forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
immaTensorCoreGemm.cu
655 lines (536 loc) · 24.4 KB
/
immaTensorCoreGemm.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// CUDA sample demonstrating a integer GEMM computation using the Warp Matrix
// Multiply and Accumulate API.
// In this program, the compute_gemm kernel computes the result of a matrix
// multiplication and addition: D = alpha * A * B + beta * C. The dimensions of
// both C and D matrices are M_GLOBAL x N_GLOBAL. The A matrix is M_GLOBAL x
// K_GLOBAL (row-major), the B matrix is K_GLOBAL x N_GLOBAL (column-major). In
// that kernel, each CTA computes one 128 x 128 tile of the resulting matrix per
// iteration. When the tile is computed, the CTA stores it to the global memory
// and begins a new iteration, selecting a new 128 x 128 tile to compute.
// Each CTA consists of eight warps. For the 128 x 128 tile, each warp computes
// eight 16 x 16 subtiles, organized in a 2 x 4 two-dimensional array. Warps
// compute the 16 x 16 subtiles using nvcuda::wmma::mma_sync operations by
// moving through the K_GLOBAL dimension of the A and B matrices and
// accumulating the intermediate result in the local thread state.
// There are a number of simple optimizations used in the algorithm:
// - The CTA copies the 128 x 128 tile of the C matrix from the global memory to
// shared memory. After that is done, each warp loads the C matrix fragments
// from shared memory, thus avoiding a random global memory access.
// - On each internal iteration, the CTA copies a portion of the A and B
// matrices from
// global memory to shared memory. After that, all warps in the CTA reuse the
// A and B data from shared memory, thus reducing the number of data copies
// from global memory.
// - The portions of the A and B matrices are stored in shared memory with an
// additional
// padding (skew) to reduce the number of shared memory access bank conflicts.
// (See a detailed explanation near the SKEW_HALF macro definition.)
// - When the CTA finishes computing the tiles of the resulting matrix, each
// warp stores
// its subtiles to shared memory. The CTA then copies the shared memory
// contents to global memory, again avoiding redundant random global memory
// accesses.
// - Note that the CTA tile size is chosen to maximize the GPU register
// utilization,
// but carefully enough to avoid local memory use.
#include <assert.h>
#include <cuda.h>
#include <mma.h>
#include <stdio.h>
// helper functions and utilities to work with CUDA
#include <helper_cuda.h>
#include <helper_functions.h>
// Externally configurable parameters.
#ifndef CPU_DEBUG
// Set this to 1 to verify the correctness of the GPU-computed matrix.
#define CPU_DEBUG 0
#endif
#ifndef SHARED_MEMORY_LIMIT_64K
// Set this to 0 to use more than 64 Kb of shared memory to cache data, to
// improve the performance of the computations on GPU.
// Note that you need a GPU that can have more than 64 Kb of shared memory
// per multiprocessor.
#define SHARED_MEMORY_LIMIT_64K 1
#endif
// GPU configuration.
#define WARP_SIZE 32
// MMA matrix tile dimensions.
#define M 16
#define N 16
#define K 16
#define WMMA_M 16
#define WMMA_N 16
#define WMMA_K 16
// GEMM configuration.
#define M_TILES 256
#define N_TILES 256
#define K_TILES 256
#define M_GLOBAL (M * M_TILES)
#define N_GLOBAL (N * N_TILES)
#define K_GLOBAL (K * K_TILES)
#define C_LAYOUT wmma::mem_row_major
// Implementation constants.
#define WARPS_PER_BLOCK 8
#define THREADS_PER_BLOCK (WARP_SIZE * WARPS_PER_BLOCK)
#if SHARED_MEMORY_LIMIT_64K
// With only 64 Kb shared memory available, we can fit two 8-tile chunks of
// the A and B matrix data, that are 16 * 16 * 8 * 8 * 2 = 32 Kb each
// (i.e. two 8x8 arrays of tiles of 16x16 uint8_t-typed elements per CTA).
// But we cannot account the 8 Kb total skew overhead, without which the
// performance would be severely impacted. So we choose to reduce the chunk size
// in half, i.e. the amount of A and B matrix data we cache in shared memory.
