forked from shelfwise/Mars-Express-Challenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_data1.py
166 lines (131 loc) · 4.66 KB
/
prepare_data1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# -*- coding: utf-8 -*-
"""
@author: fornax
"""
from __future__ import print_function, division
import os
import numpy as np
import pandas as pd
import re
import json
from preprocessing import dmop_analysis
DATA_PATH = 'merged_data'
def to_datetime(df):
"""
Converts UCT timestamp [ms] to datetime in a dataframe
"""
df['ut_ms'] = pd.to_datetime(df['ut_ms'], unit='ms')
return df
def to_utms(ut):
"""
Converts datetime to UTC timestamp [ms]
"""
return (ut.astype(np.int64) * 1e-6).astype(int)
def resample(df, intervals='1H'):
"""
Resamples the data frame to a given interval
"""
df = df.resample(intervals).mean()
return df
def parse_data(filename):
"""
Read a dataframe and prepare the time axis
"""
df = pd.read_csv(filename)
df = to_datetime(df)
df = df.set_index('ut_ms')
return df
def parse_power(filename, intervals='1H', dropna=True):
"""
Prepares the power data, with resampling
"""
df = parse_data(filename)
df = resample(df, intervals)
if dropna:
df = df.dropna()
return df
def parse_dmop(filename):
"""
Prepares the DMOP data, along with cleaning and merging of commands
"""
df = parse_data(filename)
df.fillna('', inplace=True)
df.drop(['subsystem'], axis=1, inplace=True)
cols_numeric = [i for i in df if re.search('^[A-Z]{4}_curr', i) is None]
cols_nonnumeric = [i for i in df if re.search('^[A-Z]{4}_curr', i) is not None]
dmop_all = df[cols_numeric]
dmop_all = dmop_all.join(pd.get_dummies(df[cols_nonnumeric]))
dmop_all = dmop_analysis.correct_dmop(dmop_all)
return dmop_all
def parse_ftl(filename):
"""
Prepares FTL data
"""
df = pd.read_csv(filename, index_col=0)
df['ut_ms'] = df['utb_ms']
df.drop(['utb_ms', 'ute_ms'], axis=1, inplace=True)
df = to_datetime(df)
df = df.set_index('ut_ms')
return df
def align_to_power(df, powers, method='nearest'):
"""
Aligns dataframe's time axis to a common ground
"""
df = df.reindex(powers.index, method=method)
if 'm_year' in df.columns:
df.drop(['m_year'], axis=1, inplace=True)
return df
if __name__ == '__main__':
filename = 'dataset1'
intervals = '60min'
print('Preparing powers...')
powers = parse_power(os.path.join(DATA_PATH, 'power.csv'), intervals=intervals)
powers_test = parse_power('test_set/power-prediction-sample-2014-04-14_2016-03-01.csv', intervals=intervals, dropna=False)
powers_test['m_year'] = 3
powers_all = pd.concat([powers, powers_test])
print('Preparing SAAF...')
saaf_all = parse_data(os.path.join(DATA_PATH, 'saaf_processed.csv'))
print('Preparing LTDATA...')
ltdata_all = parse_data(os.path.join(DATA_PATH, 'ltdata.csv'))
print('Preparing EVTF...')
evtf_all = parse_data(os.path.join(DATA_PATH, 'evtf_processed.csv'))
evtf_all = evtf_all.groupby(level=0).last()
print('Resampling EVTF...')
evtf_all = resample(evtf_all, intervals)
print('Preparing DMOP...')
dmop_all = parse_dmop(os.path.join(DATA_PATH, 'dmop_processed.csv'))
print('Resampling DMOP...')
dmop_all = resample(dmop_all, intervals)
print('Preparing FTL...')
ftl_all = parse_ftl(os.path.join(DATA_PATH, 'ftl_processed.csv'))
print('Resampling FTL...')
ftl_all = resample(ftl_all, intervals)
print('Aligning time to powers...')
filling_method = 'nearest'
saaf_all = align_to_power(saaf_all, powers_all, method=filling_method)
ltdata_all = align_to_power(ltdata_all, powers_all, method=filling_method)
dmop_all = align_to_power(dmop_all, powers_all, method=filling_method)
ftl_all = align_to_power(ftl_all, powers_all, method=filling_method)
evtf_all = align_to_power(evtf_all, powers_all, method=filling_method)
print('Creating the dataframe...')
df = powers_all.copy()
df = df.join(saaf_all)
df = df.join(ltdata_all)
df = df.join(dmop_all)
df = df.join(ftl_all)
df = df.join(evtf_all)
df['mission_time'] = to_utms(df.index)
path_to_save = os.path.join(DATA_PATH, filename + '.csv')
print('Saving to %s' % path_to_save)
df.to_csv(path_to_save)
features = {}
features['NPWD'] = list(powers_all.columns)
features['saaf'] = list(saaf_all.columns)
features['ltdata'] = list(ltdata_all.columns)
features['dmop'] = list(dmop_all.columns)
features['ftl'] = list(ftl_all.columns)
features['evtf'] = list(evtf_all.columns)
features['aux_time'] = ['m_year', 'mission_time']
with open(os.path.join(DATA_PATH, filename + '.features'), 'w') as f:
json.dump(features, f)
print('Done!')