-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathautonomous_carla.py
277 lines (227 loc) · 10.2 KB
/
autonomous_carla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
'''
This function calls the relevant perception, controls, state estimation/localization, and mapping functions to execute the CARLA autonomous vehicle stack.
'''
# Support legacy print functions
from __future__ import print_function
# Library and utility imports
import argparse
import cv2
import keyboard
import logging
import math
import os
import random
import time
import torch
import numpy as np
import pytorch_utils.transforms as T
from numpy.testing._private.utils import measure
from object_detection_nn import CLASSES, COLORS
# CARLA API Imports
from carla.client import make_carla_client
from carla.image_converter import to_bgra_array, depth_to_array
from carla.sensor import Camera, Lidar
from carla.settings import CarlaSettings
from carla.tcp import TCPConnectionError
from carla.util import print_over_same_line
from carla.client import make_carla_client, VehicleControl
# Autonomous-CARLA Stack Imports
import perception_stack
# A class that represents real-time autonomous CARLA execution
class AutonomousCARLA():
# Initialize local variables
def __init__(self, model_num, enable_autopilot=False):
self.reverse_on = False
self.enable_autopilot = enable_autopilot
self.model_num = model_num
# Receives the keyboard inputs from the user and constructs a VehicleControl object based on inputs
def get_keyboard_control(self):
control = VehicleControl()
if keyboard.is_pressed('a'):
control.steer = -1.0
if keyboard.is_pressed('d'):
control.steer = 1.0
if keyboard.is_pressed('w'):
control.throttle = 1.0
if keyboard.is_pressed('s'):
control.brake = 1.0
if keyboard.is_pressed('q'):
reverse_on = not self.reverse_on
if keyboard.is_pressed('p'):
enable_autopilot = not self.enable_autopilot
control.reverse = self.reverse_on
return control
def configure_settings_and_sensors(self, args, client):
# Start a new simulation environment
if args.settings_filepath is None:
# Create a CarlaSettings object. This object is a wrapper around
# the CarlaSettings.ini file. Here we set the configuration we
# want for the new episode.
settings = CarlaSettings()
settings.set(
SynchronousMode=True,
SendNonPlayerAgentsInfo=True,
NumberOfVehicles=300,
NumberOfPedestrians=300,
WeatherId=0,
QualityLevel=args.quality_level)
settings.randomize_seeds()
# Now we want to add a couple of cameras to the player vehicle.
# We will collect the images produced by these cameras every
# frame.
# TODO: Replace the depth camera with a second RGB camera and manually compute depth
# The default camera captures RGB images of the scene.
camera0 = Camera('CameraRGB')
# Set image resolution in pixels.
camera0.set_image_size(800, 600)
# Set its position relative to the car in meters.
camera0.set_position(0.30, 0, 1.30)
camera_fov = camera0.FOV
settings.add_sensor(camera0)
# Let's add another camera producing ground-truth depth.
camera1 = Camera('CameraDepth', PostProcessing='Depth')
camera1.set_image_size(800, 600)
camera1.set_position(0.30, 0, 1.30)
settings.add_sensor(camera1)
camera2 = Camera('CameraSemanticSegmentation', PostProcessing='SemanticSegmentation')
# Set image resolution in pixels.
camera2.set_image_size(800, 600)
# Set its position relative to the car in meters.
camera2.set_position(0.30, 0, 1.30)
settings.add_sensor(camera2)
else:
# Alternatively, we can load these settings from a file.
with open(args.settings_filepath, 'r') as fp:
settings = fp.read()
# Load these settings into the server
scene = client.load_settings(settings)
# Choose one player start at random.
number_of_player_starts = len(scene.player_start_spots)
player_start = random.randint(0, max(0, number_of_player_starts - 1))
# Notify the server that we want to start the episode at the
# player_start index. This function blocks until the server is ready
# to start the episode.
print('Starting new episode at %r...' % scene.map_name)
client.start_episode(player_start)
# Runs the CARLA client utilizing the Autonomous-CARLA stack
def run_carla_client(self, args):
camera_fov = 0
with make_carla_client(args.host, args.port) as client:
print('CarlaClient connected')
# Load object detection model
model = torch.load(os.path.join(os.getcwd(), "models", 'model' + str(self.model_num) + '.pt'))
model = model.cuda()
print("Successfully loaded model!")
self.configure_settings_and_sensors(args, client)
# Iterate every frame in the simulation
frame = 0
depth_img = None
ss_img = None
cur_img = None
prev_img = None
while True:
frame += 1
# Read the data produced by the server this frame.
measurements, sensor_data = client.read_data()
# Print some of the measurements.
self.print_measurements(measurements)
# Save the images to disk if requested.
for name, measurement in sensor_data.items():
if name == 'CameraRGB':
# Obtain and detect objects on the RGB image
img = to_bgra_array(measurement)
cur_img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
# TODO: Compute and display object positions, depth, and lane lines
# Detect object locations using trained model
transform = T.ToTensor()
input = transform(cur_img)[0]
img = input.unsqueeze_(0)
model.eval()
pred = model(input.cuda())[0]
if depth_img is not None and ss_img is not None:
depth_img = depth_img.reshape(depth_img.shape[0], depth_img.shape[1])
perception_stack.visualize_predictions(cur_img, depth_img, ss_img, pred, camera_fov)
prev_img = cur_img
elif name == 'CameraDepth':
# Obtain and save the depth measurements for distance visualization
depth_img = depth_to_array(measurement)
elif name == 'CameraSemanticSegmentation':
# Obtain and save the semantic segmentation measurements for lane visualization
ss_img = to_bgra_array(measurement)
# Send the position to the client
control = self.get_keyboard_control()
if self.enable_autopilot:
client.send_control(measurements.player_measurements.autopilot_control)
else:
client.send_control(control)
def print_measurements(self, measurements):
number_of_agents = len(measurements.non_player_agents)
player_measurements = measurements.player_measurements
message = 'Vehicle at ({pos_x:.1f}, {pos_y:.1f}), '
message += '{speed:.0f} km/h, '
message += 'Collision: {{vehicles={col_cars:.0f}, pedestrians={col_ped:.0f}, other={col_other:.0f}}}, '
message += '{other_lane:.0f}% other lane, {offroad:.0f}% off-road, '
message += '({agents_num:d} non-player agents in the scene)'
message = message.format(
pos_x=player_measurements.transform.location.x,
pos_y=player_measurements.transform.location.y,
speed=player_measurements.forward_speed * 3.6, # m/s -> km/h
col_cars=player_measurements.collision_vehicles,
col_ped=player_measurements.collision_pedestrians,
col_other=player_measurements.collision_other,
other_lane=100 * player_measurements.intersection_otherlane,
offroad=100 * player_measurements.intersection_offroad,
agents_num=number_of_agents)
print_over_same_line(message)
# Main method execution
def main():
# Create Autonomous-CARLA reference
autonomous_carla = AutonomousCARLA(0)
# Parse configurable arguments
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--host',
metavar='H',
default='localhost',
help='IP of the host server (default: localhost)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-q', '--quality-level',
choices=['Low', 'Epic'],
type=lambda s: s.title(),
default='Low',
help='graphics quality level, a lower level makes the simulation run considerably faster.')
argparser.add_argument(
'-c', '--carla-settings',
metavar='PATH',
dest='settings_filepath',
default=None,
help='Path to a "CarlaSettings.ini" file')
args = argparser.parse_args()
log_level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
logging.info('listening to server %s:%s', args.host, args.port)
args.out_filename_format = '_out/episode_{:0>4d}/{:s}/{:0>4d}_{:0>6d}'
while True:
try:
autonomous_carla.run_carla_client(args)
print('Done.')
return
except TCPConnectionError as error:
logging.error(error)
time.sleep(1)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')