// Accordingly, this doubles the number of outer iterations across the global K
// dimension, which only slightly impacts the performance.
#define CHUNK_K 8
#else
#define CHUNK_K 16
#endif
#define CHUNK_LINE_BYTES (CHUNK_K * K * sizeof(uint8_t))
#define WARP_COPY_BYTES (WARP_SIZE * sizeof(int4))
#define CHUNK_COPY_LINES_PER_WARP (WARP_COPY_BYTES / CHUNK_LINE_BYTES)
#define CHUNK_COPY_LINE_LANES (WARP_SIZE / CHUNK_COPY_LINES_PER_WARP)
#define BLOCK_ROW_WARPS 2
#define BLOCK_COL_WARPS 4
#define WARP_ROW_TILES 4
#define WARP_COL_TILES 2
#define BLOCK_ROW_TILES (WARP_ROW_TILES * BLOCK_ROW_WARPS)
#define BLOCK_COL_TILES (WARP_COL_TILES * BLOCK_COL_WARPS)
#define GLOBAL_MEM_STRIDE N_GLOBAL
#define SHMEM_STRIDE (N * BLOCK_ROW_TILES)
#define SHMEM_OFFSET (N * WARP_ROW_TILES)
// The macro below is used to shift rows of the A matrix and columns of the B
// matrix in shared memory to minimize possible bank conflicts. Before
// performing the nvcuda::wmma::mma_sync operation, the warp must load the
// matrix data using the nvcuda::wmma::load_matrix_sync operation. Although the
// memory access pattern is not specified for that function, each lane in the
// warp can read one or multiple matrix elements from different matrix rows or
// columns. For shared memory, such access can result in bank conflicts if
// different rows / columns of the matrix map to the same bank. By shifting each
// row and column by a few bytes, we make sure that they map to different banks,
// thus reducing the number of possible bank conflicts. The number of 32
// one-byte "uint8_t" elements is chosen as the minimum possible shift because
// we must keep each row and column 256-bit aligned, as required by
// nvcuda::wmma::load_matrix_sync.
#define SKEW_UINT8 32
#define checkKernelErrors(expr) \
do { \
expr; \
\
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
printf("Line %d: '%s' failed: %s\n", __LINE__, #expr, \
cudaGetErrorString(__err)); \
abort(); \
} \
} while (0)
using namespace nvcuda;
__host__ void init_host_matrices(uint8_t *a, uint8_t *b, int *c) {
for (int i = 0; i < M_GLOBAL; i++) {
for (int j = 0; j < K_GLOBAL; j++) {
a[i * K_GLOBAL + j] = (uint8_t)(rand() % 3);
}
}
for (int i = 0; i < N_GLOBAL; i++) {
for (int j = 0; j < K_GLOBAL; j++) {
b[i * K_GLOBAL + j] = (uint8_t)(rand() % 3);
}
}
for (int t = 0; t < M_GLOBAL * N_GLOBAL; t++) {
c[t] = (rand() % 3);
}
}
__global__ void compute_gemm_imma(const uint8_t *A, const uint8_t *B,
const int *C, int *D, int alpha, int beta) {
extern __shared__ uint8_t shmem[][CHUNK_K * K + SKEW_UINT8];
// Warp and lane identification.
const unsigned int warpId = threadIdx.x / WARP_SIZE;
const unsigned int laneId = threadIdx.x % WARP_SIZE;
// Offset in shared memory from which the B matrix is stored.
const size_t shmem_idx_b_off = BLOCK_COL_TILES * M;
// This pointer is used to access the C and D matrix tiles this warp computes.
int *shmem_warp_tile_ptr = (int *)&shmem[0][0] +
(warpId / 2) * SHMEM_STRIDE * K * 2 +
(warpId % 2) * SHMEM_OFFSET;
// This pointer is used to stream the C and D matrices block-wide tile to and
// from shared memory.
int *shmem_warp_stream_ptr = (int *)&shmem[0][0] + warpId * SHMEM_STRIDE * K;
// Adjust the beta scaler, as it'll be multiplied by alpha at the end of
// each tile computation. Technically this is not generally correct (may
// result in a loss of precision). Zero still needs to be specially handled
// though.
