This repository has been archived by the owner on Oct 17, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 240
/
export.py
57 lines (51 loc) · 2 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
from subprocess import Popen
import tensorflow as tf
from generator import Generator
from logger import get_logger
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tf.get_logger().setLevel(40)
def main(m_path, out_dir, light):
logger = get_logger("export")
try:
g = Generator(light=light)
g.load_weights(tf.train.latest_checkpoint(m_path))
t = tf.keras.Input(shape=[None, None, 3], batch_size=None)
g(t, training=False)
g.summary()
except ValueError as e:
logger.error(e)
logger.error("Failed to load specified weight.")
logger.error("If you trained your model with --light, "
"consider adding --light when executing this script; otherwise, "
"do not add --light when executing this script.")
exit(1)
m_num = 0
smd = os.path.join(out_dir, "SavedModel")
tfmd = os.path.join(out_dir, "tfjs_model")
if light:
smd += "Light"
tfmd += "_light"
saved_model_dir = f"{smd}_{m_num:04d}"
tfjs_model_dir = f"{tfmd}_{m_num:04d}"
while os.path.exists(saved_model_dir):
m_num += 1
saved_model_dir = f"{smd}_{m_num:04d}"
tfjs_model_dir = f"{tfmd}_{m_num:04d}"
tf.saved_model.save(g, saved_model_dir)
cmd = ['tensorflowjs_converter', '--input_format', 'tf_saved_model',
'--output_format', 'tfjs_graph_model', saved_model_dir, tfjs_model_dir]
logger.info(" ".join(cmd))
exit_code = Popen(cmd).wait()
if exit_code == 0:
logger.info(f"Model converted to {saved_model_dir} and {tfjs_model_dir} successfully")
else:
logger.error("tfjs model conversion failed")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--m_path", type=str, default='models')
parser.add_argument("--out_dir", type=str, default='exported_models')
parser.add_argument("--light", action='store_true')
args = parser.parse_args()
main(args.m_path, args.out_dir, args.light)