-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchapter_2+3_theoryCA_networkstructure.py
846 lines (767 loc) · 51.8 KB
/
chapter_2+3_theoryCA_networkstructure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
"""
Chapter 2+3: Theory of Comparative Advantage and Network Structure of Trade
===========================================================================
Graphs and Plots
----------------
1. Graphs and Plots used in Section 3
a. Mcp Matrices (Sorted in Different Ways)
b. Proximity Matrices (Sorted in Different Ways)
c. DEU RCA Vector Sorted by PCI
Trade Inefficiency Plots
------------------------
1. Plots that support Trade Inefficiency Section
Seriation - R
-------------
1. Prepare Simple Cross Section Dataset for R [Yr 2012]
a. Trade Flows
b. RCA Values
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pyeconlab import CPExportData, ProductLevelExportSystem
from pyeconlab.trade.util import attach_attributes
from pyeconlab.wdi import WDI
from dataset_info import TARGET_DATASET_DIR, CHAPTER_RESULTS, SOURCE_DIR
#-Setup Common Data-#
WDI_DIR = SOURCE_DIR["wdi"]
wdi = WDI(source_dir=WDI_DIR)
#-------------------#
#-Execution Control-#
#-------------------#
PLOTS = True
INEFFICIENT_STUDY = True
SERIATION = True
#------------------#
#-Plots and Charts-#
#------------------#
if PLOTS:
#-Year:2000-#
DATASET_DIR = TARGET_DATASET_DIR['nber']
RESULTS_DIR = CHAPTER_RESULTS[2]
DATASET = 'D'
YEAR = 2000
print "[INFO] Computing Plots for the Year %s from NBER datasets %s ..." % (YEAR, DATASET)
data = pd.read_hdf(DATASET_DIR+"nber-export-sitcr2l4-1962to2000.h5", DATASET)
# DATASET_DIR = TARGET_DATASET_DIR['nberbaci96']
# data = pd.read_hdf(DATASET_DIR+"nberbaci-export-sitcr2l4-1962to2012-harmonised.h5", DATASET) #Year 2012 Graphs
data = data.loc[data.year == YEAR]
data = data.rename(columns={'eiso3c':'country','sitc4':'productcode', 'value':'export'})
data = data.reset_index()
del data["index"]
del data["year"]
data = data.set_index(["country", "productcode"])
s = ProductLevelExportSystem()
s.from_df(data, country_classification="ISO3c", product_classification="SITCR2", compile_dtypes=["DataFrame"], year=YEAR)
s.rca_matrix(complete_data=True)
s.mcp_matrix()
#-Mcp Plots-#
#-Basic Mcp-#
fig = s.plot_mcp(row_sortby_label="Alphabetical", column_sortby_label="SITC Code")
plt.savefig(RESULTS_DIR + 'nber_mcp_alpha_numeric_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-Sorted by Diversity and Ubiquity-#
ubiquity = s.compute_ubiquity()
diversity = s.compute_diversity()
s.mcp = s.sorted_matrix(s.mcp, row_sortby=diversity, column_sortby=ubiquity, column_ascending=False)
fig = s.plot_mcp(row_sortby_label="Diversification", column_sortby_label="Ubiquity")
plt.savefig(RESULTS_DIR + 'nber_mcp_ubiquity_diversity_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-Sorted by GDPPC and Ubiquity-#
gdppc = wdi.series_long(series_code="NY.GDP.PCAP.CD").reorder_levels(["year","iso3c"]).ix[YEAR]["GDPPC"].copy()
s.mcp = s.sorted_matrix(s.mcp, row_sortby=gdppc, column_sortby=ubiquity, column_ascending=False).dropna()
fig = s.plot_mcp(row_sortby_label="GDPPC", column_sortby_label="Ubiquity")
plt.savefig(RESULTS_DIR + 'nber_mcp_gdppc_diversity_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-Sorted by ECI and PCI-#
s = ProductLevelExportSystem()
s.from_df(data, country_classification="ISO3c", product_classification="SITCR2", compile_dtypes=["DataFrame"], year=YEAR)
s.rca_matrix(complete_data=True)
s.mcp_matrix()
eci = s.compute_eci(auto_adjust_sign=True)
pci = s.compute_pci(auto_adjust_sign=True)
s.mcp = s.sorted_matrix(s.mcp, row_sortby=eci.copy(), column_sortby=pci.copy())
fig = s.plot_mcp(row_sortby_label="ECI", column_sortby_label="PCI")
plt.savefig(RESULTS_DIR + 'nber_mcp_eci_pci_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-Trade Shares-#
cntryshare = s.country_shares()
prodshare = s.product_shares()
fig = s.plot_scaled_mcp_heatmap(s.mcp, cpdata_name="{0,1}", row_scaleby=cntryshare, column_scaleby=prodshare)
plt.savefig(RESULTS_DIR + 'nber_mcp_eci(cntryshare)_pci(prodshare)_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-RCA Version-#
s.rca = s.sorted_matrix(s.rca, row_sortby=eci.copy(), column_sortby=pci.copy())
fig = s.plot_scaled_mcp_heatmap(s.rca, cpdata_name="RCA", row_scaleby=cntryshare, column_scaleby=prodshare, low_value_cutoff=1, high_value_cutoff=4)
plt.savefig(RESULTS_DIR + 'nber_rca_eci(cntryshare)_pci(prodshare)_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-Vector of DEU RCA from RCA sorted by PCI-#
from pyeconlab.trade.dataset.NBERWTF.meta import iso3c_to_countryname
for CNTRY in ["JPN", "DEU", "AUS","SAU","CAN","SWE","DNK","CZE","CHN","KEN","IDN","IND"]:
srs = s.rca.ix[CNTRY]
srs = pd.DataFrame([srs, pci]).T
srs = srs.sort(columns=["PCI"])
fig = srs[CNTRY].apply(lambda x: 4 if x >= 4 else x).plot(title="%s RCA Vector sorted by PCI [Yr %s]"%(iso3c_to_countryname[CNTRY],YEAR))
fig.set_ylabel("RCA (Capped at 4)")
fig.set_xlabel("SITC Revision 2 Level 4")
plt.savefig(RESULTS_DIR+"nber_rcavector(%s)_sort(pci)_yr%s_dataset(%s).png"%(CNTRY,YEAR,DATASET))
plt.clf()
#-Proximity Plots-#
#-Ricardian Plot-#
s = ProductLevelExportSystem()
s.from_df(data, country_classification="ISO3c", product_classification="SITCR2", compile_dtypes=["DataFrame"], year=YEAR)
s.rca_matrix(complete_data=True)
s.mcp_matrix()
pci = s.compute_pci(auto_adjust_sign=True)
s.proximity_matrix()
fig = s.plot_proximity(prox_cutoff=0.6, sortby=pci.copy(), sortby_text="PCI", step=10)
plt.savefig(RESULTS_DIR + 'nber_proximity_sort(pci)_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-K-Means HO Plot-#
#-TBD-#
#-Lall and Ubiquity Plots-#
#-TBD-#
#-Tables-#
from pyeconlab.trade.classification import SITCR2
sitc = SITCR2()
sitc = sitc.code_description_dict()
ec = eci.copy()
ec.sort(ascending=False)
ec = ec.to_frame().reset_index()
ec["rank"] = ec["ECI"].rank(ascending=False)
ec.to_excel(RESULTS_DIR + 'nber_eci_yr%s_dataset(%s).xlsx'%(YEAR,DATASET))
pc = pci.copy()
pc.sort(ascending=False)
pc = pc.to_frame().reset_index()
pc["rank"] = pc["PCI"].rank(ascending=False)
pc["description"] = pc["index"].apply(lambda x: sitc[x])
pc.to_excel(RESULTS_DIR + 'nber_pci_yr%s_dataset(%s).xlsx'%(YEAR,DATASET))
pr = s.proximity.stack().reset_index()
pr = pr.rename(columns={0:'proximity','productcode1':'p1','productcode2':'p2'})
pr["p1-description"] = pr["p1"].apply(lambda x: sitc[x])
pr = pr.merge(pc[["index","rank"]],left_on="p1", right_on="index")
del pr["index"]
pr = pr.rename(columns={'rank':'p1-rank'})