beta /= alpha;
// Each CTA slides along the 128 x 128 tiles from the top left corner of the
// matrix to the right and down, and selects the next tile to compute. Once
// there's no such tile, all warps in this CTA exit.
for (unsigned int block_pos = blockIdx.x;; block_pos += gridDim.x) {
const unsigned int block_tile_i =
((block_pos * BLOCK_ROW_TILES) / N_TILES) * (BLOCK_COL_TILES);
const unsigned int block_tile_j = (block_pos * BLOCK_COL_TILES) % N_TILES;
// Stop when there are no more D matrix tiles to compute in this CTA.
if (block_tile_i >= M_TILES) {
break;
}
// This warp's pointer to the C matrix data to copy memory from to shared
// memory.
const size_t gmem_idx =
(block_tile_i + warpId) * M * GLOBAL_MEM_STRIDE + block_tile_j * N;
const int *src_gmem_warp_stream_ptr = &C[gmem_idx];
// Stream multiple C tiles to shared memory.
#pragma unroll
for (int i = 0; i < K; i++) {
typedef int4 copy_t;
*((copy_t *)(shmem_warp_stream_ptr + SHMEM_STRIDE * i) + laneId) =
*((copy_t *)(src_gmem_warp_stream_ptr + GLOBAL_MEM_STRIDE * i) +
laneId);
}
__syncthreads();
// These fragments will accumulate the result of A and B matrix fragment
// multiplications along the K_GLOBAL dimension.
wmma::fragment<wmma::accumulator, M, N, K, int> c[WARP_COL_TILES]
[WARP_ROW_TILES];
// Load the C matrix tiles into fragments from shared memory.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
const int *tile_ptr =
shmem_warp_tile_ptr + i * SHMEM_STRIDE * K + j * N;
wmma::load_matrix_sync(c[i][j], tile_ptr, SHMEM_STRIDE, C_LAYOUT);
}
}
__syncthreads();
// Scale the C matrix.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
#pragma unroll
for (int t = 0; t < c[i][j].num_elements; t++) {
c[i][j].x[t] *= beta;
}
}
}
// Select what warp copies what matrix to shared memory.
// Warps 0-3 copy the A matrix, warps 4-7 copy the B matrix.
const uint8_t *warp_ptr = (warpId < 4) ? (&A[block_tile_i * M * K_GLOBAL] +
M * K_GLOBAL * (warpId % 4) * 2)
: (&B[block_tile_j * N * K_GLOBAL] +
N * K_GLOBAL * (warpId % 4) * 2);
// Go through the global K dimension by a fixed step at a time.
#pragma unroll
for (int tile_k = 0; tile_k < K_TILES; tile_k += CHUNK_K) {
// Copy slices of the A and B matrices to shared memory.
// The first half of the warps in the CTA copy the A matrix, the rest copy
// the B matrix.
size_t shmem_idx =
warpId < (WARPS_PER_BLOCK / 2)
? (M * (warpId % (WARPS_PER_BLOCK / 2)) * 2)
: (N * (warpId % (WARPS_PER_BLOCK / 2)) * 2 + shmem_idx_b_off);
// First half of the warp copies the first row / column of the matrix,
// the second half of the warp copies the next.
int4 *lane_ptr = (int4 *)(warp_ptr + tile_k * K +
(laneId / CHUNK_COPY_LINE_LANES) * K_GLOBAL) +
(laneId % CHUNK_COPY_LINE_LANES);
// Shift the second half of the warp to the next row / column in the
// shared memory.
shmem_idx += laneId / CHUNK_COPY_LINE_LANES;
#pragma unroll
for (int i = 0; i < ((WARP_SIZE / 2) / CHUNK_COPY_LINES_PER_WARP) * 2;
i++) {
// Copy 16 bytes at once in each lane.
*((int4 *)&shmem[shmem_idx][0] + (laneId % CHUNK_COPY_LINE_LANES)) =
*lane_ptr;
// Advance the global memory pointer and the shared memory index.
lane_ptr = (int4 *)((uint8_t *)lane_ptr +
K_GLOBAL * CHUNK_COPY_LINES_PER_WARP);
shmem_idx += CHUNK_COPY_LINES_PER_WARP;
}
__syncthreads();
// Compute a grid of C matrix tiles in each warp.
