-
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathexamples.m
280 lines (224 loc) · 11.1 KB
/
examples.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
% exemplary applications of
% the frequency-dependent F-number to
% coherent plane-wave compounding
%
% -------------------------------------------------------------------------
% REFERENCES:
% -------------------------------------------------------------------------
% [1] M. F. Schiffner and G. Schmitz,
% "Frequency-dependent F-number suppresses grating lobes and improves the lateral resolution in coherent plane-wave compounding,"
% IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 70, no. 9, pp. 1101-1117, Sep. 2023.
% DOI: <a href="matlab:web('https://doi.org/10.1109/TUFFC.2023.3291612')">10.1109/TUFFC.2023.3291612</a>
%
% [2] M. F. Schiffner and G. Schmitz,
% "Frequency-dependent F-number increases the contrast and the spatial resolution in fast pulse-echo ultrasound imaging,"
% 2021 IEEE Int. Ultrasonics Symp. (IUS), Xi'an, China, Sep. 2021, pp. 1-4.
% DOI: <a href="matlab:web('https://doi.org/10.1109/IUS52206.2021.9593488')">10.1109/IUS52206.2021.9593488</a>
% arxiv: <a href="matlab:web('https://arxiv.org/abs/2111.04593')">2111.04593</a>
% YouTube: <a href="matlab:web('https://www.youtube.com/watch?v=T6BoYRvQ6rg')">T6BoYRvQ6rg</a>
%
% -------------------------------------------------------------------------
% ABOUT:
% -------------------------------------------------------------------------
% author: Martin F. Schiffner
% date: 2023-07-14
% modified: 2023-11-15
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% clear workspace
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
close all;
clear;
clc;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 0.) parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load RF data (tissue phantom)
load( 'data_RF.mat' );
% specify bandwidth
f_bounds = [ f_lb, f_ub ];
% specify time index of the sample extracted from the focused RF signal
index_t0 = 8;
% steering angles in rad
steering_angles_rad = deg2rad( steering_angles_deg );
% dependent parameters
positions_x = (-255.5:255.5) * element_pitch / 4;
positions_z = ( 64 + (0:511) ) * element_pitch / 4;
% dynamic range for all illustrations
dynamic_range_dB = 60;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 1.) typical usage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% typical usage of
% the Fourier-domain beamformer in
% coherent plane-wave compounding
%--------------------------------------------------------------------------
% 1.) compute images
%--------------------------------------------------------------------------
% specify cell array for results
images = cell( 1, numel( steering_angles_rad ) );
% iterate steering angles
for index_angle = 1:numel( steering_angles_rad )
% call Fourier-domain beamformer
images{ index_angle } = das_pw( positions_x, positions_z, data_RF( :, :, index_angle ), f_s, steering_angles_rad( index_angle ), element_width, element_pitch, c_avg, f_bounds, index_t0 );
end
% compute compound image
image_compound = sum( cat( 3, images{ : } ), 3 );
%--------------------------------------------------------------------------
% 2.) show results
%--------------------------------------------------------------------------
c_limits = [ -dynamic_range_dB, 0 ];
figure( 1 );
for index_angle = 1:numel( steering_angles_rad )
subplot( 1, numel( steering_angles_rad ), index_angle );
imagesc( positions_x * 1e3, positions_z * 1e3, 20 * log10( abs( images{ index_angle } ) / max( abs( images{ index_angle }( : ) ) ) ), c_limits );
title( sprintf( 'Steering angle: %.0f°', steering_angles_deg( index_angle ) ) );
xlabel( 'Lateral position (mm)' );
ylabel( 'Axial position (mm)' );
colormap gray;
end
figure( 2 );
imagesc( positions_x * 1e3, positions_z * 1e3, 20 * log10( abs( image_compound ) / max( abs( image_compound( : ) ) ) ), c_limits );
title( 'Coherent compounding' );
xlabel( 'Lateral position (mm)' );
ylabel( 'Axial position (mm)' );
colormap gray;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 2.) graphical abstract
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Reproduce the graphical abstract of [1].
