-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpilot_expt.py
251 lines (201 loc) · 7.63 KB
/
pilot_expt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
"""This script defines the pilot closed loop experiment.
Instructions:
1. Open cmder
2. Go to the right folder and activate environment
cd C:\code\leap_rigs
activate leap_rigs
Terminal should say this:
C:\code\leap_rigs (main -> origin)
(leap_rigs) λ
3. Run experiment with:
python pilot_expt.py
"""
import leap_rigs
import datetime
import time
import numpy as np
import glob
import os
import h5py
##########
experiment_duration = 30 # minutes
daq_sample_frequency = 10000 # samples/s
cam_trigger_frequency = 150 # frames/s
callback_sample_frequency = 250 # samples (determines min opto latency)
cam_sn = "16276625" # MurthyLab-PC05 -> Cam1
ao_trigger = "Dev1/ao0"
ai_audio = "Dev1/ai0:8"
ai_exposure = "Dev1/ai15"
ao_opto = "Dev1/ao1"
ai_opto_loopback = "Dev1/ai9"
# cam_sn = "18159111" # MurthyLab-PC05 -> Cam2
# ao_trigger = "Dev1/ao2"
# ai_audio = "Dev1/ai16:24"
# ai_exposure = "Dev1/ai31"
# ao_opto = None
# ai_opto_loopback = None
model_paths = [
"models/centroids.200823_193403.UNet.zip", # fast
# "centroid.200816_202746.UNet.zip", # accurate
"models/wt_gold.13pt.multiclass_topdown.zip",
]
##########
expt_name = datetime.datetime.now().strftime("%y%m%d_%H%M%S")
data_path = f"D:/Motif/daq/daq.{expt_name}.h5"
# metadata = {"title": expt_name, "description": hostname}
metadata = {"title": expt_name}
metadata.update(leap_rigs.motif.get_experiment_metadata())
motif = leap_rigs.motif.get_motif_remote()
# Start camera
vid_filename = f"{expt_name}_{cam_sn}"
motif.call("camera/%s/recording/start" % cam_sn, codec="h264-gpu", filename=vid_filename, metadata=metadata)
print("Started recording camera video")
##########
stream_poller = leap_rigs.motif.StreamPoller(api=motif, camera_sn=cam_sn)
live_predictor = leap_rigs.tracking.LivePredictor.load_model(model_paths, get_image_fn=lambda: stream_poller.latest_image)
stream_poller.start()
live_predictor.start()
poses = leap_rigs.flies.PoseBuffer()
# opto_stim = leap_rigs.daq.test_opto_stim_fn
t_last_msg = time.perf_counter()
latencies = []
pose_preds = []
pose_samples = []
def opto_stim(s0, s1, number_of_samples, chunk_input_data, daq):
global t_last_msg
# img, md = stream_poller.latest_image
# if img is not None:
# print(img.shape)
# else:
# print(None)
# return 0.0
(img, meta), (pred, lp_timestamp) = live_predictor.last_data_and_prediction
if meta is not None:
# frame_idx, vr_timestamp = meta
img_timestamp = meta["timestamp"]
latency = lp_timestamp - img_timestamp
latencies.append(latency)
pose_preds.append(pred["instance_peaks"][0].copy())
pose_samples.append(s0)
# Update pose buffer and compute features.
poses.update(pred)
feats = poses.compute_features()
# Decide trigger based on feature thresholds.
# do_trigger = (feats.min_dist < 2) and (np.abs(feats.ang_f_rel_m) < 25)
# do_trigger = (feats.min_dist < 2) and (np.abs(feats.ang_f_rel_m) < 25) and (np.abs(feats.ang_m_rel_f) > 120)
do_trigger = (feats.min_dist < 2) and (np.abs(feats.ang_f_rel_m) < 25) and (np.abs(feats.ang_m_rel_f) > 145)
msg = f"latency = {latency*1000:.1f} ms / min_dist = {feats.min_dist:.1f} mm / ang_f_rel_m = {feats.ang_f_rel_m:.1f} / ang_m_rel_f = {feats.ang_m_rel_f:.1f} / trigger: {do_trigger}"
if (time.perf_counter() - t_last_msg) > 1.0:
print(msg)
t_last_msg = time.perf_counter()
if do_trigger:
