-
Notifications
You must be signed in to change notification settings - Fork 0
/
_fitpack_impl.py
355 lines (313 loc) · 12.9 KB
/
_fitpack_impl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
"""
fitpack (dierckx in netlib) --- A Python-C wrapper to FITPACK (by P. Dierckx).
FITPACK is a collection of FORTRAN programs for curve and surface
fitting with splines and tensor product splines.
See
https://web.archive.org/web/20010524124604/http://www.cs.kuleuven.ac.be:80/cwis/research/nalag/research/topics/fitpack.html
or
http://www.netlib.org/dierckx/
Copyright 2002 Pearu Peterson all rights reserved,
Pearu Peterson <[email protected]>
Permission to use, modify, and distribute this software is given under the
terms of the SciPy (BSD style) license. See LICENSE.txt that came with
this distribution for specifics.
NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK.
TODO: Make interfaces to the following fitpack functions:
For univariate splines: cocosp, concon, fourco, insert
For bivariate splines: profil, regrid, parsur, surev
"""
__all__ = ['splprep', 'splev']
import warnings
from . import _fitpack
from numpy import (atleast_1d, array, ones, zeros, sqrt, ravel, transpose, asarray)
# Try to replace _fitpack interface with
# f2py-generated version
from . import dfitpack
dfitpack_int = dfitpack.types.intvar.dtype
_iermess = {
0: ["The spline has a residual sum of squares fp such that "
"abs(fp-s)/s<=0.001", None],
-1: ["The spline is an interpolating spline (fp=0)", None],
-2: ["The spline is weighted least-squares polynomial of degree k.\n"
"fp gives the upper bound fp0 for the smoothing factor s", None],
1: ["The required storage space exceeds the available storage space.\n"
"Probable causes: data (x,y) size is too small or smoothing parameter"
"\ns is too small (fp>s).", ValueError],
2: ["A theoretically impossible result when finding a smoothing spline\n"
"with fp = s. Probable cause: s too small. (abs(fp-s)/s>0.001)",
ValueError],
3: ["The maximal number of iterations (20) allowed for finding smoothing\n"
"spline with fp=s has been reached. Probable cause: s too small.\n"
"(abs(fp-s)/s>0.001)", ValueError],
10: ["Error on input data", ValueError],
'unknown': ["An error occurred", TypeError]
}
_parcur_cache = {'t': array([], float), 'wrk': array([], float),
'iwrk': array([], dfitpack_int), 'u': array([], float),
'ub': 0, 'ue': 1}
def splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None,
full_output=0, nest=None, per=0, quiet=1):
"""
Find the B-spline representation of an N-D curve.
Given a list of N rank-1 arrays, `x`, which represent a curve in
N-dimensional space parametrized by `u`, find a smooth approximating
spline curve g(`u`). Uses the FORTRAN routine parcur from FITPACK.
Parameters
----------
x : array_like
A list of sample vector arrays representing the curve.
w : array_like, optional
Strictly positive rank-1 array of weights the same length as `x[0]`.
The weights are used in computing the weighted least-squares spline
fit. If the errors in the `x` values have standard-deviation given by
the vector d, then `w` should be 1/d. Default is ``ones(len(x[0]))``.
u : array_like, optional
An array of parameter values. If not given, these values are
calculated automatically as ``M = len(x[0])``, where
v[0] = 0
v[i] = v[i-1] + distance(`x[i]`, `x[i-1]`)
u[i] = v[i] / v[M-1]
ub, ue : int, optional
The end-points of the parameters interval. Defaults to
u[0] and u[-1].
k : int, optional
Degree of the spline. Cubic splines are recommended.
Even values of `k` should be avoided especially with a small s-value.
``1 <= k <= 5``, default is 3.
task : int, optional
If task==0 (default), find t and c for a given smoothing factor, s.
If task==1, find t and c for another value of the smoothing factor, s.
There must have been a previous call with task=0 or task=1
for the same set of data.
If task=-1 find the weighted least square spline for a given set of
knots, t.
s : float, optional
A smoothing condition. The amount of smoothness is determined by
satisfying the conditions: ``sum((w * (y - g))**2,axis=0) <= s``,
where g(x) is the smoothed interpolation of (x,y). The user can
use `s` to control the trade-off between closeness and smoothness
of fit. Larger `s` means more smoothing while smaller values of `s`
indicate less smoothing. Recommended values of `s` depend on the
weights, w. If the weights represent the inverse of the
standard-deviation of y, then a good `s` value should be found in
the range ``(m-sqrt(2*m),m+sqrt(2*m))``, where m is the number of
data points in x, y, and w.
t : int, optional
The knots needed for task=-1.
full_output : int, optional
If non-zero, then return optional outputs.
nest : int, optional
An over-estimate of the total number of knots of the spline to
help in determining the storage space. By default nest=m/2.
Always large enough is nest=m+k+1.
per : int, optional
If non-zero, data points are considered periodic with period
``x[m-1] - x[0]`` and a smooth periodic spline approximation is
returned. Values of ``y[m-1]`` and ``w[m-1]`` are not used.
quiet : int, optional
Non-zero to suppress messages.
This parameter is deprecated; use standard Python warning filters
instead.
Returns
-------
tck : tuple
A tuple (t,c,k) containing the vector of knots, the B-spline
coefficients, and the degree of the spline.
u : array
An array of the values of the parameter.
fp : float
The weighted sum of squared residuals of the spline approximation.
ier : int
An integer flag about splrep success. Success is indicated
if ier<=0. If ier in [1,2,3] an error occurred but was not raised.
Otherwise an error is raised.
msg : str
A message corresponding to the integer flag, ier.
See Also
--------
splrep, splev, sproot, spalde, splint,
bisplrep, bisplev
UnivariateSpline, BivariateSpline
Notes
-----
See `splev` for evaluation of the spline and its derivatives.
The number of dimensions N must be smaller than 11.
References
----------
.. [1] P. Dierckx, "Algorithms for smoothing data with periodic and
parametric splines, Computer Graphics and Image Processing",
20 (1982) 171-184.
.. [2] P. Dierckx, "Algorithms for smoothing data with periodic and
parametric splines", report tw55, Dept. Computer Science,
K.U.Leuven, 1981.
.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs on
Numerical Analysis, Oxford University Press, 1993.
"""
if task <= 0:
_parcur_cache = {'t': array([], float), 'wrk': array([], float),
'iwrk': array([], dfitpack_int), 'u': array([], float),
'ub': 0, 'ue': 1}
x = atleast_1d(x)
idim, m = x.shape
if per:
for i in range(idim):
if x[i][0] != x[i][-1]:
if quiet < 2:
warnings.warn(RuntimeWarning('Setting x[%d][%d]=x[%d][0]' %
(i, m, i)))
x[i][-1] = x[i][0]
if not 0 < idim < 11:
raise TypeError('0 < idim < 11 must hold')
if w is None:
w = ones(m, float)
else:
w = atleast_1d(w)
ipar = (u is not None)
if ipar:
_parcur_cache['u'] = u
if ub is None:
_parcur_cache['ub'] = u[0]
else:
_parcur_cache['ub'] = ub
if ue is None:
_parcur_cache['ue'] = u[-1]
else:
_parcur_cache['ue'] = ue
else:
_parcur_cache['u'] = zeros(m, float)
if not (1 <= k <= 5):
raise TypeError('1 <= k= %d <=5 must hold' % k)
if not (-1 <= task <= 1):
raise TypeError('task must be -1, 0 or 1')
if (not len(w) == m) or (ipar == 1 and (not len(u) == m)):
raise TypeError('Mismatch of input dimensions')
if s is None:
s = m - sqrt(2*m)
if t is None and task == -1:
raise TypeError('Knots must be given for task=-1')
if t is not None:
_parcur_cache['t'] = atleast_1d(t)
n = len(_parcur_cache['t'])
if task == -1 and n < 2*k + 2:
raise TypeError('There must be at least 2*k+2 knots for task=-1')
if m <= k:
raise TypeError('m > k must hold')
if nest is None:
nest = m + 2*k
if (task >= 0 and s == 0) or (nest < 0):
if per:
nest = m + 2*k
else:
nest = m + k + 1
nest = max(nest, 2*k + 3)
u = _parcur_cache['u']
ub = _parcur_cache['ub']
ue = _parcur_cache['ue']
t = _parcur_cache['t']
wrk = _parcur_cache['wrk']
iwrk = _parcur_cache['iwrk']
t, c, o = _fitpack._parcur(ravel(transpose(x)), w, u, ub, ue, k,
task, ipar, s, t, nest, wrk, iwrk, per)
_parcur_cache['u'] = o['u']
_parcur_cache['ub'] = o['ub']
_parcur_cache['ue'] = o['ue']
_parcur_cache['t'] = t
_parcur_cache['wrk'] = o['wrk']
_parcur_cache['iwrk'] = o['iwrk']
ier = o['ier']
fp = o['fp']
n = len(t)
u = o['u']
c.shape = idim, n - k - 1
tcku = [t, list(c), k], u
if ier <= 0 and not quiet:
warnings.warn(RuntimeWarning(_iermess[ier][0] +
"\tk=%d n=%d m=%d fp=%f s=%f" %
(k, len(t), m, fp, s)))
if ier > 0 and not full_output:
if ier in [1, 2, 3]:
warnings.warn(RuntimeWarning(_iermess[ier][0]))
else:
try:
raise _iermess[ier][1](_iermess[ier][0])
except KeyError as e:
raise _iermess['unknown'][1](_iermess['unknown'][0]) from e
if full_output:
try:
return tcku, fp, ier, _iermess[ier][0]
except KeyError:
return tcku, fp, ier, _iermess['unknown'][0]
else:
return tcku
_curfit_cache = {'t': array([], float), 'wrk': array([], float),
'iwrk': array([], dfitpack_int)}
def splev(x, tck, der=0, ext=0):
"""
Evaluate a B-spline or its derivatives.
Given the knots and coefficients of a B-spline representation, evaluate
the value of the smoothing polynomial and its derivatives. This is a
wrapper around the FORTRAN routines splev and splder of FITPACK.
Parameters
----------
x : array_like
An array of points at which to return the value of the smoothed
spline or its derivatives. If `tck` was returned from `splprep`,
then the parameter values, u should be given.
tck : tuple
A sequence of length 3 returned by `splrep` or `splprep` containing
the knots, coefficients, and degree of the spline.
der : int, optional
The order of derivative of the spline to compute (must be less than
or equal to k).
ext : int, optional
Controls the value returned for elements of ``x`` not in the
interval defined by the knot sequence.
* if ext=0, return the extrapolated value.
* if ext=1, return 0
* if ext=2, raise a ValueError
* if ext=3, return the boundary value.
The default value is 0.
Returns
-------
y : ndarray or list of ndarrays
An array of values representing the spline function evaluated at
the points in ``x``. If `tck` was returned from `splprep`, then this
is a list of arrays representing the curve in N-D space.
See Also
--------
splprep, splrep, sproot, spalde, splint
bisplrep, bisplev
References
----------
.. [1] C. de Boor, "On calculating with b-splines", J. Approximation
Theory, 6, p.50-62, 1972.
.. [2] M.G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths
Applics, 10, p.134-149, 1972.
.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs
on Numerical Analysis, Oxford University Press, 1993.
"""
t, c, k = tck
try:
c[0][0]
parametric = True
except Exception:
parametric = False
if parametric:
return list(map(lambda c, x=x, t=t, k=k, der=der:
splev(x, [t, c, k], der, ext), c))
else:
if not (0 <= der <= k):
raise ValueError("0<=der=%d<=k=%d must hold" % (der, k))
if ext not in (0, 1, 2, 3):
raise ValueError("ext = %s not in (0, 1, 2, 3) " % ext)
x = asarray(x)
shape = x.shape
x = atleast_1d(x).ravel()
y, ier = _fitpack._spl_(x, der, t, c, k, ext)
if ier == 10:
raise ValueError("Invalid input data")
if ier == 1:
raise ValueError("Found x value not in the domain")
if ier:
raise TypeError("An error occurred")
return y.reshape(shape)