pr["p2-description"] = pr["p2"].apply(lambda x: sitc[x])
pr = pr.merge(pc[["index","rank"]],left_on="p2", right_on="index")
del pr["index"]
pr = pr.rename(columns={'rank':'p2-rank'})
pr.to_excel(RESULTS_DIR+'nber_proximity_yr%s_dataset(%s).xlsx'%(YEAR,DATASET))
pr = pr.loc[pr.proximity != 1]
pr.sort(columns=["proximity"], ascending=False)
pr.to_excel(RESULTS_DIR+'nber_proximity_yr%s_dataset(%s)_sorted.xlsx'%(YEAR,DATASET))
#-2012-#
DATASET_DIR = TARGET_DATASET_DIR['nberbaci96']
DATASET = 'D'
RESULTS_DIR = CHAPTER_RESULTS[2]
YEAR = 2012
print "[INFO] Computing Plots for the Year %s from NBER datasets %s ..." % (YEAR, DATASET)
data = pd.read_hdf(DATASET_DIR+"nberbaci-export-sitcr2l4-1962to2012-harmonised.h5", DATASET)
data = data.loc[data.year == YEAR]
data = data.rename(columns={'eiso3c':'country','sitc4':'productcode', 'value':'export'})
data = data.reset_index()
del data["index"]
del data["year"]
data = data.set_index(["country", "productcode"])
s = ProductLevelExportSystem()
s.from_df(data, country_classification="ISO3c", product_classification="SITCR2", compile_dtypes=["DataFrame"], year=YEAR)
s.rca_matrix(complete_data=True)
s.mcp_matrix()
#-Mcp Plots-#
#-Basic Mcp-#
fig = s.plot_mcp(row_sortby_label="Alphabetical", column_sortby_label="SITC Code")
plt.savefig(RESULTS_DIR + 'nberbaci96_mcp_alpha_numeric_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-Sorted by Diversity and Ubiquity-#
ubiquity = s.compute_ubiquity()
diversity = s.compute_diversity()
s.mcp = s.sorted_matrix(s.mcp, row_sortby=diversity, column_sortby=ubiquity, column_ascending=False)
fig = s.plot_mcp(row_sortby_label="Diversification", column_sortby_label="Ubiquity")
plt.savefig(RESULTS_DIR + 'nberbaci96_mcp_ubiquity_diversity_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-Sorted by GDPPC and Ubiquity-#
gdppc = wdi.series_long(series_code="NY.GDP.PCAP.CD").reorder_levels(["year","iso3c"]).ix[YEAR]["GDPPC"].copy()
s.mcp = s.sorted_matrix(s.mcp, row_sortby=gdppc, column_sortby=ubiquity, column_ascending=False).dropna()
fig = s.plot_mcp(row_sortby_label="GDPPC", column_sortby_label="Ubiquity")
plt.savefig(RESULTS_DIR + 'nberbaci96_mcp_gdppc_diversity_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-Sorted by ECI and PCI-#
s = ProductLevelExportSystem()
s.from_df(data, country_classification="ISO3c", product_classification="SITCR2", compile_dtypes=["DataFrame"], year=YEAR)
s.rca_matrix(complete_data=True)
s.mcp_matrix()
eci = s.compute_eci(auto_adjust_sign=True)
pci = s.compute_pci(auto_adjust_sign=True)
s.mcp = s.sorted_matrix(s.mcp, row_sortby=eci.copy(), column_sortby=pci.copy())
fig = s.plot_mcp(row_sortby_label="ECI", column_sortby_label="PCI")
plt.savefig(RESULTS_DIR + 'nberbaci96_mcp_eci_pci_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-Trade Shares-#
cntryshare = s.country_shares()
prodshare = s.product_shares()
fig = s.plot_scaled_mcp_heatmap(s.mcp, cpdata_name="{0,1}", row_scaleby=cntryshare, column_scaleby=prodshare)
plt.savefig(RESULTS_DIR + 'nberbaci96_mcp_eci(cntryshare)_pci(prodshare)_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-RCA Version-#
s.rca = s.sorted_matrix(s.rca, row_sortby=eci.copy(), column_sortby=pci.copy())
fig = s.plot_scaled_mcp_heatmap(s.rca, cpdata_name="RCA", row_scaleby=cntryshare, column_scaleby=prodshare, low_value_cutoff=1, high_value_cutoff=4)
plt.savefig(RESULTS_DIR + 'nberbaci96_rca_eci(cntryshare)_pci(prodshare)_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-Vector of DEU RCA from RCA sorted by PCI-#
from pyeconlab.trade.dataset.NBERWTF.meta import iso3c_to_countryname
for CNTRY in ["JPN", "DEU", "AUS","SAU","CAN","SWE","DNK","CZE","CHN","KEN","IDN","IND"]:
srs = s.rca.ix[CNTRY]
srs = pd.DataFrame([srs, pci]).T
srs = srs.sort(columns=["PCI"])
fig = srs[CNTRY].apply(lambda x: 4 if x >= 4 else x).plot(title="%s RCA Vector sorted by PCI [Yr %s]"%(iso3c_to_countryname[CNTRY],YEAR))
fig.set_ylabel("RCA (Capped at 4)")
fig.set_xlabel("SITC Revision 2 Level 4")
plt.savefig(RESULTS_DIR+"nberbaci96_rcavector(%s)_sort(pci)_yr%s_dataset(%s).png"%(CNTRY,YEAR,DATASET))
plt.clf()
#-Proximity Plots-#
#-Ricardian Plot-#
s = ProductLevelExportSystem()
s.from_df(data, country_classification="ISO3c", product_classification="SITCR2", compile_dtypes=["DataFrame"], year=YEAR)
s.rca_matrix(complete_data=True)
s.mcp_matrix()
pci = s.compute_pci(auto_adjust_sign=True)
s.proximity_matrix()
fig = s.plot_proximity(prox_cutoff=0.6, sortby=pci.copy(), sortby_text="PCI", step=10)
plt.savefig(RESULTS_DIR + 'nberbaci96_proximity_sort(pci)_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-K-Means HO Plot-#
#-TBD-#
#-Lall and Ubiquity Plots-#
#-TBD-#
#-Tables-#
from pyeconlab.trade.classification import SITCR2
sitc = SITCR2()
sitc = sitc.code_description_dict()
ec = eci.copy()
ec.sort(ascending=False)
ec = ec.to_frame().reset_index()
ec["rank"] = ec["ECI"].rank(ascending=False)
ec.to_excel(RESULTS_DIR + 'nberbaci96_eci_yr%s_dataset(%s).xlsx'%(YEAR,DATASET))
pc = pci.copy()
pc.sort(ascending=False)
pc = pc.to_frame().reset_index()
pc["rank"] = pc["PCI"].rank(ascending=False)
pc["description"] = pc["index"].apply(lambda x: sitc[x])
pc.to_excel(RESULTS_DIR + 'nberbaci96_pci_yr%s_dataset(%s).xlsx'%(YEAR,DATASET))
pr = s.proximity.stack().reset_index()
pr = pr.rename(columns={0:'proximity','productcode1':'p1','productcode2':'p2'})
pr["p1-description"] = pr["p1"].apply(lambda x: sitc[x])
pr = pr.merge(pc[["index","rank"]],left_on="p1", right_on="index")
del pr["index"]
pr = pr.rename(columns={'rank':'p1-rank'})
pr["p2-description"] = pr["p2"].apply(lambda x: sitc[x])
pr = pr.merge(pc[["index","rank"]],left_on="p2", right_on="index")
del pr["index"]
pr = pr.rename(columns={'rank':'p2-rank'})
pr.to_excel(RESULTS_DIR+'nberbaci96_proximity_yr%s_dataset(%s).xlsx'%(YEAR,DATASET))
pr = pr.loc[pr.proximity != 1]
pr.sort(columns=["proximity"], ascending=False)
pr.to_excel(RESULTS_DIR+'nberbaci96_proximity_yr%s_dataset(%s)_sorted.xlsx'%(YEAR,DATASET))
#--------------------------#
#-Trade Inefficiency Study-#
#--------------------------#
if INEFFICIENT_STUDY:
from pyeconlab import DynamicProductLevelExportSystem
DATASET_DIR = TARGET_DATASET_DIR['nberbaci96']
RESULTS_DIR = CHAPTER_RESULTS[2]
#------------------------#
#-Plot Using Dataset 'D'-#
#------------------------#
DATASET = 'D'
data = pd.read_hdf(DATASET_DIR+"nberbaci-export-sitcr2l4-1962to2012-harmonised.h5", DATASET) #-Intertemporal Consistent Data-#
data = data.rename(columns={'eiso3c' : 'country', 'sitc4' : 'productcode', 'value' : 'export'})
data = data.set_index(["year"])
s = DynamicProductLevelExportSystem()
s.from_df(data)
s.rca_matrices(complete_data=True)
s.mcp_matrices()
s.compute_eci()
s.auto_adjust_eci_sign()
s.compute_pci()
s.auto_adjust_pci_sign()
#-Plot for Year 2000-#
YEAR = 2000
xs = s[YEAR]
itdata = xs.identify_inefficient_trade(row_ascending=True, column_ascending=True).copy(deep=True)
#-Use Legacy Functions (For Plotting)-#
from pyeconlab.trade.util.plotting import prepare_scaling_sortby_vectors, plot_scaled_mcp_heatmap_v3
from matplotlib import cm
graph_data, row_scaleby, column_scaleby = prepare_scaling_sortby_vectors(itdata, row_scaleby=xs.total_country_export, column_scaleby=xs.total_product_export)
fig = plot_scaled_mcp_heatmap_v3(graph_data, value_type="Inefficiency Metric", row_scaleby=row_scaleby, row_label=('ECI', 'Country Export Share'), column_scaleby=column_scaleby, cmap=cm.RdBu)
plt.savefig(RESULTS_DIR + 'nberbaci_mcp_eci(cntryshare)_pci(prodshare)_inefficientmetric_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-Save Associated Graph Data-#
graph_data.to_excel(RESULTS_DIR + "nberbaci_mcp_eci(cntryshare)_pci(prodshare)_inefficientmetric_yr%s_dataset(%s)_data.xlsx"%(YEAR,DATASET))
#-Time Series Plot of Values-#
ts_data = []
for year in range(1962,2012+1,1):
eci_year = s[year].eci
pci_year = s[year].pci
data = s[year].identify_inefficient_trade()
masktable = data.applymap(lambda x: 1 if x < -0.5 else np.nan)
values = s[year].as_cp_matrix(droplevel=True)
values = values.align(masktable, join='right')
inefficient_value = (values[0] * values[1]).sum().sum()
ts_data.append(inefficient_value)
ts_df = pd.DataFrame(ts_data, index=range(1962,2012+1,1))
fig = ts_df.plot(legend=False, title="Inefficient Trade [Deviation >= -0.5]")
fig.set_xlabel("Year")
fig.set_ylabel("US$ (1000's)")
fig.set_ylim(bottom=0)
fig.xaxis.axes.set_xticks(xrange(1965,2012+1,5))
plt.savefig(RESULTS_DIR + "nberbaci_inefficient_trade_by_value_0.5deviation_ts_dataset(%s).png"%DATASET, dpi=400)
plt.clf()
#As Percentage of World Trade #
ts_data = []
for year in range(1962,2012+1,1):
eci_year = s[year].eci
pci_year = s[year].pci
data = s[year].identify_inefficient_trade()
masktable = data.applymap(lambda x: 1 if x < -0.5 else np.nan)
values = s[year].as_cp_matrix(droplevel=True)
world_value = values.sum().sum()
values = values.align(masktable, join='right')
inefficient_value = (values[0] * values[1]).sum().sum()
ts_data.append(inefficient_value / world_value)
ts_df = pd.DataFrame(ts_data, index=range(1962,2012+1,1))
fig = (ts_df*100).plot(legend=False, title="Inefficient Trade % of World Trade [Deviation >= -0.5]")
fig.set_xlabel("Year")
fig.set_ylabel("Percent")
fig.set_ylim(bottom=0)
fig.xaxis.axes.set_xticks(xrange(1965,2012+1,5))
plt.savefig(RESULTS_DIR + "nberbaci_inefficient_trade_by_prcwrldtrade_0.5deviation_ts_dataset(%s).png"%DATASET, dpi=400)
plt.clf()
#-Cutoff Comparison Plot-#
tdf_data = {}
for cutoff in [-0.75, -0.5, -0.25]:
print "Processing cutoff (%s)"%cutoff
#-Compute Each Graph-#
ts_data = []
for year in range(1962,2012+1,1):
eci_year = s[year].eci
pci_year = s[year].pci
data = s[year].identify_inefficient_trade()
masktable = data.applymap(lambda x: 1 if x < cutoff else np.nan)
values = s[year].as_cp_matrix(droplevel=True)
world_value = values.sum().sum()
values = values.align(masktable, join='right')
inefficient_value = (values[0] * values[1]).sum().sum()
ts_data.append(inefficient_value / world_value)
tdf_data[str(cutoff)] = pd.Series(ts_data, index=range(1962,2012+1,1))
tdf_df = pd.DataFrame(tdf_data, index=range(1962,2012+1,1))
fig = (tdf_df*100).plot(title="Inefficient Trade % of World Trade")
fig.set_xlabel("Year")
fig.set_ylabel("Percent")
fig.set_ylim(bottom=0)
fig.xaxis.axes.set_xticks(xrange(1965,2012+1,5))
plt.savefig(RESULTS_DIR + "nberbaci_inefficient_trade_by_prcwrldtrade_various_deviations_ts_dataset(%s).png"%DATASET, dpi=600)
plt.clf()
#------------------------#
#-Plot Using Dataset 'E'-#
#------------------------#
DATASET = 'E'
data = pd.read_hdf(DATASET_DIR+"nberbaci-export-sitcr2l4-1962to2012-harmonised.h5", DATASET) #-Intertemporal Consistent Data-#
data = data.rename(columns={'eiso3c' : 'country', 'sitc4' : 'productcode', 'value' : 'export'})
data = data.set_index(["year"])
s = DynamicProductLevelExportSystem()
s.from_df(data)
s.rca_matrices(complete_data=True)
s.mcp_matrices()
s.compute_eci()
s.auto_adjust_eci_sign()
s.compute_pci()
s.auto_adjust_pci_sign()
#-Plot for Year 2000-#
YEAR = 2000
xs = s[YEAR]
itdata = xs.identify_inefficient_trade(row_ascending=True, column_ascending=True)
#-Use Legacy Functions (For Plotting)-#
from pyeconlab.trade.util.plotting import prepare_scaling_sortby_vectors, plot_scaled_mcp_heatmap_v3
from matplotlib import cm
graph_data, row_scaleby, column_scaleby = prepare_scaling_sortby_vectors(itdata, row_scaleby=xs.total_country_export, column_scaleby=xs.total_product_export)
fig = plot_scaled_mcp_heatmap_v3(graph_data, value_type="Inefficiency Metric", row_scaleby=row_scaleby, row_label=('ECI', 'Country Export Share'), column_scaleby=column_scaleby, cmap=cm.RdBu)
plt.savefig(RESULTS_DIR + 'nberbaci_mcp_eci(cntryshare)_pci(prodshare)_inefficientmetric_yr%s_dataset(%s).png'%(YEAR,DATASET), dpi=600)
plt.clf()
#-Save Associated Graph Data-#
graph_data.to_excel(RESULTS_DIR + "nberbaci_mcp_eci(cntryshare)_pci(prodshare)_inefficientmetric_yr%s_dataset(%s)_data.xlsx"%(YEAR,DATASET))
#-Time Series Plot of Values-#
ts_data = []
for year in range(1962,2012+1,1):
eci_year = s[year].eci
pci_year = s[year].pci
data = s[year].identify_inefficient_trade()
masktable = data.applymap(lambda x: 1 if x < -0.5 else np.nan)
values = s[year].as_cp_matrix(droplevel=True)
values = values.align(masktable, join='right')
inefficient_value = (values[0] * values[1]).sum().sum()
ts_data.append(inefficient_value)
ts_df = pd.DataFrame(ts_data, index=range(1962,2012+1,1))
fig = ts_df.plot(legend=False, title="Inefficient Trade [Deviation >= -0.5]")
fig.set_xlabel("Year")
fig.set_ylabel("$ (1000's)")
plt.savefig(RESULTS_DIR + "nberbaci_inefficient_trade_by_value_0.5deviation_ts_dataset(%s).png"%DATASET)
plt.clf()
#As Percentage of World Trade #
ts_data = []
for year in range(1962,2012+1,1):
eci_year = s[year].eci
pci_year = s[year].pci
data = s[year].identify_inefficient_trade()
masktable = data.applymap(lambda x: 1 if x < -0.5 else np.nan)
values = s[year].as_cp_matrix(droplevel=True)
world_value = values.sum().sum()
values = values.align(masktable, join='right')
inefficient_value = (values[0] * values[1]).sum().sum()
ts_data.append(inefficient_value / world_value)
ts_df = pd.DataFrame(ts_data, index=range(1962,2012+1,1))
fig = (ts_df*100).plot(legend=False, title="Inefficient Trade % of World Trade [Deviation >= -0.5]")
fig.set_xlabel("Year")
fig.set_ylabel("Percent")
plt.savefig(RESULTS_DIR + "nberbaci_inefficient_trade_by_prcwrldtrade_0.5deviation_ts_dataset(%s).png"%DATASET)
plt.clf()
#-Cutoff Comparison Plot-#
tdf_data = {}
for cutoff in [-0.75, -0.5, -0.25]:
print "Processing cutoff (%s)"%cutoff
#-Compute Each Graph-#
ts_data = []
for year in range(1962,2012+1,1):
eci_year = s[year].eci
pci_year = s[year].pci
data = s[year].identify_inefficient_trade()
masktable = data.applymap(lambda x: 1 if x < cutoff else np.nan)
values = s[year].as_cp_matrix(droplevel=True)
world_value = values.sum().sum()
values = values.align(masktable, join='right')
inefficient_value = (values[0] * values[1]).sum().sum()
ts_data.append(inefficient_value / world_value)
tdf_data[str(cutoff)] = pd.Series(ts_data, index=range(1962,2012+1,1))
tdf_df = pd.DataFrame(tdf_data, index=range(1962,2012+1,1))
fig = (tdf_df*100).plot(title="Inefficient Trade % of World Trade")
fig.set_xlabel("Year")
fig.set_ylabel("Percent")
plt.savefig(RESULTS_DIR + "nberbaci_inefficient_trade_by_prcwrldtrade_various_deviations_ts_dataset(%s).png"%DATASET, dpi=600)
plt.clf()
#----------------------------#
#-Country Similarity Network-#
#----------------------------#
#-Year:2000-#
DATASET_DIR = TARGET_DATASET_DIR['nber']
RESULTS_DIR = CHAPTER_RESULTS[2]
DATASET = 'D'
YEAR = 2000
data = pd.read_hdf(DATASET_DIR+"nber-export-sitcr2l4-1962to2000.h5", DATASET)
# DATASET_DIR = TARGET_DATASET_DIR['nberbaci96']
# data = pd.read_hdf(DATASET_DIR+"nberbaci-export-sitcr2l4-1962to2012-harmonised.h5", DATASET) #Year 2012 Graphs
data = data.loc[data.year == YEAR]
data = data.rename(columns={'eiso3c':'country','sitc4':'productcode', 'value':'export'})
data = data.reset_index()
del data["index"]
del data["year"]
data = data.set_index(["country", "productcode"])
s = ProductLevelExportSystem()
s.from_df(data, country_classification="ISO3c", product_classification="SITCR2", compile_dtypes=["DataFrame"], year=YEAR)
s.rca_matrix(complete_data=True)
s.mcp_matrix()
s.compute_country_proximity(fillna=True)
#s.compute_country_proximity(matrix_type='pearsons', fillna=True)
#-Network-#
#-Minimum Spanning Tree for GEPHI-#
prox = s.country_proximity
import networkx as nx
g = nx.from_numpy_matrix(prox.values)
g = nx.relabel_nodes(g, dict(enumerate(prox.columns)))
mst = nx.minimum_spanning_tree(g)
print len(mst.nodes())
print len(mst.edges())
#-MST and Edges Above 0.4-#
for n,nb,d in g.edges_iter(data=True):
d = d['weight']
if d == 1:
continue
if d >= 0.40:
mst.add_edge(n,nb,attr_dict={'weight':d})
print len(mst.nodes())
print len(mst.edges())
#-Export to GEXF File-#
nx.write_gexf(mst, RESULTS_DIR+'cntry-prox-mst-with-prox(0-40).gexf')
#-----------#
#-Seriation-#
#-----------#
if SERIATION:
#-Prepare Datasets for Year 2012 For Seriation Study Using R-#
DATASET_DIR = TARGET_DATASET_DIR['nberbaci96']
RESULTS_DIR = CHAPTER_RESULTS['D']
N = 10 #-Top Number of Products-#
#-Export Values-#
for level in [4,3,2]:
for dataset in ["C","E"]:
print "Converting VALUE Dataset for Seriation ... Level:%s; Dataset:%s"%(level, dataset)
DATA6212 = pd.read_hdf(DATASET_DIR+"nberbaci-export-sitcr2l%s-1962to2012-harmonised.h5"%level, key=dataset)
DATA6212 = DATA6212.rename(columns={'sitc%s'%level:'productcode'})
#-2012-#
DATA2012 = DATA6212.loc[DATA6212.year == 2012]
DATA2012.reset_index(inplace=True)
del DATA2012["index"]
DATA2012.to_csv(RESULTS_DIR + "seriation-nberbaci-export-sitcr2l%s-xs2012-dataset%s.csv"%(level,dataset), index=False)
#-Top 10 Data (by Value) for Each Country-#
TOPN = DATA2012.sort(columns="value", ascending=False)
TOPN = TOPN.groupby("eiso3c").head(N)
TOPN = TOPN.sort()
TOPN.to_csv(RESULTS_DIR + "seriation-nberbaci-export-sitcr2l%s-xs2012-dataset%s_top(%s).csv"%(level,dataset,N), index=False)
TOPN = TOPN.set_index(["year", "eiso3c", "productcode"])
TOPN = TOPN.unstack(level="productcode").fillna(0.0)
TOPN.columns = TOPN.columns.droplevel()
TOPN = TOPN.reset_index()
del TOPN["year"]
TOPN.to_csv(RESULTS_DIR + "seriation-nberbaci-export-sitcr2l%s-xs2012-dataset%s_top(%s)_allproductcodes.csv"%(level,dataset,N), index=False)
#-RCA Values-#
for level in [4,3,2]:
for dataset in ["C","E"]:
print "Converting RCA/MCP Dataset for Seriation ... Level:%s; Dataset:%s"%(level, dataset)
DATA6212 = pd.read_hdf(DATASET_DIR+"nberbaci-export-sitcr2l%s-1962to2012-harmonised.h5"%level, key=dataset)
DATA6212 = DATA6212.rename(columns={'sitc%s'%level:'productcode'})
DATA6212 = attach_attributes(DATA6212, name="nberbaci", dtype="export", classification="SITC", \
revision=2, units_value_str="1000$", complete_dataset=True, notes="Dataset %s"%dataset)
DATA6212 = CPExportData(DATA6212, allow_mixed_productcode=True)
DATA6212 = DATA6212.to_dynamic_productlevelexportsystem()
#-2012-#
DATA2012 = DATA6212[2012]
DATA2012.rca_matrix(fillna=True, complete_data=True)
#-Remove Values Less than 1-#
DATA2012.rca = DATA2012.rca.applymap(lambda x: 0 if x < 1 else x)
DATA2012.rca.to_csv(RESULTS_DIR + "seriation-nberbaci-export(rca)-sitcr2l%s-xs2012-dataset%s.csv"%(level,dataset))
DATA2012.mcp_matrix(cutoff=1)
DATA2012.mcp.to_csv(RESULTS_DIR + "seriation-nberbaci-export(mcp)-sitcr2l%s-xs2012-dataset%s.csv"%(level,dataset))
#-Top 10 Data (by RCA) for Each Country-#
TOPN = DATA2012.rca.unstack()
TOPN.name = "rca"
TOPN = TOPN.reset_index().sort(columns="rca", ascending=False)
TOPN = TOPN.groupby("country").head(N)
TOPN = TOPN.set_index(["country", "productcode"])
TOPN = TOPN.sort()
TOPN = TOPN.reset_index()
TOPN.to_csv(RESULTS_DIR + "seriation-nberbaci-export(rca)-sitcr2l%s-xs2012-dataset%s_top(%s).csv"%(level,dataset,N), index=False)
TOPN = TOPN.set_index(["country", "productcode"])
TOPN = TOPN.unstack(level="productcode").fillna(0.0)
TOPN.columns = TOPN.columns.droplevel()
TOPN = TOPN.reset_index()
TOPN.to_csv(RESULTS_DIR + "seriation-nberbaci-export(rca)-sitcr2l%s-xs2012-dataset%s_top(%s)_allproductcodes.csv"%(level,dataset,N), index=False)
#-Yu RCA Values-#
for level in [4]:
for dataset in ["C","E"]:
print "Converting Yu RCA/MCP Dataset for Seriation ... Level:%s; Dataset:%s"%(level, dataset)
DATA6212 = pd.read_hdf(DATASET_DIR+"nberbaci-export-sitcr2l%s-1962to2012-harmonised.h5"%level, key=dataset)
DATA6212 = DATA6212.rename(columns={'sitc%s'%level:'productcode'})
DATA6212 = attach_attributes(DATA6212, name="nberbaci", dtype="export", classification="SITC", \
