Skip to content

An open-source, interactive graphing library for Python ✨

License

Notifications You must be signed in to change notification settings

mprostock/plotly.py

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

plotly.py

Latest Release
PyPI Downloads
License

Quickstart

pip install plotly "notebook>=5.3" "ipywidgets>=7.2"

Inside Jupyter notebook:

import plotly.graph_objs as go
fig = go.FigureWidget()
# Display an empty figure
fig
# Add a scatter chart
fig.add_scatter(y=[2, 1, 4, 3])
# Add a bar chart
fig.add_bar(y=[1, 4, 3, 2])
# Add a title
fig.layout.title = 'Hello FigureWidget'

See the Python documentation for more examples.

Read about what's new in plotly.py v3

Overview

plotly.py is an interactive, open-source, and browser-based graphing library for Python ✨

Built on top of plotly.js, plotly.py is a high-level, declarative charting library. plotly.js ships with over 30 chart types, including scientific charts, 3D graphs, statistical charts, SVG maps, financial charts, and more.

plotly.py is MIT Licensed. Plotly graphs can be viewed in Jupyter notebooks, standalone HTML files, or hosted online on plot.ly.

Contact us for Plotly.js consulting, dashboard development, application integration, and feature additions. Sharing your graphs online or in dashboards? Consider a plot.ly subscription.



Installation

plotly.py may be installed using pip...

pip install plotly==3.7.1

or conda.

conda install -c plotly plotly=3.7.1

Jupyter Notebook Support

For use in the Jupyter Notebook, install the notebook and ipywidgets packages using pip...

pip install "notebook>=5.3" "ipywidgets>=7.2"

or conda.

conda install "notebook>=5.3" "ipywidgets>=7.2"

JupyterLab Support (Python 3.5+)

For use in JupyterLab, install the jupyterlab and ipywidgets packages using pip...

pip install jupyterlab==0.35 "ipywidgets>=7.2"

or conda.

conda install jupyterlab=0.35 "ipywidgets>=7.2"

Then run the following commands to install the required JupyterLab extensions:

# Avoid "JavaScript heap out of memory" errors during extension installation
# (OS X/Linux)
export NODE_OPTIONS=--max-old-space-size=4096
# (Windows)
set NODE_OPTIONS=--max-old-space-size=4096

# Jupyter widgets extension
jupyter labextension install @jupyter-widgets/[email protected] --no-build

# FigureWidget support
jupyter labextension install [email protected] --no-build

# offline iplot support
jupyter labextension install @jupyterlab/[email protected] --no-build

# JupyterLab chart editor support (optional)
jupyter labextension install [email protected] --no-build

# Build extensions (must be done to activate extensions since --no-build is used above)
jupyter lab build

# Unset NODE_OPTIONS environment variable
# (OS X/Linux)
unset NODE_OPTIONS
# (Windows)
set NODE_OPTIONS=

Static Image Export

plotly.py supports static image export using the to_image and write_image functions in the plotly.io package. This functionality requires the installation of the plotly orca command line utility and the psutil Python package.

These dependencies can both be installed using conda:

conda install -c plotly plotly-orca psutil

Or, psutil can be installed using pip...

pip install psutil

and orca can be installed according to the instructions in the orca README.

Migration

If you're migrating from plotly.py version 2, please check out the migration guide

Copyright and Licenses

Code and documentation copyright 2019 Plotly, Inc.

Code released under the MIT license.

Docs released under the Creative Commons license.

About

An open-source, interactive graphing library for Python ✨

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 80.8%
  • JavaScript 16.9%
  • PostScript 2.3%
  • Jupyter Notebook 0.0%
  • Makefile 0.0%
  • Shell 0.0%