Skip to content

Latest commit

 

History

History
41 lines (29 loc) · 1.71 KB

triton.md

File metadata and controls

41 lines (29 loc) · 1.71 KB

Triton: A Dynamic Binary Analysis Framework

Triton is a dynamic binary analysis framework based on PIN, providing a powerful constraint solver for symbolic execution.

Installation

You can install Triton using pip:

pip install triton-framework

Usage

Triton provides a range of functionality for binary analysis, including:

  1. Symbolic Execution:

    • triton.execute(instruction): Execute an instruction symbolically.
    • triton.getSymbolicRegister(register): Get the symbolic value of a register.
    • triton.getSymbolicMemory(address): Get the symbolic value of a memory location.
  2. Constraint Solving:

    • triton.buildConstraints(): Build a set of constraints based on the current symbolic state.
    • triton.getModel(constraint): Find a model (assignment of values) that satisfies a constraint.
  3. Taint Analysis:

    • triton.taintRegister(register): Taint a register.
    • triton.taintMemory(address): Taint a memory location.
    • triton.isTainted(operand): Check if an operand is tainted.
  4. Instruction Semantics:

    • triton.getInstruction(address): Get the instruction at a given address.
    • triton.getRegisterValue(register): Get the concrete value of a register.
    • triton.setConcreteRegisterValue(register, value): Set the concrete value of a register.
  5. Miscellaneous:

    • triton.processing(instruction): Process an instruction (execute, taint, etc.).
    • triton.setArchitecture(architecture): Set the target architecture.
    • triton.setConcreteMemoryValue(address, value): Set the concrete value of a memory location.

For more detailed information and usage examples, please refer to the Triton documentation: https://triton.quarkslab.com/documentation/