Skip to content

Latest commit

 

History

History
253 lines (200 loc) · 9.15 KB

README.md

File metadata and controls

253 lines (200 loc) · 9.15 KB

particleslogic

A prolog application of basic interactions between elementary particles.

Purpose

The main idea behind this project is to create a system that will tell you when an interaction of the form A + B --> C + D + E + ... or a decay of the form A --> B + C + D + ..., where A, B, C, D, E are elementary particles, is possible or not.

For the time being, you can consult the knowledge base, do basic simple (or filtered) queries, and check if an interaction or decay is possible at a higher level. When I say a higher level, I mean that I'm not taking into account the quarks, nor the quantum numbers such as strangeness, topness, botomness and charm.

You can check here the interactions and decays that pass or don't pass the tests with this library, and here the queries.

For future ideas and goals check the CONTRIBUTING page.

Prerequisites

You're expected to have GnuProlog or SWI-Prolog installed.

On Ubuntu:

sudo apt install gprolog

or

sudo apt install swi-prolog

How to use the library

Consulting the knowledge base

First example

Go inside the particleslogic folder from a terminal and get a Prolog REPL running.

From inside the prolog REPL (gprolog or swipl):

?- consult('src/particles.pl').

Now, let's say that you want to find out the mass of the electron. You'll type:

?- mass(electron, M).

And you'll get:

M = 0.511.

Second example

Let's say that you want to find the lifetime of all the particles.

You'll type:

?- lifetime(Particle, Lifetime).

And you'll get (it will stop when the base runs out of particles, or when you press "." or enter instead of ";"):

Particle = electron,
Lifetime = 'Stable' ;
Particle = positron,
Lifetime = 'Stable' ;
Particle = electron_neutrino,
Lifetime = 'Stable' ;
Particle = anti_electron_neutrino,
Lifetime = 'Stable' ;
Particle = muon,
Lifetime = 2.19e-6 ;
Particle = anti_muon,
Lifetime = 2.19e-6 ;
Particle = muon_neutrino,
Lifetime = 'Stable' ;
Particle = tau,
Lifetime = 3.3e-13 .

Third example

Querying and filtering the database:

Let's say that you want to find all the particles with mass greater than 30 MeV/c^2 and less than 200 MeV/c^2:

?- mass(Particle, Mass), Mass > 30, Mass < 200.

Then we get:

Particle = muon,
Mass = 105.7 ;
Particle = anti_muon,
Mass = 105.7 ;
Particle = pion,
Mass = 139.6 ;
Particle = anti_pion,
Mass = 139.6 ;
Particle = pion0,
Mass = 135.0 ;
Particle = strange,
Mass = 95 ;
Particle = anti_strange,
Mass = 95 ;
false.

Checking if an interaction or decay is possible

Interactions

First you'll have to load the laws.pl library:

?- consult('src/laws.pl').

Then, to check say the interaction electron + positron --> photon + photon you type in the REPL:

?- possible_interaction_first_level([electron, positron], [photon,photon]).
true.

Decays

Once you have loaded the laws.pl library you can check if a decay is possible:

For example, let's check the muon decay: muon --> electron + muon_neutrino + anti_electron_neutrino if it is possible:

?- possible_interaction_first_level([muon], [electron, muon_neutrino, anti_electron_neutrino]).
true.

Particles included

Particle name (symbol)

Leptons

  • electron $\large (e^{-}$)
  • positron $\large (e^{+}$)
  • electron_neutrino ($\large \nu_e$)
  • anti_electron_neutrino ($\large \bar{\nu}_e$)
  • muon ($\large \mu^{-}$)
  • anti_muon ($\large \mu^{+}$)
  • muon_neutrino ($\large \nu_{\mu}$)
  • anti_muon_neutrino ($\large \bar{\nu}_{\mu}$)
  • tau ($\large \tau^{-}$)
  • anti_tau ($\large \tau^{+}$)
  • tau_neutrino ($\large \nu_\tau$)
  • anti_tau_neutrino ($\large \bar{\nu}_\tau$)

