-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneuron.cpp
119 lines (108 loc) · 3.34 KB
/
neuron.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/* Copyright (c) 2013 Michael LeSane
*
* Distributed under the Boost Software License, Version 1.0. (See accompanying
* file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
hpx::lcos::future<float> neuron::get_f_future()
{
return hpx::lcos::local::dataflow
(
hpx::util::unwrapped
( [] (float a)
{
return f(a);
}
),this->new_value
);
}
//initialization
neuron::neuron(float bias, int count_activations, int random)
{
this->value = 0.0;
this->bias = bias;
if(bias)
{
this->value = 1.0;
this->new_value = hpx::lcos::make_ready_future((float)1.0);
} else this->new_value = hpx::lcos::make_ready_future((float)0.0);
this->new_error = hpx::lcos::make_ready_future((float)0.0);
this->new_delta = hpx::lcos::make_ready_future((float)0.0);
//Activation-related data
for(int k = 0; k < count_activations; k++)
{
this->weights.push_back(rnd()-0.5);
this->last_change.push_back(0);
}
}
//waits on and returns delta from backpropagation.
float neuron::get_delta()
{
this->delta = this->new_delta.get();
return this->delta;
}
//waits on and returns hidden error.
float neuron::get_error()
{
this->error = this->new_error.get();
return this->error;
}
//forward pass
void neuron::run(std::vector<neuron> roots, int serial)
{
//serial = 1;
/*
Executing rows in parallel and neurons for each row in serial
seems to sometimes give parallel execution a slight advantage over
serial execution in certain simulations, if not equal/similar performance.
To do this, set serial to 1 above. Otherwise, remove the line.
Larger networks (e.g., 100,000 neurons) tend to end in segfaults,
and otherwise have excessively lengthy execution times,
so scalability of the "finest-grain implementation" thus far
has not been be properly assessed at this point.
*/
if (this->bias) return;
if (serial) this->new_value = hpx::lcos::make_ready_future(productsum(future_get_roots(roots),this->weights));
else this->new_value = hpx::async(&future_productsum,roots,this->weights);
}
//waits on and returns activation future.
float neuron::get_value()
{
if(!this->bias)
this->value = f(this->new_value.get());
return this->value;
}
//backpropagation
void neuron::correct(float target, int j /* index */, float m, float n, neuron_row prev, neuron_row next, int serial)
{
if (this->bias) return;
if (this->out) this->new_error = hpx::lcos::make_ready_future(target - this->get_value());
if(serial)
{
if (!this->out) this->new_error = hpx::lcos::make_ready_future(calc_hidden_error(next,j));
this->new_delta = hpx::lcos::make_ready_future(this->get_error() * df(this->get_value()));
}
else
{
if (!this->out) this->new_error = future_hidden_error(next,j);
this->new_delta =
hpx::lcos::local::dataflow
(
hpx::util::unwrapped
( [] (float error, float value)
{
return error*df(value);
}
),this->new_error,hpx::lcos::make_ready_future(this->get_value())
);
}
for(int k = 0; k < (int)prev.size(); k++)
this->finalize_correct(prev,k,m,n);
}
//backpropagation finalization. momentum and weights adjusted.
void neuron::finalize_correct(neuron_row prev,int k,float m,float n)
{
float change = this->get_delta() * prev.contents[k].get_value();
float change2 = m*change + n*this->last_change[k];
this->weights[k] += change2;
this->last_change[k] = change;
}