revision=2, units_value_str="1000$", complete_dataset=True, notes="Dataset %s"%dataset)
DATA6212 = CPExportData(DATA6212, allow_mixed_productcode=True)
DATA6212 = DATA6212.to_dynamic_productlevelexportsystem()
#-2012-#
DATA2012 = DATA6212[2012]
DATA2012.yu_rca_matrix(fillna=True, set_property=True)
#-Remove Values Less than 0-#
DATA2012.rca = DATA2012.rca.applymap(lambda x: 0 if x < 0 else x)
DATA2012.rca.to_csv(RESULTS_DIR + "seriation-nberbaci-export-yurca-sitcr2l%s-xs2012-dataset%s.csv"%(level,dataset))
DATA2012.mcp_matrix(cutoff=0)
DATA2012.mcp.to_csv(RESULTS_DIR + "seriation-nberbaci-export-yumcp-sitcr2l%s-xs2012-dataset%s.csv"%(level,dataset))
#-Top 10 Data (by RCA) for Each Country-#
TOPN = DATA2012.rca.unstack()
TOPN.name = "rca"
TOPN = TOPN.reset_index().sort(columns="rca", ascending=False)
TOPN = TOPN.groupby("country").head(N)
TOPN = TOPN.set_index(["country", "productcode"])
TOPN = TOPN.sort()
TOPN = TOPN.reset_index()
TOPN.to_csv(RESULTS_DIR + "seriation-nberbaci-export-yurca-sitcr2l%s-xs2012-dataset%s_top%s.csv"%(level,dataset,N), index=False)
TOPN = TOPN.set_index(["country", "productcode"])
TOPN = TOPN.unstack(level="productcode").fillna(0.0)
TOPN.columns = TOPN.columns.droplevel()
TOPN = TOPN.reset_index()
TOPN.to_csv(RESULTS_DIR + "seriation-nberbaci-export-yurca-sitcr2l%s-xs2012-dataset%s_top%s_allproductcodes.csv"%(level,dataset,N), index=False)
#----------------#
#-Results from R-#
#----------------#
#-BEA_TSP-RCA-100000-#
# Method: BEA_TSP
# Data Used: RCA Data (None < 1)
# Iterations: 100,000
#-Run #1-#
TSP_R1CO = ["MAR","JOR","SOM","ETH","DJI","BFA","MLI","UGA","MOZ","MWI","ZWE","NCL","CUB","DOM","NIC","GMB","CAF","BEN","GNB","MMR","RWA","BOL","COG","LAO","PRY","PAK","NPL","AFG","TCD","SDN","NER","ZAF","GAB","GHA","CIV","CMR","LBR","SLE","KNA","KIR","WSM","FJI","KHM","LKA","KEN","MDG","SYR","TGO","SEN","ARG","URY","GUY","SUR","GIN","JAM","AUS","FLK","SHN","GRL","SPM","ISL","SYC","MUS","BLZ","GTM","ECU","CRI","HND","SLV","HTI","BGD","BDI","YEM","NZL","EST","LVA","LTU","BIH","ALB","LBN","MKD","ZMB","GRC","UZB","TKM","IND","PNG","EGY","PRK","VNM","THA","IDN","PHL","PAN","BHS","MDA","BGR","UKR","HRV","SVN","AUT","FIN","SWE","TTO","VEN","OMN","GEO","ARM","CHL","PER","MNG","IRN","TUR","PRT","ESP","TUN","ISR","CYP","KGZ","TJK","BHR","MRT","BMU","BRB","DNK","NLD","BEL","POL","CZE","SVK","HUN","DEU","ITA","CHN","MAC","CHE","IRL","SGP","TWN","JPN","USA","CAN","KAZ","RUS","BRA","COL","MEX","BLR","GBR","HKG","MYS","GNQ","QAT","DZA","NOR","MLT","KOR","GIB","KWT","SAU","ARE","AZE","IRQ","NGA","AGO","LBY","TZA"]
TSP_R1PO = ["2690","2860","5241","1212","2771","2872","1221","2450","0012","0011","9410","2119","2876","0741","2114","2112","2654","0752","2922","0576","2685","6592","6593","6545","2640","8462","8451","8464","6121","2713","4233","6597","6612","4234","2472","4314","2631","2634","2223","0343","0350","0360","0342","4243","7933","2879","0711","2225","2235","6115","2117","2116","2683","2687","2785","2927","6116","0470","0615","3415","0582","1110","2924","0575","2120","2238","0542","1213","1211","6821","2871","2231","0421","6349","2873","0573","0585","5513","2651","6673","2923","6129","2481","2877","6341","0721","0723","2479","2632","2633","6513","6521","6584","2814","6330","2440","6576","2875","2874","3221","3231","2742","2614","6712","8424","8423","8441","2652","0371","4111","0814","6841","3232","6842","0812","2221","0577","2232","8442","6574","8472","8465","8443","8459","8463","0612","2224","2732","4236","7915","6725","6123","6852","5622","5222","2667","2783","2734","6594","5981","5322","6516","8471","6978","6571","8484","6581","8439","8434","8435","8433","0341","0344","0372","2919","0574","6539","6724","0583","0541","0545","0112","2682","0230","0224","2471","2512","3224","0451","2460","0548","2911","2483","2320","7932","3352","8960","5833","334","6713","5225","6716","2816","2815","3222","0115","2686","0482","0111","2222","0742","4232","0813","0459","6871","2890","2239","3414","8421","8422","8429","8431","8452","8928","2733","7852","8461","6259","2659","2655","7521","8811","4241","4249","9710","5541","6651","1124","0616","0118","0141","0460","3351","6611","6861","2613","2782","8432","0422","4312","2926","7931","6515","6518","6899","0440","0412","6114","6512","4113","2681","5323","5623","0544","5629","0571","2731","4235","8483","0565","0579","2712","2517","0452","6412","7251","7259","2482","6343","2226","0430","7912","6419","3353","0411","0564","6546","7731","1123","7169","7643","7188","8997","0751","8482","4242","4244","3223","7914","2111","2820","2882","8851","8989","8981","5413","8973","4245","2929","8481","6534","6589","6522","0483","8991","0484","6932","5114","5224","7911","5621","8941","6872","5157","5146","5514","5156","0015","0223","0240","0116","7213","1222","6891","1122","1121","6731","6732","6595","6596","2672","5543","0620","6424","6417","6951","6618","7711","6517","4313","7761","5921","7612","5823","6635","7723","0914","0488","5911","7163","5913","7922","5239","6672","6812","5145","6811","2234","2784","2741","3413","3330","5121","0589","6671","0811","0572","2786","2516","2518","6415","6418","6413","6935","5722","5232","0586","6575","6831","2519","6411","4239","7928","7923","0129","0114","8946","6351","6931","2789","6924","8812","7764","7599","8720","1223","0722","0712","8122","8932","6863","6851","6644","6549","6613","7131","2711","6353","6359","6342","7268","6519","6582","9510","7112","6511","5249","4311","5335","0142","6744","5989","7436","0561","8731","7842","7611","8121","0251","8510","8211","8219","0013","5169","0121","0113","7161","5415","8996","5416","5147","7271","7272","2772","5122","6122","6583","6514","6783","6543","6118","6542","7248","6535","6544","3345","7224","2666","7621","6665","5822","6352","7518","7132","8732","7783","8951","6631","6344","6416","5922","2925","0980","6421","0481","8931","7921","3354","7938","7223","7628","7622","6281","5842","0149","5123","6781","5231","5912","6130","8212","8922","7119","7111","7219","9610","6832","2881","6623","6760","7919","6591","7148","6733","7753","7751","6652","7752","8921","6423","6422","8972","8852","6674","6552","6553","8998","8939","6770","6749","6532","6560","5821","6551","8942","6975","6624","6973","6633","0252","8993","6822","7263","8310","6974","6354","5221","6793","5852","6646","7523","7754","0014","5542","0546","0730","0819","5530","5417","7267","6954","7368","7187","7841","5851","5838","6745","6746","6727","6747","6252","6251","7868","7782","7283","7493","7239","6912","6911","6794","7432","