Hadrons

Mesons

  • pion ($\large \pi^{+}$)
  • anti_pion ($\large \pi^{-}$)
  • pion0 ($\large \pi^{0}$)
  • kaon ($\large K^{+}$)
  • anti_kaon ($\large K^{-}$)
  • kaon_s0 ($\large K^{0}_{S}$)
  • anti_kaon_s0 ($\large \bar{K}^{0}_{S}$)
  • kaon_l0 ($\large K^{0}_{L}$)
  • anti_kaon_l0 ($\large \bar{K}^{0}_{L}$)
  • eta ($\large \eta$)
  • eta1 ($\large \eta^{'}$)

Baryons

  • proton ($\large p$)
  • anti_proton ($\large \bar{p}$)
  • neutron ($\large n$)
  • lambda ($\large \Lambda^{0}$)
  • anti_lambda ($\large \bar{\Lambda}^{0}$)
  • sigma ($\large \Sigma^{+}]$)
  • anti_sigma ($\large \bar{\Sigma}^{-}$)
  • sigma0 ($\large \Sigma^{0}$)
  • anti_sigma0 ($\large \bar{\Sigma}^{0}$)
  • sigma_minus ($\large \Sigma^{-}$)
  • anti_sigma_minus ($\large \bar{\Sigma}^{+}$)
  • delta ($\large \Delta^{++}$)
  • anti_delta ($\large \bar{\Delta}$)
  • delta_plus ($\large \Delta^{+}$)
  • anti_delta_plus ($\large \bar{\Delta}^{-}$)
  • delta0 ($\large \Delta^{0}$)
  • anti_delta0 ($\large \bar{\Delta}^{0}$)
  • delta_minus ($\large \Delta^{-}$)
  • anti_delta_minus ($\large \bar{\Delta}^{+}$)
  • xi0 ($\large \Xi^{0}$)
  • anti_xi0 ($\large \bar{\Xi}^{0}$)
  • xi_minus ($\large \Xi^{-}$)
  • anti_xi_minus ($\large \Xi^{+}$)
  • omega ($\large \Omega^{-}$)
  • anti_omega ($\large \Omega^{+}$)

Quarks

  • up ($\large u$)
  • anti_up ($\large \bar{u}$)
  • down ($\large d$)
  • anti_down ($\large \bar{d}$)
  • strange ($\large s$)
  • anti_strange ($\large \bar{s}$)
  • charm ($\large c$)
  • anti_charm ($\large \bar{c}$)
  • bottom ($\large b$)
  • anti_bottom ($\large \bar{b}$)
  • top ($\large t$)
  • anti_top ($\large \bar{t}$)

Gauge Bosons

  • photon ($\large \gamma$)
  • gluon ($\large g$)
  • z0_boson ($\large Z^{0}$)
  • w_plus_boson ($\large W^{+}$)
  • w_minus_boson ($\large W^{-}$)

Scalar Boson

  • higgs ($\large H^{0}$)

Bibliography

  • Ivan Bratko, Prolog programming for artificial intelligence, Addison Wesley, Year: 2001, ISBN: 9780201403756, 0201403757
  • Raymond A. Serway, Clement J. Moses, Curt A. Moyer, Modern physics, Thomson Brooks Cole, Year: 2005, ISBN: 9780534493394, 0534493394
  • PROLOG Facts, Rules and Queries
  • O. Raggos, Logical programming and Prolog, greek notes (rarred pdfs), University of Patras, 2013
  • John Malpas, PROLOG: A Relational Language and Its Applications, Prentice-Hall, Year: 1987, ISBN: 978-0137308057, 0137308051
  • David Griffiths, Introduction to Elementary Particles, Willey-VCH, Year:2008, ISBN:978-3527406012, 9783527406012
  • Jun John Sakurai, Invariance Principles and Elementary Particles, Princeton University Press, Year: 1964

References

Contributing

Kindly do see CONTRIBUTING and CODE OF CONDUCT for more information.

License