensor: The new statevector.
    """
    device_wires = wires
    n_qubit = density.dim() // 2
    mat = mat.type(torch.complex64).to(density.device)
    """
    Compute U \rho
    """
    devices_dims = [w + 1 for w in device_wires]
    permute_to = list(range(density.dim()))
    for d in sorted(devices_dims, reverse=True):
        del permute_to[d]
    permute_to = permute_to[:1] + devices_dims + permute_to[1:]
    permute_back = list(np.argsort(permute_to))
    original_shape = density.shape
    permuted = density.permute(permute_to).reshape(
        [original_shape[0], mat.shape[-1], -1])

    if len(mat.shape) > 2:
        # both matrix and state are in batch mode
        new_density = mat.bmm(permuted)
    else:
        # matrix no batch, state in batch mode
        bsz = permuted.shape[0]
        expand_shape = [bsz] + list(mat.shape)
        new_density = mat.expand(expand_shape).bmm(permuted)
    new_density = new_density.view(original_shape).permute(permute_back)
    """
    Compute \rho U^\dagger 
    """
    matdag = torch.conj(mat)
    matdag = matdag.type(torch.complex64).to(density.device)

    devices_dims_dag = [n_qubit + w + 1 for w in device_wires]
    permute_to_dag = list(range(density.dim()))
    for d in sorted(devices_dims_dag, reverse=True):
        del permute_to_dag[d]
    permute_to_dag = permute_to_dag + devices_dims_dag
    permute_back_dag = list(np.argsort(permute_to_dag))
    permuted_dag = new_density.permute(permute_to_dag).reshape(
        [original_shape[0], -1, matdag.shape[0]])

    if len(matdag.shape) > 2:
        # both matrix and state are in batch mode
        new_density = permuted_dag.bmm(matdag)
    else:
        # matrix no batch, state in batch mode
        bsz = permuted_dag.shape[0]
        expand_shape = [bsz] + list(matdag.shape)
        new_density = permuted_dag.bmm(matdag.expand(expand_shape))
    new_density = new_density.view(original_shape).permute(permute_back_dag)
    return new_density


density = torch.zeros(2, 2, 2, 2,  dtype=torch.complex64)
density[0,0,0,0] = 1
mat = tq.PauliY().matrix
print(apply_unitary_density_bmm(density=density, mat=mat, wires=[0]))

The output is :

tensor([[[[ 0.+0.j,  0.+0.j],
          [ 0.+0.j,  0.+0.j]],

         [[ 0.+0.j, -1.+0.j],
          [ 0.+0.j,  0.+0.j]]],


        [[[ 0.+0.j,  0.+0.j],
          [ 0.+0.j,  0.+0.j]],

         [[ 0.+0.j,  0.+0.j],
          [ 0.+0.j,  0.+0.j]]]])

But after applying Y gate, maybe the density is $diag(0, 1, 0, 0)$.

@01110011011101010110010001101111
Copy link
Collaborator

Hi, thanks for letting us know! We are actively working on rebooting our density matrix in the branch dev-zhuoyang-dm and I've added @yezhuoyang to the issue to keep him in the loop.

Feel free to open a PR to that branch as well so it's integrated in the next DM release!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants