-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcifar.py
executable file
·208 lines (177 loc) · 7.36 KB
/
cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
"""CIFAR-10, CIFAR-100, or ImageNet data set loader.
"""
# Name should change to dataloader
import os
import numpy as np
import glob
import tensorflow as tf
"""
__author__ = "Mohammad Mahdi Kamani"
__copyright__ = "Copyright 2019, Mohammad Mahdi Kamani"
__license__ = "MIT"
__version__ = "0.0.1"
__maintainer__ = "Mohammad Madhi Kamani"
__status__ = "Prototype"
"""
HEIGHT = 32
WIDTH = 32
DEPTH = 3
class CifarDataSet(object):
"""Cifar10 or CIFAR100 data set.
Described by http://www.cs.toronto.edu/~kriz/cifar.html.
"""
def __init__(self,
data_dir,
num_shards,
subset='train',
use_distortion=True,
redundancy=0.0,
dataset='cifar10'):
self.data_dir = data_dir
self.num_shards = num_shards
self.subset = subset
self.use_distortion = use_distortion
self.dataset = dataset
self.redundancy = redundancy
if self.redundancy > 0:
self.redun_vector = np.random.normal(self.redundancy, 0.01, self.num_shards)
self.redun_vector += self.redundancy - np.mean(self.redun_vector)
def get_filenames(self):
if self.subset in ['train', 'validation', 'eval']:
if self.dataset in ['cifar10','cifar100']:
return [os.path.join(self.data_dir, self.subset + '.tfrecords')]
elif self.dataset == 'imagenet':
if self.subset == 'eval':
subset = 'validation'
else:
subset = self.subset
filenames = glob.glob(os.path.join(self.data_dir, subset + '*'))
return filenames
else:
raise ValueError('Invalid data subset "%s"' % self.subset)
def parser(self, serialized_example):
"""Parses a single tf.Example into image and label tensors."""
# Dimensions of the images in the CIFAR-10/100 dataset.
# See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
# input format.
if self.dataset in ['cifar10','cifar100']:
features = tf.parse_single_example(
serialized_example,
features={
'image': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
})
image = tf.decode_raw(features['image'], tf.uint8)
image.set_shape([DEPTH * HEIGHT * WIDTH])
# Reshape from [depth * height * width] to [depth, height, width].
image = tf.cast(
tf.transpose(tf.reshape(image, [DEPTH, HEIGHT, WIDTH]), [1, 2, 0]),
tf.float32)
label = tf.cast(features['label'], tf.int32)
# Custom preprocessing.
image = self.preprocess(image)
elif self.dataset == 'imagenet':
features = tf.parse_single_example(
serialized_example,
features={
'image/encoded': tf.FixedLenFeature([], tf.string),
'image/class/label': tf.FixedLenFeature([], tf.int64),
'image/class/text': tf.FixedLenFeature([], tf.string)
})
image = tf.image.decode_png(features['image/encoded'], channels=3)
image = tf.image.resize_images(image,
[224, 224],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
image = tf.cast(image, tf.float32)
assert len(image.shape) == 3
assert image.shape[2] == 3
label = tf.cast(features['image/class/label'], tf.int32)
return image, label
def make_batch(self, batch_size):
feature_shards = [[] for i in range(self.num_shards)]
label_shards = [[] for i in range(self.num_shards)]
"""Read the images and labels from 'filenames'."""
filenames = self.get_filenames()
dataset = tf.data.TFRecordDataset(filenames)
for device_id in range(self.num_shards):
if self.subset == 'train':
d0 = dataset.shard(self.num_shards, device_id)
d0 = d0.repeat()
# Parse records.
d0 = d0.map(
self.parser, num_parallel_calls=int(batch_size / self.num_shards))
# Potentially shuffle records.
min_queue_examples = int(
CifarDataSet.num_examples_per_epoch(self.subset,self.dataset) * 0.4 / self.num_shards)
# Ensure that the capacity is sufficiently large to provide good random
# shuffling.
d0 = d0.shuffle(buffer_size= 10000)#min_queue_examples + int(3 * batch_size / self.num_shards))
# Batch it up.
d0 = d0.batch(int(batch_size / self.num_shards))
iterator0 = d0.make_one_shot_iterator()
image_batch, label_batch = iterator0.get_next()
if self.redundancy > 0:
remained_redundancy = self.redun_vector[device_id]
num_devices = int(np.ceil(self.redundancy))
for redun_device in range(num_devices):
r = remained_redundancy if ((remained_redundancy > 0) & (remained_redundancy < 1.0)) else 1.0
remained_redundancy -= r
# d1 = dataset.shard(self.num_shards,
# device_id).shard(int(np.ceil(1 / r)), 0)
d1 = dataset.shard(self.num_shards,
(device_id + redun_device + 1) % self.num_shards).shard(
int(np.ceil(1 / r)), 0)
# d1 = d1.shard(int(2/self.redundancy) , 0)
d1 = d1.repeat()
# Parse records.
d1 = d1.map(
self.parser, num_parallel_calls=int(batch_size / self.num_shards * r))
min_queue_examples = int(
CifarDataSet.num_examples_per_epoch(self.subset,self.dataset) * 0.4 / self.num_shards * r)
# Ensure that the capacity is sufficiently large to provide good random
# shuffling.
d1 = d1.shuffle(buffer_size=10000)#min_queue_examples + int(3 * batch_size / self.num_shards * r))
# Batch it up.
d1 = d1.batch(int(batch_size / self.num_shards * r))
iterator1 = d1.make_one_shot_iterator()
image_batch1, label_batch1 = iterator1.get_next()
image_batch = tf.concat((image_batch, image_batch1), 0)
label_batch = tf.concat((label_batch, label_batch1), 0)
elif self.subset == 'eval':
d = dataset.repeat()
d = d.map(
self.parser, num_parallel_calls=batch_size)
d = d.batch(batch_size)
iterator = d.make_one_shot_iterator()
image_batch, label_batch = iterator.get_next()
feature_shards[device_id] = image_batch
label_shards[device_id] = label_batch
return feature_shards, label_shards
def preprocess(self, image):
"""Preprocess a single image in [height, wi dth, depth] layout."""
if self.subset == 'train' and self.use_distortion:
# Pad 4 pixels on each dimension of feature map, done in mini-batch
image = tf.image.resize_image_with_crop_or_pad(image, 40, 40)
image = tf.random_crop(image, [HEIGHT, WIDTH, DEPTH])
image = tf.image.random_flip_left_right(image)
return image
@staticmethod
def num_examples_per_epoch(subset='train', dataset='cifar'):
if dataset in ['cifar10','cifar100'] :
if subset == 'train':
return 50000
elif subset == 'validation':
return 5000
elif subset == 'eval':
return 10000
else:
raise ValueError('Invalid data subset "%s"' % subset)
if dataset == 'imagenet':
if subset == 'train':
return 1281167
elif subset == 'validation':
return 50000
elif subset == 'eval':
return 50000
else:
raise ValueError('Invalid data subset "%s"' % subset)