8822","5839","8741","2511","5914","6880","6960","6282","6428","5334","6921","7822","7631","7861","7372","6112","6254","6210","6289","6664","6579","2332","6658","2671","7411","7422","7211","7449","7281","7371","7362","7913","7849","7732","7129","6998","7757","7758","7434","7591","7525","7763","7768","8983","7722","6993","8842","6538","6531","2665","6645","5835","5834","5138","8710","7133","6643","5843","8821","8813","7269","7367","7361","7369","7252","7244","7246","8742","7788","8924","7243","7512","7528","6648","0619","7491","8935","6991","5139","5233","5721","6577","6632","7162","6994","7721","5419","7741","6572","5332","5411","5837","7416","7264","6253","7924","7929","5841","7511","8748","5154","5982","8999","7233","7234","7641","7832","7821","8830","7415","7638","7853","6649","7712","6647","7414","7412","7452","7413","5825","0913","7435","7429","7421","7245","5836","5829","5161","5831","5832","5112","5111","2331","7831","6996","7212","8743","6639","6637","8745","7423","7441","7451","7784","7442","7373","7284","7499","6997","7139","7810","5414","5312","5311","5163","6541","7851","7138","7149","7144","6642","8994","8933","6666","7522","5723","8947","7649","8841","5826","7648","6940","6953","5824","5331","5849","7742","8744","8959","5155","7439","8749","7762","6641","5827","5113","5162","5137","8974","7428","7492","7247","6785","6782","7126","6638","5148","7431","7781","8982","6536","7642","8952","6992","6999","5223","5983","8124","6573","0611"]
#-Run #2-#
TSP_R2CO = ["TUN","MAR","JOR","SOM","ETH","DJI","BFA","MLI","UGA","MOZ","MWI","ZWE","NCL","CUB","DOM","NIC","GMB","CAF","BEN","GNB","MMR","RWA","BOL","COG","LAO","PRY","PAK","NPL","AFG","TCD","SDN","NER","ZAF","GAB","GHA","CIV","CMR","LBR","SLE","KNA","KIR","WSM","FJI","KHM","LKA","KEN","MDG","SYR","TGO","SEN","ARG","URY","GUY","SUR","GIN","JAM","AUS","FLK","SHN","GRL","SPM","ISL","SYC","MUS","BLZ","GTM","ECU","CRI","HND","SLV","HTI","BGD","BDI","YEM","NZL","EST","LVA","LTU","BIH","ALB","LBN","MKD","ZMB","GRC","UZB","TKM","IND","PNG","EGY","PRK","VNM","THA","IDN","PHL","PAN","BHS","MDA","BGR","UKR","HRV","SVN","AUT","FIN","SWE","TTO","VEN","OMN","GEO","ARM","CHL","PER","MNG","IRN","TUR","PRT","ESP","ITA","DNK","NLD","CYP","KGZ","TJK","BHR","MRT","BMU","BRB","IRL","CHE","MAC","HKG","CHN","CZE","POL","HUN","SVK","CAN","KAZ","RUS","BRA","USA","ISR","BLR","BEL","DEU","JPN","TWN","KOR","GIB","MLT","NOR","DZA","QAT","GNQ","NGA","MYS","SGP","GBR","MEX","COL","AZE","IRQ","AGO","LBY","SAU","KWT","ARE","TZA"]
TSP_R2PO = ["1213","1212","2771","2872","1221","2450","0012","0011","9410","2119","2876","0741","2114","2112","2654","0752","2922",
"0576","2685","6592","6593","6545","2640","8462","8451","8464","6121","2713","4233","6597","6612","4234","2472","4314",
"2631","2634","2223","0343","0350","0360","0342","4243","7933","2879","0711","2225","2235","6115","2117","2116","2683",
"2687","2785","2927","6116","0470","0615","3415","0582","1110","2924","0575","2120","2238","0542","6673","2651","8465",
"6574","8472","2633","2632","0574","6539","6724","3221","3231","2742","2614","6712","8424","1211","5241","2860","2690",
"0421","6349","2873","0573","0585","5513","2923","6129","2481","2877","6341","0721","0723","2479","0722","2320","0577",
"2221","0111","2222","0742","4232","0813","0459","2875","6576","6871","2890","2231","6812","2871","6821","2712","2517",
"0115","2686","0482","6512","2652","0371","4111","0814","2874","6841","3232","6842","0812","0460","6521","6513","6584",
"2814","6330","2440","4235","5622","5222","2667","2783","2734","6594","5981","5322","6516","8471","6978","6571","8484",
"8423","8441","0612","8463","8459","8443","8442","2232","2815","2816","6716","5225","6713","3413","5621","7911","5249",
"2512","2682","0112","0230","0224","2471","0118","0141","2911","2483","0548","2460","3224","0451","6343","2224","2732",
"4236","7915","6725","6123","6852","0541","0583","2919","0372","0344","0341","6546","7731","1123","0564","0411","6671",
"2655","2659","7521","8811","4241","4249","9710","5541","6651","1124","0616","4113","2681","5323","5623","0544","5629",
"0571","2731","8435","8434","8439","8452","8928","2733","7852","8461","6259","8482","0751","6575","6831","0586","0579",
"6611","6861","2613","8429","8422","8421","8431","8433","8432","0422","4312","2926","0545","7931","6515","6518","6899",
"0440","0412","6114","0116","0240","0223","2482","6342","3223","7914","2111","2820","2882","8851","8989","8981","5413",
"8973","4245","2929","8481","6534","6589","6522","0483","8991","0484","6932","5114","5224","4244","4242","4313","7761",
"5921","7213","1222","6891","1122","1121","6731","6732","7912","0430","2226","0452","6412","7251","7259","6418","6415",
"2518","7621","6665","2666","3345","7224","6544","7612","5823","6635","7711","6517","6581","6519","6582","0914","0488",
"5911","7723","9510","7163","5913","7922","2239","3414","5233","6811","5145","5514","5156","0015","5922","2519","6411",
"4239","7928","2234","2784","2741","3330","5121","0589","8483","0565","2672","6596","6595","8731","7842","7611","8121",
"0251","6935","5722","6413","6353","6351","6931","2789","6924","7169","7643","7188","8997","8742","6551","7764","8812",
"7599","8720","1223","2782","2786","6672","0572","5232","6417","6424","6951","6618","0481","0620","5543","6421","8931",
"7921","3354","7938","7932","3352","8960","5833","334","5157","5146","6872","8941","8822","5839","8741","6822","3351",
"6999","5239","7923","0129","0114","8946","7161","0013","5169","0121","0113","5415","8996","5416","5147","7268","6359",
"0142","6744","5989","7436","2516","2881","6623","6760","3353","6419","6591","7919","7148","3222","5835","0712","8122",
"8932","6863","6851","6644","6549","6613","7131","2711","6352","7518","7132","8732","7783","8951","6631","6344","6416",
"2925","0980","0149","5842","6254","6210","5912","5231","5123","6781","5221","0811","4311","7112","6511","8510","8211",
"8219","8212","8922","5335","6130","7219","9610","6832","6514","6783","6583","6543","6118","6542","7248","6535","7753",
"7751","6652","7752","8921","6423","6422","8972","8852","6674","6552","6553","8998","8939","6770","6749","6532","6560",
"5821","5542","0546","0561","6624","6973","6633","0252","8993","2511","0014","7272","2772","5122","6122","2332","7119",
"7111","7283","7782","7868","6251","5822","0913","5851","7187","7841","5838","6745","6746","6727","6747","6252","6794",
"5852","6646","7523","7754","7421","7245","5836","7768","8983","7722","6993","8842","6538","7271","5411","5417","7267",