#pragma unroll
for (int k_step = 0; k_step < CHUNK_K; k_step++) {
wmma::fragment<wmma::matrix_a, M, N, K, uint8_t, wmma::row_major>
a[WARP_COL_TILES];
wmma::fragment<wmma::matrix_b, M, N, K, uint8_t, wmma::col_major>
b[WARP_ROW_TILES];
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
size_t shmem_idx_a = (warpId / 2) * M * 2 + (i * M);
const uint8_t *tile_ptr = &shmem[shmem_idx_a][k_step * K];
wmma::load_matrix_sync(a[i], tile_ptr, K * CHUNK_K + SKEW_UINT8);
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
if (i == 0) {
// Load the B matrix fragment once, because it is going to be
// reused against the other A matrix fragments.
size_t shmem_idx_b = shmem_idx_b_off +
(WARP_ROW_TILES * N) * (warpId % 2) +
(j * N);
const uint8_t *tile_ptr = &shmem[shmem_idx_b][k_step * K];
wmma::load_matrix_sync(b[j], tile_ptr, K * CHUNK_K + SKEW_UINT8);
}
wmma::mma_sync(c[i][j], a[i], b[j], c[i][j]);
}
}
}
__syncthreads();
}
// Store the D fragments to shared memory.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
#pragma unroll
// Uniform, point-wise transformations of ALL fragment elements by ALL
// threads in the warp are well-defined even though element indices
// within fragment storage are not defined.
for (int t = 0; t < c[i][j].num_elements; t++) c[i][j].x[t] *= alpha;
int *tile_ptr = shmem_warp_tile_ptr + i * SHMEM_STRIDE * K + j * N;
wmma::store_matrix_sync(tile_ptr, c[i][j], SHMEM_STRIDE, C_LAYOUT);
}
}
__syncthreads();
// Now that shared memory contains all the D tiles, stream them to global
// memory.
int *dst_gmem_warp_stream_ptr = &D[gmem_idx];
#pragma unroll
for (int i = 0; i < K; i++) {
*((int4 *)(dst_gmem_warp_stream_ptr + GLOBAL_MEM_STRIDE * i) + laneId) =
*((int4 *)(shmem_warp_stream_ptr + SHMEM_STRIDE * i) + laneId);
}
__syncthreads();
}
}
// Performs an MxNxK GEMM (C=alpha*A*B + beta*C) assuming:
// 1) Matrices are packed in memory.
// 2) M, N and K are multiples of 16.
// 3) Neither A nor B are transposed.
// Note: This is a less performant version of the compute_gemm_imma kernel. It
// is designed for
// demonstration purposes only to show the CUDA WMMA API use without
// relying on availability of the shared memory.
__global__ void simple_wmma_gemm_imma(const uint8_t *a, const uint8_t *b,
const int *c, int *d, int m_ld, int n_ld,
int k_ld, int alpha, int beta) {
// Leading dimensions. Packed with no transpositions.