return 3.0
# Encode distance in opto output
# if np.isnan(feats.dist):
# dist_norm = 0.
# else:
# dist_norm = (np.clip(feats.dist, 0, 30) / 30 * 4) + 1
# return dist_norm
return 0.0
##########
# Setup DAQ
daq_controller = leap_rigs.daq.DAQController(
ao_trigger=ao_trigger,
ai_audio=ai_audio,
ai_exposure=ai_exposure,
ao_opto=ao_opto,
ai_opto_loopback=ai_opto_loopback,
data_path=data_path,
# data_path=None,
opto_data=opto_stim,
# opto_data=0.,
daq_sample_frequency=daq_sample_frequency,
cam_trigger_frequency=cam_trigger_frequency,
callback_sample_frequency=callback_sample_frequency,
expected_duration=experiment_duration + 1,
)
# daq_controller.start()
daq_controller.setup_daq()
daq_controller.setup_saving()
print("Setup DAQ and saving")
# Start DAQ and triggering after a delay
daq_controller.start_saving()
print("Started saving")
time.sleep(2.5)
daq_controller.start_triggering()
print("Started triggering")
t0 = time.time()
done = False
while not done:
# Check if we're past the max duration
time_elapsed = time.time() - t0
max_duration_expired = time_elapsed > (experiment_duration * 60)
# Check if no cameras are running
still_recording = motif.is_recording(cam_sn)
# Determine if we're done
done = max_duration_expired or (not still_recording)
# Pause
if not done:
time.sleep(5.0)
print(f"[t = {time_elapsed / 60:.2f} min] Still recording")
# print(stream_poller.is_alive(), live_predictor.is_alive())
total_duration = time.time() - t0
print("Stopping experiment after %.1f minutes" % (total_duration / 60))
# Stop triggering
# daq_controller.stop()
daq_controller.stop_triggering()
print("Stopped triggering")
if len(latencies) > 0:
print(f"Latencies: {np.mean(latencies)*1000:.1f} ms / Max: {max(latencies)*1000:.1f} ms / Min: {min(latencies)*1000:.1f} ms")
# Send stop signal to cameras
for cam in [cam_sn]:
motif.call('camera/%s/recording/stop' % cam)
print("STOP", cam)
time.sleep(1)
# Wait for them to finish
done_recording = False
while not done_recording:
# Check if cameras are running
try:
still_recording = [motif.is_recording(cam) for cam in [cam_sn]]
done_recording = not any(still_recording)
except:
print("Error checking if cameras are still recording")
done_recording = True
if not done_recording:
print("Waiting for cameras to finish recording...")
time.sleep(1)
time.sleep(2.5)
daq_controller.stop_saving()
print("Stopped saving")
if daq_controller.is_saving:
time.sleep(3)
# Move data to final session folder
with h5py.File(data_path, "r") as daqF:
daq_data = daqF["data"]
vidDest = "D:/Motif/" + vid_filename
for _ in range(3):
try:
vidSource = glob.glob(f"D:/Motif/{cam_sn}/{vid_filename}*")[0]
os.rename(vidSource, vidDest)
print(f"Moved: {vidSource} -> {vidDest}")
break
except:
time.sleep(3)
with h5py.File(vidDest + "/daq.h5", "w") as f:
f.create_dataset("audio",data=daq_data[0:9,:], compression="gzip", compression_opts=1)
f.create_dataset("sync",data=daq_data[9,:], compression="gzip", compression_opts=1)
print("Saved audio and sync")
if daq_data.shape[0] > 10:
f.create_dataset("opto", data=daq_data[10,:], compression="gzip", compression_opts=1)
print("Saved opto outputs")
if len(latencies) > 0:
f.create_dataset("pose_latencies", data=np.array(latencies), compression="gzip", compression_opts=1)
print("Saved pose latencies")
if len(pose_preds) > 0:
f.create_dataset("pose_preds", data=np.array(pose_preds), compression="gzip", compression_opts=1)
print("Saved pose predictions")
if len(latencies) > 0:
f.create_dataset("pose_samples", data=np.array(pose_samples), compression="gzip", compression_opts=1)
print("Saved pose sample inds")
print("Moved data to final session folder:", vidDest)