"6954","7368","6572","7741","5419","5837","5334","6912","6911","6921","7822","7631","7861","7372","7432","7757","7758",
"6112","8947","0619","0819","0730","6733","7913","7449","7281","7371","7362","7361","7367","6643","5843","8821","8813",
"7269","8959","2671","7411","7422","7211","6428","6647","6577","5721","7233","8999","5530","7223","7628","7622","6281",
"6253","7416","7264","7924","7929","5841","7511","8748","5154","5982","5829","5138","2665","6645","6658","6998","7162",
"6632","5849","7133","8710","5112","5832","5831","5161","7641","7832","7821","8830","7525","7591","7763","7712","6649",
"7853","7243","7512","7528","6648","8743","6994","7721","7246","7244","7252","7369","7129","7732","7849","6289","6664",
"6579","7414","6793","6997","6991","5139","6354","6974","8310","7263","5332","8744","7435","7412","7452","7413","5825",
"6531","6536","8982","7638","7415","7851","5311","5312","5414","8974","7144","6642","8924","7788","7649","8841","5826",
"7648","6940","7451","7441","7234","7493","7239","5331","5824","7212","6996","7831","7810","6282","6960","6880","6975",
"8942","7642","7784","7434","7429","7439","7373","7284","7499","6573","5834","5914","5162","7742","7138","7149","7762",
"6641","5827","2331","5111","5113","5137","5163","6541","6785","7247","7781","6639","6637","8745","7423","7442","6782",
"7491","8935","8994","8933","6666","7522","5723","8124","6992","7126","6638","5148","7431","7139","8749","7492","7428",
"5983","5223","8952","5155","6953","0611",]
#-BEA_TSP-RCA-1000-#
# Method: BEA_TSP method="repetitive_nn"
# Data Used: RCA Data (None < 1) Only top 10 data from each country-#
# Iterations: 100,000
TSP_R3CO = ["MAC","PAK","NPL","AFG","TCD","SDN","SOM","JOR","TGO","SYR","MDG","KEN","RWA","MMR","PRY","ETH","DJI","BFA","MLI","UGA","TZA","MWI","ZWE","NCL","CUB","DOM",
"NIC","GMB","CAF","BEN","GNB","MDA","SLE","KNA","KIR","WSM","PHL","LKA","BDI","YEM","NZL","EST","LVA","GUY","SUR","GIN","JAM","AUS","NER","ZAF","GAB","GHA",
"CIV","CMR","LAO","PNG","LBR","COG","BOL","PER","ISL","SPM","FLK","SHN","GRL","SYC","MUS","FJI","KHM","HTI","BGD","SLV","BLZ","GTM","ECU","CRI","CYP","HND",
"PAN","BHS","GIB","BMU","MRT","MNG","IRN","SEN","ARG","BRA","MOZ","TJK","UZB","TKM","NOR","CHL","ZMB","MKD","GRC","TUN","MAR","EGY","LBN","ALB","BIH","HRV",
"SVN","BGR","KGZ","PRK","VNM","THA","IDN","MYS","AZE","UKR","SVK","HUN","GEO","ARM","BRB","GBR","KAZ","RUS","SWE","FIN","DNK","HKG","CHE","IRL","LTU","CAN",
"BLR","ISR","DEU","FRA","ESP","PRT","TUR","BEL","URY","GNQ","QAT","TTO","VEN","OMN","BHR","ARE","KWT","SAU","IRQ","AGO","LBY","DZA","NGA","IND","COL","NLD",
"MEX","JPN","MLT","TWN","SGP","KOR","CHN","USA","ITA","AUT","CZE","POL"]
TSP_R3PO = ["0252","2926","2927","2654","0752","6592","2922","0576","2685","2683","2687","2785","0741","2114","2112","2876","2879","7933","0342","0360",
"2681","0112","2682","2117","9410","2119","0012","0011","2450","1221","0611","2771","1212","1213","1211","5241","2860","2690","0421","6349",
"2873","0573","0615","3415","8464","6121","2713","4233","6597","6612","4234","2472","4314","2631","2634","2223","0343","0350","0341","6546",
"2633","2632","6115","2225","2235","0542","6673","2923","2651","8465","2659","2655","7521","2872","6716","5225","6713","3413","5621","7911",
"0577","2221","0711","2238","0470","2116","6116","4312","4242","2231","6812","2871","0814","4111","0371","2652","0612","8441","2640","6545",
"6593","6594","2924","0575","2712","6821","6899","0440","2222","0111","2686","0115","0482","6512","4113","8459","2479","0721","0723","0722",
"6341","2877","2481","2483","2911","0582","2460","1110","0548","1123","7731","0564","0585","5513","8462","8451","8423","6519","8439","8442",
"2232","6521","6513","6584","2814","6330","2440","6576","2875","6871","2874","6841","3232","6842","0812","0742","4232","0459","0813","0616",
"1124","6891","1122","1222","0451","3224","2512","0230","0224","2471","0118","0141","7768","5157","5146","6872","8941","8822","4249","9710",
"5629","5222","5622","6852","6123","2742","3221","3231","2614","6712","8424","8422","8463","6574","8472","6951","6424","6344","2671","6760",
"7914","6129","6635","7711","9510","7723","0914","0488","5911","5323","5623","0544","0571","0541","2890","3414","2239","7223","7932","2320",
"2815","2816","0129","0114","2111","3223","4244","4313","8482","6259","8443","8928","2733","7852","8452","8433","8434","8435","8431","7263",
"4239","0452","6412","7251","2120","0013","5169","0121","0113","7161","5415","5514","5156","0015","8996","8851","2882","8989","8421","8981",
"5413","5147","7268","5416","7271","5411","6666","2613","8429","2782","6932","2741","2234","2784","0460","3351","9610","5249","6351","6931",
"2789","0372","0344","2919","6130","0565","8483","4235","2783","2667","5322","5981","6516","6672","7163","5913","7922","5239","7267","6544",
"3345","2666","2518","7621","6665","6575","7612","2226","2519","6411","7928","7915","4236","2224","2732","0574","6539","5841","7144","8960",
"2734","5833","3352","7938","7628","7761","6724","5921","0422","4245","2929","5122","7752","7611","7842","6747","8121","6252","7491","8731",
"8951","6631","6863","6518","6515","2731","6595","8461","7224","2517","0586","7753","7751","6960","8993","6359","6978","334","6551","7764",
"0579","8812","7599","0583","5823","3330","5121","5114","5112","8710","5138","7119","7247","6553","6811","0116","8998","6671","6549","6644",
"5541","7412","7131","5982","5154","7643","7169","7188","8997","8742","6924","5155","7853","7722","8983","6649","7648","6543","6118","0483",
"6542","7248","8842","6114","6535","7421","5852","6646","5722","7523","7754","3353","6725","7912","6419","6624","0572","8946","5831","5832",
"5161","5111","5113","6353","6511","0751","8510","6589","4241","8720","5543","7435","7264","6880","6352","6642","1121","7924","5530","6975",
"8942","2672","7187","7841","2482","6343","6342","2820","0545","7931","7259","6418","6415","7757","7783","6744","5989","6591","8813","6643",
"5843","8821","7367","7133","7269","7361","8841","7921","7591","8811","7162","7272","7233","7234","3354","5417","7432","7525","6953","8932",
"2665","8931","8991","5835","3222","7923","6822","7832","8732","7518","7132","6648","8922","8921","6413","5851","5838","7821","8973","6935",
"6611","6861","5837","6583","8933","8994","7522","8999","5723","7511","5232","6417","5123","6781","6954","2881","6623","0546","1223","7913",
"2786","2516","7861","0589","6851","5221","5721","0811","2511","6831","0411","0481","6731","5145","6940","6581","7213","0251","0223","0712",
"5842","4243"]
#-BEA_TSP-RCA-1000-#