int lda = m_ld;
int ldb = k_ld;
int ldc = n_ld;
// Tile using a 2D grid
int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
// Declare the fragments
wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, uint8_t,
wmma::row_major>
a_frag;
wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, uint8_t,
wmma::col_major>
b_frag;
wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, int> acc_frag;
wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, int> c_frag;
wmma::fill_fragment(acc_frag, 0.0f);
// Loop over k
for (int i = 0; i < k_ld; i += WMMA_K) {
int aCol = i;
int aRow = warpM * WMMA_M;
int bCol = i;
int bRow = warpN * WMMA_N;
// Bounds checking
if (aRow < m_ld && aCol < k_ld && bRow < k_ld && bCol < n_ld) {
// Load the inputs
wmma::load_matrix_sync(a_frag, a + aCol + aRow * lda, lda);
wmma::load_matrix_sync(b_frag, b + bCol + bRow * ldb, ldb);
// Perform the matrix multiplication
wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
}
}
// Load in the current value of c, scale it by beta, and add this our result
// scaled by alpha
int cCol = warpN * WMMA_N;
int cRow = warpM * WMMA_M;
if (cRow < m_ld && cCol < n_ld) {
wmma::load_matrix_sync(c_frag, c + cCol + cRow * ldc, ldc,
wmma::mem_row_major);
for (int i = 0; i < c_frag.num_elements; i++) {
c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
}
// Store the output
wmma::store_matrix_sync(d + cCol + cRow * ldc, c_frag, ldc,
wmma::mem_row_major);
}
}
__host__ void matMultiplyOnHost(uint8_t *A, uint8_t *B, int *C, int alpha,
int beta, int numARows, int numAColumns,
int numBRows, int numBColumns, int numCRows,
int numCColumns) {
for (int i = 0; i < numCRows; i++) {
for (int j = 0; j < numCColumns; j++) {
int temp = 0;
for (int k = 0; k < numAColumns; k++) {
temp += A[i * numAColumns + k] * B[j * numBRows + k];
}
C[i * numCColumns + j] = temp * alpha + beta * C[i * numCColumns + j];
}
}
}
int main(int argc, char **argv) {
printf("Initializing...\n");
int dev = findCudaDevice(argc, (const char **)argv);
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, dev));
// Tensor cores require a GPU of Volta (SM72) architecture or higher.
if (deviceProp.major < 7 || (deviceProp.major <= 7 && deviceProp.minor < 2)) {
printf(
"immaTensorCoreGemm requires SM 7.2 or higher to use Tensor Cores. "
"Exiting...\n");
exit(EXIT_WAIVED);
}
printf("M: %d (%d x %d)\n", M_GLOBAL, M, M_TILES);
printf("N: %d (%d x %d)\n", N_GLOBAL, N, N_TILES);
printf("K: %d (%d x %d)\n", K_GLOBAL, K, K_TILES);
uint8_t *A_h = NULL;
uint8_t *B_h = NULL;
int *C_h = NULL;
#if CPU_DEBUG
int *result_hD = NULL;
int *result_host = NULL;
#endif
A_h = (uint8_t *)malloc(sizeof(uint8_t) * M_GLOBAL * K_GLOBAL);
B_h = (uint8_t *)malloc(sizeof(uint8_t) * K_GLOBAL * N_GLOBAL);
C_h = (int *)malloc(sizeof(int) * M_GLOBAL * N_GLOBAL);
#if CPU_DEBUG
result_hD = (int *)malloc(sizeof(int) * M_GLOBAL * N_GLOBAL);
result_host = (int *)malloc(sizeof(int) * M_GLOBAL * N_GLOBAL);
#endif
uint8_t *A = NULL;
uint8_t *B = NULL;
int *C = NULL;
int *D = NULL;
checkCudaErrors(
cudaMalloc(reinterpret_cast<void **>(&A), sizeof(uint8_t) * M_GLOBAL * K_GLOBAL));
checkCudaErrors(
cudaMalloc(reinterpret_cast<void **>(&B), sizeof(uint8_t) * N_GLOBAL * K_GLOBAL));
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&C), sizeof(int) * M_GLOBAL * N_GLOBAL));
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&D), sizeof(int) * M_GLOBAL * N_GLOBAL));
assert(((unsigned long long)A) % 128 == 0);
assert(((unsigned long long)B) % 128 == 0);
assert(((unsigned long long)C) % 128 == 0);
assert(((unsigned long long)D) % 128 == 0);
init_host_matrices(A_h, B_h, C_h);
checkCudaErrors(cudaMemcpy(A, A_h, sizeof(uint8_t) * M_GLOBAL * K_GLOBAL,
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(B, B_h, sizeof(uint8_t) * N_GLOBAL * K_GLOBAL,
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(C, C_h, sizeof(int) * M_GLOBAL * N_GLOBAL,
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemset(D, 0, sizeof(int) * M_GLOBAL * N_GLOBAL));
printf("Preparing data for GPU...\n");
assert(((unsigned long long)A) % 128 == 0);
assert(((unsigned long long)B) % 128 == 0);
assert(((unsigned long long)C) % 128 == 0);
assert(((unsigned long long)D) % 128 == 0);
enum {
// Compute the right amount of shared memory to request.