% select steering angle of -20°
index_angle = 1;
% specify receive F-numbers
F_numbers_rx = { f_numbers.constant( 0 ), f_numbers.constant( 1.5 ), f_numbers.grating.angle_lb( 60, 1.5 ) };
str_titles = { 'Full aperture', 'Fixed', 'Proposed' };
%--------------------------------------------------------------------------
% 1.) compute images
%--------------------------------------------------------------------------
% specify cell array for results
images = cell( 1, numel( F_numbers_rx ) );
% iterate F-numbers
for index_F = 1:numel( F_numbers_rx )
% call Fourier-domain beamformer
images{ index_F } = das_pw( positions_x, positions_z, data_RF( :, :, index_angle ), f_s, steering_angles_rad( index_angle ), element_width, element_pitch, c_avg, f_bounds, index_t0, [], F_numbers_rx{ index_F } );
end
%--------------------------------------------------------------------------
% 2.) show results
%--------------------------------------------------------------------------
c_limits = [ -dynamic_range_dB, 0 ];
figure( 3 );
for index_F = 1:numel( F_numbers_rx )
subplot( 1, numel( F_numbers_rx ), index_F );
imagesc( positions_x * 1e3, positions_z * 1e3, 20 * log10( abs( images{ index_F } ) / max( abs( images{ index_F }( : ) ) ) ), c_limits );
title( str_titles{ index_F }, 'Interpreter', 'none' );
xlabel( 'Lateral position (mm)' );
ylabel( 'Axial position (mm)' );
colormap gray;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 3.) apodization
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% select steering angle of -20°
index_angle = 1;
% specify window functions
windows_rx = { windows.boxcar, windows.tukey( 0.2 ), windows.triangular, windows.hann };
%--------------------------------------------------------------------------
% 1.) compute images
%--------------------------------------------------------------------------
% specify cell array for results
images = cell( 1, numel( windows_rx ) );
% iterate window functions
for index_window = 1:numel( windows_rx )
% call Fourier-domain beamformer
images{ index_window } = das_pw( positions_x, positions_z, data_RF( :, :, index_angle ), f_s, steering_angles_rad( index_angle ), element_width, element_pitch, c_avg, f_bounds, index_t0, windows_rx{ index_window } );
end
%--------------------------------------------------------------------------
% 2.) show results
%--------------------------------------------------------------------------
c_limits = [ -dynamic_range_dB, 0 ];
figure( 4 );
for index_window = 1:numel( windows_rx )
subplot( 1, numel( windows_rx ), index_window );
imagesc( positions_x * 1e3, positions_z * 1e3, 20 * log10( abs( images{ index_window } ) / max( abs( images{ index_window }( : ) ) ) ), c_limits );
title( sprintf( '%s', windows_rx{ index_window } ), 'Interpreter', 'none' );
xlabel( 'Lateral position (mm)' );
ylabel( 'Axial position (mm)' );
colormap gray;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 4.) normalization
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% select steering angle of -20°
index_angle = 1;
% specify types of normalization
normalization_rx = { normalizations.off, normalizations.on };
%--------------------------------------------------------------------------
% 1.) compute images
%--------------------------------------------------------------------------
% specify cell array for results
images = cell( 1, numel( normalization_rx ) );
% iterate window functions
for index_normalization = 1:numel( normalization_rx )
% call Fourier-domain beamformer
images{ index_normalization } = das_pw( positions_x, positions_z, data_RF( :, :, index_angle ), f_s, steering_angles_rad( index_angle ), element_width, element_pitch, c_avg, f_bounds, index_t0, [], [], normalization_rx{ index_normalization } );
end
%--------------------------------------------------------------------------
% 2.) show results
%--------------------------------------------------------------------------
c_limits = [ -dynamic_range_dB, 0 ];
figure( 5 );
for index_normalization = 1:numel( normalization_rx )
subplot( 1, numel( normalization_rx ), index_normalization );
imagesc( positions_x * 1e3, positions_z * 1e3, 20 * log10( abs( images{ index_normalization } ) / max( abs( images{ index_normalization }( : ) ) ) ), c_limits );
title( sprintf( 'Normalization: %s', normalization_rx{ index_normalization } ), 'Interpreter', 'none' );
xlabel( 'Lateral position (mm)' );
ylabel( 'Axial position (mm)' );
colormap gray;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 5.) bandwidth
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The frequency bounds specify
% the bandwidth for
% all computations.
%
% Smaller bandwidths reduce
% the computational costs at
% the expense of
% the image quality.
% select steering angle of -20°
index_angle = 1;
% bandwidths used for image formation
f_c = mean( f_bounds );
fractional_bandwidths = [ 1, 0.75, 0.5, 0.25 ];
%--------------------------------------------------------------------------
% 1.) compute images
%--------------------------------------------------------------------------
% specify cell array for results
images = cell( 1, numel( fractional_bandwidths ) );
% iterate fractional bandwidths
for index_bandwidth = 1:numel( fractional_bandwidths )
% current frequency bounds
f_bounds_act = f_c * ( 1 + [ -1, 1 ] * fractional_bandwidths( index_bandwidth ) / 2 );
% call Fourier-domain beamformer
images{ index_bandwidth } = das_pw( positions_x, positions_z, data_RF( :, :, index_angle ), f_s, steering_angles_rad( index_angle ), element_width, element_pitch, c_avg, f_bounds_act, index_t0 );
end
%--------------------------------------------------------------------------
% 2.) show results
%--------------------------------------------------------------------------
c_limits = [ -dynamic_range_dB, 0 ];
figure( 6 );
for index_bandwidth = 1:numel( fractional_bandwidths )
subplot( 2, numel( fractional_bandwidths ), index_bandwidth );
imagesc( positions_x * 1e3, positions_z * 1e3, 20 * log10( abs( images{ index_bandwidth } ) / max( abs( images{ index_bandwidth }( : ) ) ) ), c_limits );
title( sprintf( 'Fractional bandwidth: %d %%', fractional_bandwidths( index_bandwidth ) * 1e2 ) );
xlabel( 'Lateral position (mm)' );
ylabel( 'Axial position (mm)' );
colormap gray;
if index_bandwidth > 1
subplot( 2, numel( fractional_bandwidths ), index_bandwidth + numel( fractional_bandwidths ) );
imagesc( positions_x * 1e3, positions_z * 1e3, 20 * log10( abs( images{ 1 } - images{ index_bandwidth } ) / max( abs( images{ 1 }( : ) ) ) ), c_limits );
title( 'Difference' );
xlabel( 'Lateral position (mm)' );
ylabel( 'Axial position (mm)' );
end
end