-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
78 lines (60 loc) · 3.19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import pandas as pd
import sklearn, sklearn.linear_model, sklearn.metrics, sklearn.model_selection, sklearn.neural_network
import scipy, scipy.stats, collections
def evaluate(data, labels, title, regions, test_region, plot=True, seed=0, method="linear", target_str="", usemlp=False):
X = data
y = labels.astype(float)
# gss = sklearn.model_selection.GroupShuffleSplit(train_size=0.5,test_size=0.5, random_state=seed)
# train_inds, test_inds = next(gss.split(X, y, groups))
test_region_mask = (regions == test_region)
train_inds = np.where(~test_region_mask)[0]
test_inds = np.where(test_region_mask)[0]
X_train, X_test, y_train, y_test = X[train_inds], X[test_inds], y.iloc[train_inds], y.iloc[test_inds]
#print("X_train", X_train.shape, "X_test", X_test.shape)
res = {}
if method=="linear":
model = sklearn.linear_model.LinearRegression()
if (method=="logistic") and not usemlp:
model = sklearn.linear_model.LogisticRegression()
if usemlp:
model = sklearn.neural_network.MLPClassifier(random_state=seed, early_stopping=True)
model = model.fit(X_train, y_train)
y_pred = model.predict(X_test)
pdiff = y_test - y_pred
res["name"] = title
res["test_region"] = test_region
if method=="linear":
res["R^2"] = sklearn.metrics.r2_score(y_test, y_pred)
res["Correlation"] = scipy.stats.pearsonr(y_test,y_pred)[0]
if np.isnan(res["Correlation"]): res["Correlation"] = 0
res["MAE"] = sklearn.metrics.mean_absolute_error(y_test, y_pred)
#res["MSE"] = sklearn.metrics.mean_squared_error(y_test, y_pred)
res["# test samples"] = int(len(y_test))
if method=="logistic":
res["AUROC"] = sklearn.metrics.roc_auc_score(y_test, y_pred)
res["AUPRC"] = sklearn.metrics.average_precision_score(y_test, y_pred)
res["# test samples"] = collections.Counter(y_test == 1)
if usemlp:
#res["# params"] = "{}+{}".format(len(np.concatenate([a.flatten() for a in model.coefs_])), len(np.concatenate([a.flatten() for a in model.intercepts_])))
res["# params"] = "{}".format(len(np.concatenate([a.flatten() for a in model.coefs_]))+len(np.concatenate([a.flatten() for a in model.intercepts_])))
res["method"] = "MLP"
res["name"] = res["name"] + " (MLP)"
else:
res["# params"] = "{}+1".format(len(model.coef_.flatten()))
res["method"] = method
if plot:
fig, ax = plt.subplots(figsize=(6,4), dpi=100)
for x,y,yp in zip(y_test,y_test,y_pred):
plt.plot((x,x),(y,yp),color='red',marker='')
pmax = int(np.max([y_pred.max(), y_test.max()]))+2
plt.plot(range(pmax),range(pmax), c="gray", linestyle="--")
plt.xlim(0,pmax-1)
plt.ylim(0,pmax-1)
plt.scatter(y_test, y_pred);
plt.ylabel("Model prediction ($y_{pred}$)")
plt.xlabel("Ground Truth ($y_{true}$)")
plt.title(title);
plt.text(0.01,0.97, "$R^2$={0:0.2f}".format(res["R^2"])+ "\n"+
"Correlation={0:0.2f}".format(res["Correlation"]), ha='left', va='top', transform=plt.gca().transAxes)
return res#, pdiff