Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

pretrained models incorrect size #49

Open
CarrierDiagnostics opened this issue Apr 13, 2022 · 0 comments
Open

pretrained models incorrect size #49

CarrierDiagnostics opened this issue Apr 13, 2022 · 0 comments

Comments

@CarrierDiagnostics
Copy link

CarrierDiagnostics commented Apr 13, 2022

Sadly the pretrained models aren't the right size except refiner.pth.tar which appears to be an untrained model now

model.load_state_dict(checkpoint, strict = False) File "C:\Python37\lib\site-packages\torch\nn\modules\module.py", line 1407, in load_state_dict self.__class__.__name__, "\n\t".join(error_msgs))) RuntimeError: Error(s) in loading state_dict for DataParallel: size mismatch for module.layer1.0.conv1.weight: copying a param with shape torch.Size([64, 64, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 64, 1, 1]). size mismatch for module.layer1.1.conv1.weight: copying a param with shape torch.Size([64, 64, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 256, 1, 1]). size mismatch for module.layer1.2.conv1.weight: copying a param with shape torch.Size([64, 64, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 256, 1, 1]). size mismatch for module.layer2.0.conv1.weight: copying a param with shape torch.Size([128, 64, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 256, 1, 1]). size mismatch for module.layer2.0.downsample.0.weight: copying a param with shape torch.Size([128, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([512, 256, 1, 1]). size mismatch for module.layer2.0.downsample.1.weight: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for module.layer2.0.downsample.1.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for module.layer2.0.downsample.1.running_mean: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for module.layer2.0.downsample.1.running_var: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for module.layer2.1.conv1.weight: copying a param with shape torch.Size([128, 128, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 512, 1, 1]). size mismatch for module.layer2.2.conv1.weight: copying a param with shape torch.Size([128, 128, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 512, 1, 1]). size mismatch for module.layer2.3.conv1.weight: copying a param with shape torch.Size([128, 128, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 512, 1, 1]). size mismatch for module.layer3.0.conv1.weight: copying a param with shape torch.Size([256, 128, 3, 3]) from checkpoint, the shape in current model is torch.Size([256, 512, 1, 1]). size mismatch for module.layer3.0.downsample.0.weight: copying a param with shape torch.Size([256, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([1024, 512, 1, 1]). size mismatch for module.layer3.0.downsample.1.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([1024]). size mismatch for module.layer3.0.downsample.1.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([1024]). size mismatch for module.layer3.0.downsample.1.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([1024]). size mismatch for module.layer3.0.downsample.1.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([1024]). size mismatch for module.layer3.1.conv1.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([256, 1024, 1, 1]). size mismatch for module.layer3.2.conv1.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([256, 1024, 1, 1]). size mismatch for module.layer3.3.conv1.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([256, 1024, 1, 1]). size mismatch for module.layer3.4.conv1.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([256, 1024, 1, 1]). size mismatch for module.layer3.5.conv1.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([256, 1024, 1, 1]). size mismatch for module.layer4.0.conv1.weight: copying a param with shape torch.Size([512, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([512, 1024, 1, 1]). size mismatch for module.layer4.0.downsample.0.weight: copying a param with shape torch.Size([512, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([2048, 1024, 1, 1]). size mismatch for module.layer4.0.downsample.1.weight: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([2048]). size mismatch for module.layer4.0.downsample.1.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([2048]). size mismatch for module.layer4.0.downsample.1.running_mean: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([2048]). size mismatch for module.layer4.0.downsample.1.running_var: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([2048]). size mismatch for module.layer4.1.conv1.weight: copying a param with shape torch.Size([512, 512, 3, 3]) from checkpoint, the shape in current model is torch.Size([512, 2048, 1, 1]). size mismatch for module.layer4.2.conv1.weight: copying a param with shape torch.Size([512, 512, 3, 3]) from checkpoint, the shape in current model is torch.Size([512, 2048, 1, 1]). size mismatch for module.deconv_layers.0.weight: copying a param with shape torch.Size([512, 256, 4, 4]) from checkpoint, the shape in current model is torch.Size([2048, 256, 4, 4]).

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant