forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simpleCUBLASXT.cpp
301 lines (249 loc) · 8.47 KB
/
simpleCUBLASXT.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* This example demonstrates how to use the CUBLAS library
* by scaling an array of floating-point values on the device
* and comparing the result to the same operation performed
* on the host.
*/
/* Includes, system */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* Includes, cuda */
#include <cublasXt.h>
#include <cuda_runtime.h>
#include <helper_cuda.h>
/* Matrix size */
//#define N (275)
#define N (1024)
// Restricting the max used GPUs as input matrix is not so large
#define MAX_NUM_OF_GPUS 2
/* Host implementation of a simple version of sgemm */
static void simple_sgemm(int n, float alpha, const float *A, const float *B,
float beta, float *C) {
int i;
int j;
int k;
for (i = 0; i < n; ++i) {
for (j = 0; j < n; ++j) {
float prod = 0;
for (k = 0; k < n; ++k) {
prod += A[k * n + i] * B[j * n + k];
}
C[j * n + i] = alpha * prod + beta * C[j * n + i];
}
}
}
void findMultipleBestGPUs(int &num_of_devices, int *device_ids) {
// Find the best CUDA capable GPU device
int current_device = 0;
int device_count;
checkCudaErrors(cudaGetDeviceCount(&device_count));
typedef struct gpu_perf_t {
uint64_t compute_perf;
int device_id;
} gpu_perf;
gpu_perf *gpu_stats = (gpu_perf *)malloc(sizeof(gpu_perf) * device_count);
cudaDeviceProp deviceProp;
int devices_prohibited = 0;
while (current_device < device_count) {
cudaGetDeviceProperties(&deviceProp, current_device);
// If this GPU is not running on Compute Mode prohibited,
// then we can add it to the list
int sm_per_multiproc;
if (deviceProp.computeMode != cudaComputeModeProhibited) {
if (deviceProp.major == 9999 && deviceProp.minor == 9999) {
sm_per_multiproc = 1;
} else {
sm_per_multiproc =
_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor);
}
gpu_stats[current_device].compute_perf =
(uint64_t)deviceProp.multiProcessorCount * sm_per_multiproc *
deviceProp.clockRate;
gpu_stats[current_device].device_id = current_device;
} else {
devices_prohibited++;
}
++current_device;
}
if (devices_prohibited == device_count) {
fprintf(stderr,
"gpuGetMaxGflopsDeviceId() CUDA error:"
" all devices have compute mode prohibited.\n");
exit(EXIT_FAILURE);
} else {
gpu_perf temp_elem;
// Sort the GPUs by highest compute perf.
for (int i = 0; i < current_device - 1; i++) {
for (int j = 0; j < current_device - i - 1; j++) {
if (gpu_stats[j].compute_perf < gpu_stats[j + 1].compute_perf) {
temp_elem = gpu_stats[j];
gpu_stats[j] = gpu_stats[j + 1];
gpu_stats[j + 1] = temp_elem;
}
}
}
for (int i = 0; i < num_of_devices; i++) {
device_ids[i] = gpu_stats[i].device_id;
}
}
free(gpu_stats);
}
/* Main */
int main(int argc, char **argv) {
cublasStatus_t status;
float *h_A;
float *h_B;
float *h_C;
float *h_C_ref;
float *d_A = 0;
float *d_B = 0;
float *d_C = 0;
float alpha = 1.0f;
float beta = 0.0f;
int n2 = N * N;
int i;
float error_norm;
float ref_norm;
float diff;
cublasXtHandle_t handle;
int *devices = NULL;
int num_of_devices = 0;
checkCudaErrors(cudaGetDeviceCount(&num_of_devices));
if (num_of_devices > MAX_NUM_OF_GPUS) {
num_of_devices = MAX_NUM_OF_GPUS;
}
devices = (int *)malloc(sizeof(int) * num_of_devices);
findMultipleBestGPUs(num_of_devices, devices);
cudaDeviceProp deviceProp;
printf("Using %d GPUs\n", num_of_devices);
for (i = 0; i < num_of_devices; i++) {
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devices[i]));
printf("GPU ID = %d, Name = %s \n", devices[i], deviceProp.name);
}
/* Initialize CUBLAS */
printf("simpleCUBLASXT test running..\n");
status = cublasXtCreate(&handle);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr, "!!!! CUBLASXT initialization error\n");
return EXIT_FAILURE;
}
/* Select devices for use in CUBLASXT math functions */
status = cublasXtDeviceSelect(handle, num_of_devices, devices);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr, "!!!! CUBLASXT device selection error\n");
return EXIT_FAILURE;
}
/* Optional: Set a block size for CUBLASXT math functions */
status = cublasXtSetBlockDim(handle, 64);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr, "!!!! CUBLASXT set block dimension error\n");
return EXIT_FAILURE;
}
/* Allocate host memory for the matrices */
h_A = (float *)malloc(n2 * sizeof(h_A[0]));
if (h_A == 0) {
fprintf(stderr, "!!!! host memory allocation error (A)\n");
return EXIT_FAILURE;
}
h_B = (float *)malloc(n2 * sizeof(h_B[0]));
if (h_B == 0) {
fprintf(stderr, "!!!! host memory allocation error (B)\n");
return EXIT_FAILURE;
}
h_C_ref = (float *)malloc(n2 * sizeof(h_C[0]));
if (h_C_ref == 0) {
fprintf(stderr, "!!!! host memory allocation error (C_ref)\n");
return EXIT_FAILURE;
}
h_C = (float *)malloc(n2 * sizeof(h_C[0]));
if (h_C == 0) {
fprintf(stderr, "!!!! host memory allocation error (C)\n");
return EXIT_FAILURE;
}
/* Fill the matrices with test data */
for (i = 0; i < n2; i++) {
h_A[i] = rand() / (float)RAND_MAX;
h_B[i] = rand() / (float)RAND_MAX;
h_C[i] = rand() / (float)RAND_MAX;
h_C_ref[i] = h_C[i];
}
/* Performs operation using plain C code */
simple_sgemm(N, alpha, h_A, h_B, beta, h_C_ref);
/* Performs operation using cublas */
status = cublasXtSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, N, N, N, &alpha, h_A,
N, h_B, N, &beta, h_C, N);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr, "!!!! kernel execution error.\n");
return EXIT_FAILURE;
}
/* Check result against reference */
error_norm = 0;
ref_norm = 0;
for (i = 0; i < n2; ++i) {
diff = h_C_ref[i] - h_C[i];
error_norm += diff * diff;
ref_norm += h_C_ref[i] * h_C_ref[i];
}
error_norm = (float)sqrt((double)error_norm);
ref_norm = (float)sqrt((double)ref_norm);
if (fabs(ref_norm) < 1e-7) {
fprintf(stderr, "!!!! reference norm is 0\n");
return EXIT_FAILURE;
}
/* Memory clean up */
free(h_A);
free(h_B);
free(h_C);
free(h_C_ref);
if (cudaFree(d_A) != cudaSuccess) {
fprintf(stderr, "!!!! memory free error (A)\n");
return EXIT_FAILURE;
}
if (cudaFree(d_B) != cudaSuccess) {
fprintf(stderr, "!!!! memory free error (B)\n");
return EXIT_FAILURE;
}
if (cudaFree(d_C) != cudaSuccess) {
fprintf(stderr, "!!!! memory free error (C)\n");
return EXIT_FAILURE;
}
/* Shutdown */
status = cublasXtDestroy(handle);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr, "!!!! shutdown error (A)\n");
return EXIT_FAILURE;
}
if (error_norm / ref_norm < 1e-6f) {
printf("simpleCUBLASXT test passed.\n");
exit(EXIT_SUCCESS);
} else {
printf("simpleCUBLASXT test failed.\n");
exit(EXIT_FAILURE);
}
}