// We need shared memory to hold per-CTA C and D matrix tiles, and to cache
// per-CTA chunks
// of the A and B matrices. Therefore, the right amount to request is the
// maximum of those
// two numbers.
SHMEM_SZ = MAX(sizeof(uint8_t) * (BLOCK_COL_TILES * M) *
(CHUNK_K * K + SKEW_UINT8) * 2,
M * (BLOCK_ROW_WARPS * WARP_ROW_TILES) * N *
(BLOCK_COL_WARPS * WARP_COL_TILES) * sizeof(int))
};
printf("Required shared memory size: %lu Kb\n", SHMEM_SZ / 1024UL);
int alpha = 1;
int beta = 1;
cudaEvent_t start, stop;
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
checkCudaErrors(cudaEventRecord(start));
// If enough shared memory available on the GPU use high performant kernel
if (deviceProp.sharedMemPerMultiprocessor >= SHMEM_SZ) {
printf("Computing... using high performance kernel compute_gemm_imma \n");
checkCudaErrors(cudaFuncSetAttribute(
compute_gemm_imma, cudaFuncAttributeMaxDynamicSharedMemorySize,
SHMEM_SZ));
checkKernelErrors(
(compute_gemm_imma<<<deviceProp.multiProcessorCount, THREADS_PER_BLOCK,
SHMEM_SZ>>>(A, B, C, D, alpha, beta)));
#if CPU_DEBUG
checkCudaErrors(cudaMemcpy(result_hD, D, sizeof(int) * M_GLOBAL * N_GLOBAL,
cudaMemcpyDeviceToHost));
#endif
} else {
dim3 gridDim;
dim3 blockDim;
// blockDim.x must be a multiple of warpSize
// 128x4 means we have 16 warps and a block computes a 64x64 output tile
blockDim.x = 128;
blockDim.y = 4;
gridDim.x = (M_GLOBAL + (WMMA_M * blockDim.x / 32 - 1)) /
(WMMA_M * blockDim.x / 32);
gridDim.y = (N_GLOBAL + WMMA_N * blockDim.y - 1) / (WMMA_N * blockDim.y);
printf("Computing... using simple_wmma_gemm_imma kernel\n");
simple_wmma_gemm_imma<<<gridDim, blockDim>>>(A, B, C, D, M_GLOBAL, N_GLOBAL,
K_GLOBAL, alpha, beta);
#if CPU_DEBUG
checkCudaErrors(cudaMemcpy(result_hD, D, sizeof(int) * M_GLOBAL * N_GLOBAL,
cudaMemcpyDeviceToHost));
#endif
}
checkCudaErrors(cudaEventRecord(stop));
checkCudaErrors(cudaEventSynchronize(stop));
#if CPU_DEBUG
printf("Verifying correctness of the computations...\n");
memcpy(result_host, C_h, sizeof(int) * M_GLOBAL * N_GLOBAL);
matMultiplyOnHost(A_h, B_h, result_host, alpha, beta, M_GLOBAL, K_GLOBAL,
K_GLOBAL, N_GLOBAL, M_GLOBAL, N_GLOBAL);
for (int i = 0; i < N_GLOBAL * M_GLOBAL; i++) {
if (abs(result_hD[i] - result_host[i]) > 0) {
printf("mismatch i=%d result_hD=%d result_host=%d\n", i, result_hD[i],
result_host[i]);
}
}
free(result_host);
free(result_hD);
#endif
float milliseconds = 0;
checkCudaErrors(cudaEventElapsedTime(&milliseconds, start, stop));
printf("Time: %f ms\n", milliseconds);
printf("TOPS: %.2f\n", (((double)M_GLOBAL * N_GLOBAL * K_GLOBAL * 2)/(milliseconds/1000.)) / 1e12);
free(A_h);
free(B_h);
free(C_h);
checkCudaErrors(cudaFree(reinterpret_cast<void *>(A)));
checkCudaErrors(cudaFree(reinterpret_cast<void *>(B)));
checkCudaErrors(cudaFree(reinterpret_cast<void *>(C)));
checkCudaErrors(cudaFree(reinterpret_cast<void *>(D)));
return EXIT_SUCCESS;
}