# Method: BEA_TSP method="repetitive_nn"-#
# Data Used: Yu RCA Data (None < 0) with Only top 5 data from each country-#
# Iterations: 1000-#
TSP_R4CO = ["ZAF","CHE","HKG","ARE","SAU","RUS","NGA","IRQ","KWT","AGO","NOR","LBY","IRN","KAZ","QAT","DZA","VEN","COL","AZE","MEX","DEU","JPN","CAN","KOR","TWN","MYS",
"SGP","NLD","IND","BEL","GBR","IRL","USA","FRA","ITA","CHN","VNM","IDN","AUS","BRA","ARG","UKR","TUR","PER","CHL","ZMB","BGR","BLR","GRC","SWE","ESP","CZE",
"SVK","POL","HUN","AUT","ISR","DNK","SVN","JOR","MAR","PHL","CRI","MLT","LTU","BHR","FIN","PRT","BGD","KHM","LKA","KEN","ECU","OMN","GNQ","COG","GAB","YEM",
"EGY","TTO","EST","CYP","CIV","GHA","SDN","PNG","TZA","MLI","LBN","BOL","TKM","MMR","THA","PAK","TUN","HND","GTM","ETH","NIC","NZL","URY","PRY","LVA","BHS",
"PAN","HRV","MOZ","ISL","TJK","BIH","DOM","SLV","HTI","MUS","SYC","MRT","MNG","LAO","UZB","GEO","NCL","ZWE","GUY","KGZ","BFA","BEN","CMR","ALB","TCD","BLZ",
"CUB","JAM","GIN","SUR","TGO","UGA","RWA","SLE","LBR","PRK","GRL","FLK","MDG","SYR","GNB","MDA","ARM","MKD","MWI","NER","GIB","BRB","FJI","BDI","DJI","SOM",
"AFG","NPL","KNA","MAC","GMB","CAF","SHN","KIR","BMU","WSM","SPM","SEN"]
TSP_R4PO = ["2632","3414","3330","334","7764","7932","8710","7810","7849","7924","5417","9710","8851","5416","5156","5514","8996","8973","2929","2631",
"6513","6584","0111","2815","3222","3413","4242","2320","7525","7522","7643","7649","7641","8510","7599","8942","8459","8310","1121","5530",
"7929","2222","7149","5989","8720","7821","7611","7731","7523","8211","7832","8813","2926","5112","7938","0721","0723","0577","5831","5121",
"5832","5161","2927","5111","0545","0579","6821","2871","2517","0611","2816","0114","0813","0440","0711","8439","8462","8423","8451","8441",
"8429","0360","0573","7763","8983","7768","7722","5833","6940","0741","6259","5623","6841","0412","2873","2681","0342","0341","6831","6725",
"4236","7915","6732","6595","0371","7415","7638","7284","7721","7269","7234","7788","8841","6251","7132","1110","6749","6672","6812","6716",
"2879","7436","6744","5621","5225","6713","5823","8219","7452","7139","7493","9410","2225","0223","0224","0112","0230","2471","0240","0113",
"7161","2120","6811","2882","7144","1124","8960","5147","8472","8463","8928","8452","8464","0011","2634","5629","2713","5222","0544","5622",
"7162","6412","6415","6418","2482","6413","2226","4239","2872","3354","3223","6871","2875","2874","0814","0344","0575","5221","2472","0542",
"6673","5413","6822","6842","6991","6123","6612","6521","6522","6589","6899","1212","2771","2890","2224","2820","6353","1222","3232","5834",
"2731","0571","4235","0565","0589","5232","8931","6424","8822","5839","5146","5157","8435","1211","6783","6592","8939","1221","0585","0980",
"5169","7492","0914","0612","3352","0712","2440","6115","2922","0012","0548","1123","2876","0460","5241","6861","3221","6712","8431","8424",
"2782","6931","2331","2483","2877","6341","0722","4111","0350","0343","4243","7712","6746","4314","6546","5541","2112","2117","8811","2682",
"5323","0752","0574","2919","0372","2789","6130","2687","2683","2785","4232","6114","5913","6954","8742","6551","7757","7783","7421","2450",
"6116","0812","6342","2460","6343","2783","2734","7861","0421","2860","2690","7842","6252","7491","6727","6731","7621","6330","0149","0541",
"4234","2221","1213","7933","7852","5513","8741","7131","8941","8743","8921","6978","7272","7233","8433","5922","5113","2741","6953","2481",
"6992","6951","7416","0488","6993","7169","7758","7923","0615","0484","7224","3345","4249","4312","7711","2119","2116","7283","0015","8212",
"2924","8471","6514","6960","0411","8465","8482","7851","6998","7188","5542","3351","5145","6651","0422"]
#-Plots-#
DATASET_DIR = TARGET_DATASET_DIR['nberbaci96']
DATASET = 'D'
RESULTS_DIR = CHAPTER_RESULTS[2]
YEAR = 2012
print "[INFO] Computing Plots for the Year %s from NBER datasets %s ..." % (YEAR, DATASET)
data = pd.read_hdf(DATASET_DIR+"nberbaci-export-sitcr2l4-1962to2012-harmonised.h5", DATASET)
data = data.loc[data.year == YEAR]
data = data.rename(columns={'eiso3c':'country','sitc4':'productcode', 'value':'export'})
data = data.reset_index()
del data["index"]
del data["year"]
data = data.set_index(["country", "productcode"])
s = ProductLevelExportSystem()
s.from_df(data, country_classification="ISO3c", product_classification="SITCR2", compile_dtypes=["DataFrame"], year=YEAR)
s.rca_matrix(complete_data=True)
s.mcp_matrix()
#-Sorted Matrix-#
for RN,RCO,RPO in [(1,TSP_R1CO,TSP_R1PO),(2,TSP_R2CO,TSP_R2PO),(3,TSP_R3CO,TSP_R3PO),(4,TSP_R4CO, TSP_R3PO)]:
co = pd.Series(RCO).to_frame().reset_index()
co = co.rename(columns={0:'iso3c','index':'order'})
co = co.set_index('iso3c')['order']
po = pd.Series(RPO).to_frame().reset_index()
po = po.rename(columns={0:'sitc','index':'order'})
po = po.set_index('sitc')['order']
s.mcp_matrix()
if RN == 4:
s.mcp = s.sorted_matrix(s.mcp, row_sortby=co.copy(), column_sortby=po.copy(), row_ascending=False)
else:
s.mcp = s.sorted_matrix(s.mcp, row_sortby=co.copy(), column_sortby=po.copy())
fig = s.plot_mcp(row_sortby_label="TSP Seriation", column_sortby_label="TSP Seriation")
plt.tight_layout()
plt.savefig(RESULTS_DIR + 'nberbaci96_mcp_seriation_R(%s)_yr%s_dataset(%s).png'%(RN,YEAR,DATASET), dpi=400, bbox_inches="tight")
plt.clf()
#-Scaled Plots-#
#-Trade Shares-#
cntryshare = s.country_shares()
cntryshare = cntryshare.filter(co.index, axis=0)
prodshare = s.product_shares()
prodshare = prodshare.filter(po.index,axis=0)
fig = s.plot_scaled_mcp_heatmap(s.mcp, cpdata_name="{0,1}", row_scaleby=cntryshare, column_scaleby=prodshare, row_label=('TSP Seriation','Export Value Share'), column_label=('TSP Seriation','Product Value Share'))
plt.tight_layout()
plt.savefig(RESULTS_DIR + 'nberbaci96_mcp_seriation(%s)_y(cntryshare)_x(prodshare)_yr%s_dataset(%s).png'%(RN,YEAR,DATASET), dpi=400, bbox_inches='tight')
plt.clf()
#-RCA Version-#
s.rca = s.rca.filter(co.index,axis=0)
s.rca = s.rca.filter(po.index,axis=1)
if RN == 4:
s.rca = s.sorted_matrix(s.rca, row_sortby=co.copy(), column_sortby=po.copy(), row_ascending=False)
else:
s.rca = s.sorted_matrix(s.rca, row_sortby=co.copy(), column_sortby=po.copy())
fig = s.plot_scaled_mcp_heatmap(s.rca, cpdata_name="RCA", row_scaleby=cntryshare, column_scaleby=prodshare, low_value_cutoff=1, high_value_cutoff=4, row_label=('TSP Seriation','Export Value Share'), column_label=('TSP Seriation','Product Value Share'))
plt.tight_layout()
plt.savefig(RESULTS_DIR + 'nberbaci96_rca_seriation(%s)_y(cntryshare)_x(prodshare)_yr%s_dataset(%s).png'%(RN,YEAR,DATASET), dpi=400, bbox_inches='tight')
plt.clf()