-
Notifications
You must be signed in to change notification settings - Fork 0
/
SMLrecommendations.bib
194 lines (176 loc) · 6.86 KB
/
SMLrecommendations.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
@article{wiemken2019machine,
title={Machine Learning in Epidemiology and Health Outcomes Research.},
author={Wiemken, Timothy L and Kelley, Robert R},
journal={Annual review of public health},
volume={41},
pages={21--36},
url={https://doi.org/10.1146/annurev-publhealth-040119-094437},
year={2019}
}
@article{jiang2020supervised,
title={Supervised machine learning: a brief primer},
author={Jiang, Tammy and Gradus, Jaimie L and Rosellini, Anthony J},
journal={Behavior Therapy},
volume={51},
number={5},
pages={675--687},
year={2020},
publisher={Elsevier}
}
@article{coutanche2019machine,
title={Machine learning for clinical psychology and clinical neuroscience},
author={Coutanche, Marc N and Hallion, Lauren S},
year={2019},
publisher={PsyArXiv},
url={http://www.mcoutanche.com/uploads/6/1/8/6/61863105/coutanche_and_hallion_2020.pdf}
}
@article{jacobucci2020machine,
title={Machine learning and psychological research: The unexplored effect of measurement},
author={Jacobucci, Ross and Grimm, Kevin J},
journal={Perspectives on Psychological Science},
volume={15},
number={3},
pages={809--816},
year={2020},
publisher={Sage Publications Sage CA: Los Angeles, CA}
}
@article{van2022validation,
title={Validation of prediction models in the presence of competing risks: a guide through modern methods},
author={Van Geloven, Nan and Giardiello, Daniele and Bonneville, Edouard F and Teece, Lucy and Ramspek, Chava L and Van Smeden, Maarten and Snell, Kym IE and Van Calster, Ben and Pohar-Perme, Maja and Riley, Richard D and others},
journal={bmj},
volume={377},
year={2022},
publisher={British Medical Journal Publishing Group}
}
@article{cowley2019methodological,
title={Methodological standards for the development and evaluation of clinical prediction rules: a review of the literature},
author={Cowley, Laura E and Farewell, Daniel M and Maguire, Sabine and Kemp, Alison M},
journal={Diagnostic and prognostic research},
volume={3},
pages={1--23},
year={2019},
publisher={Springer}
}
@article{navarro2021risk,
title={Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review},
author={Navarro, Constanza L Andaur and Damen, Johanna AA and Takada, Toshihiko and Nijman, Steven WJ and Dhiman, Paula and Ma, Jie and Collins, Gary S and Bajpai, Ram and Riley, Richard D and Moons, Karel GM and others},
journal={bmj},
volume={375},
year={2021},
publisher={British Medical Journal Publishing Group}
}
@article{andaur2022completeness,
title={Completeness of reporting of clinical prediction models developed using supervised machine learning: a systematic review},
author={Andaur Navarro, Constanza L and Damen, Johanna AA and Takada, Toshihiko and Nijman, Steven WJ and Dhiman, Paula and Ma, Jie and Collins, Gary S and Bajpai, Ram and Riley, Richard D and Moons, Karel GM and others},
journal={BMC medical research methodology},
volume={22},
pages={1--13},
year={2022},
publisher={Springer}
}
@article{binuya2022methodological,
title={Methodological guidance for the evaluation and updating of clinical prediction models: a systematic review},
author={Binuya, MAE and Engelhardt, EG and Schats, W and Schmidt, MK and Steyerberg, EW},
journal={BMC Medical Research Methodology},
volume={22},
number={1},
pages={316},
year={2022},
publisher={Springer}
}
@article{steyerberg2018poor,
title={Poor performance of clinical prediction models: the harm of commonly applied methods},
author={Steyerberg, Ewout W and Uno, Hajime and Ioannidis, John PA and Van Calster, Ben and Ukaegbu, Chinedu and Dhingra, Tara and Syngal, Sapna and Kastrinos, Fay},
journal={Journal of clinical epidemiology},
volume={98},
pages={133--143},
year={2018},
publisher={Elsevier}
}
@article{kompa2021second,
title={Second opinion needed: communicating uncertainty in medical machine learning},
author={Kompa, Benjamin and Snoek, Jasper and Beam, Andrew L},
journal={NPJ Digital Medicine},
volume={4},
number={1},
pages={4},
year={2021},
publisher={Nature Publishing Group UK London}
}
@article{meehan2022clinical,
title={Clinical prediction models in psychiatry: a systematic review of two decades of progress and challenges},
author={Meehan, Alan J and Lewis, Stephanie J and Fazel, Seena and Fusar-Poli, Paolo and Steyerberg, Ewout W and Stahl, Daniel and Danese, Andrea},
journal={Molecular Psychiatry},
volume={27},
number={6},
pages={2700--2708},
year={2022},
publisher={Nature Publishing Group UK London}
}
@article{paulus2020predictably,
title={Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities},
author={Paulus, Jessica K and Kent, David M},
journal={NPJ digital medicine},
volume={3},
number={1},
pages={99},
year={2020},
publisher={Nature Publishing Group UK London}
}
@article{joyce2020deploying,
title={When deploying predictive algorithms, are summary performance measures sufficient?},
author={Joyce, Dan W and Geddes, John},
journal={JAMA psychiatry},
volume={77},
number={5},
pages={447--448},
year={2020},
publisher={American Medical Association}
}
@incollection{rudin2019secrets,
title={The secrets of machine learning: Ten things you wish you had known earlier to be more effective at data analysis},
author={Rudin, Cynthia and Carlson, David},
booktitle={Operations Research \& Management Science in the Age of Analytics},
pages={44--72},
year={2019},
publisher={Informs}
}
@article{zellner2021survey,
title={A survey of human judgement and quantitative forecasting methods},
author={Zellner, Maximilian and Abbas, Ali E and Budescu, David V and Galstyan, Aram},
journal={Royal Society open science},
volume={8},
number={2},
pages={201187},
year={2021},
publisher={The Royal Society}
}
@article{schulze2021description,
title={A description--experience gap in statistical intuitions: Of smart babies, risk-savvy chimps, intuitive statisticians, and stupid grown-ups},
author={Schulze, Christin and Hertwig, Ralph},
journal={Cognition},
volume={210},
pages={104580},
year={2021},
publisher={Elsevier}
}
@article{kirtley2022translating,
title={Translating promise into practice: a review of machine learning in suicide research and prevention},
author={Kirtley, Olivia J and van Mens, Kasper and Hoogendoorn, Mark and Kapur, Navneet and de Beurs, Derek},
journal={The Lancet Psychiatry},
volume={9},
number={3},
pages={243--252},
year={2022},
publisher={Elsevier}
}
@article{shipe2019developing,
title={Developing prediction models for clinical use using logistic regression: an overview},
author={Shipe, Maren E and Deppen, Stephen A and Farjah, Farhood and Grogan, Eric L},
journal={Journal of thoracic disease},
volume={11},
number={Suppl 4},
pages={S574},
year={2019},
publisher={AME Publications}
}