-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmst_test.py
143 lines (108 loc) · 3.6 KB
/
mst_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import mst
import mst_Tim_Dozat as mst_test
from random import randint
import numpy as np
def negative_graph(graph):
'''This puts the negative weight in graph as the cost in the new graph'''
new_graph = {}
for vtx, nbhs in graph.items():
new_graph[vtx] = {}
for nbh, weight in nbhs.items():
new_graph[vtx][nbh] = -weight
return new_graph
def random_graph_gen(n):
'''This function generates a graph rooted at 0, with random positive weighths'''
graph = {}
for vtx in range(n):
graph[vtx] = {}
for nbh in range(1, n):
if nbh != vtx:
graph[vtx][nbh] = randint(1, 10)
return graph
def cycle_check(root, graph, vertices):
'''This finds out if there is a cycle in the graph - BFS'''
visited = {vtx: 0 for vtx in vertices}
non_leaves = {vtx for vtx, nbhs in graph.items()}
queue = [root]
while queue != []:
vtx = queue[0]
visited[vtx] = 1
if vtx in non_leaves:
nbhs = graph[vtx]
for nbh, weight in nbhs.items():
if visited[nbh] == 1:
return 0
queue.append(nbh)
queue.pop(0)
# Now check that every vertex was visited (only one connected component)
for vtx in vertices:
if visited[vtx] == 0:
return 0
return 1
def graph2scores (graph):
'''Takes a graph as input and returns the reversed scores'''
n = len(graph)
score = np.full([n, n], 0.)
for vtx, nbhs in graph.items():
for nbh, weight in nbhs.items():
score[nbh][vtx] = weight
def softmax(x):
x -= np.max(x, axis=1, keepdims=True)
x = np.exp(x)
return x / np.sum(x, axis=1, keepdims=True)
probs = softmax(score)
probs *= 1-np.eye(len(probs)).astype(np.float32)
probs[0] = 0
probs[0,0] = 1
probs /= np.sum(probs, axis=1, keepdims=True)
'''# Now make it a probability matrix (i.e. sum of outgoing scores should be 1)
# (i.e. sum of columns should be 1)
for vtx in range(n):
sum_col = 0
for nbh in range(1, n):
sum_col += score[nbh][vtx]
for nbh in range(1, n):
score[nbh][vtx] /= sum_col'''
return probs
def scores2graph(scores):
'''Takes a score matrix and return the corresponding graph'''
l = len(scores)
graph = {}
for vtx in range(l):
graph[vtx]= {}
for nbh in range(1, l):
graph[vtx][nbh] = scores[nbh][vtx]
return graph
def test(no_tests, size_graph):
'''Test mst against mst_Martin_Louis_Bright for no_tests many test of size
size_graph'''
# This variables chek the number of tests on which the comparation algorithm
# did return a tree, and how many times it had the same weight
pass_test = 0
same_weight = 0
count = 0
for t in range(no_tests):
graph = random_graph_gen(size_graph)
score = graph2scores(graph)
test_tree = mst.mst(graph)
comp_tree = mst_test.chu_liu_edmonds(score)
# compare the two trees by comarping the resulting weight
test_sum = 0
comp_sum = 0
for vtx, nbhs in test_tree.items():
for nbh, weight in nbhs.items():
test_sum += graph[vtx][nbh]
for nbh, vtx in enumerate(comp_tree):
if nbh != 0 and nbh!=vtx:
comp_sum += graph[vtx][nbh]
if test_sum != comp_sum:
#count += 1
return ('problem found:', graph, test_sum, comp_sum, test_tree, comp_tree, score)
# Below is the comparation of the exact trees
'''
for vtx, nbhs in comp_tree.items():
test_nbh = list(test_tree[vtx].keys())
comp_nbh = list(comp_tree[vtx].keys())
if test_nbh != comp_nbh:
return ('problem found:', graph, test_tree, comp_tree)'''
return ('All fine!', count)