-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpilot_opto.py
270 lines (219 loc) · 8.41 KB
/
pilot_opto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
"""This script defines the pilot opto experiment.
Instructions:
1. Open cmder
2. Go to the right folder and activate environment
cd C:\code\leap_rigs
activate leap_rigs
Terminal should say this:
C:\code\leap_rigs (main -> origin)
(leap_rigs) λ
3. Run experiment with:
python pilot_opto.py
"""
###################################################
############## Experiment parameters ##############
###################################################
experiment_duration = 20/60 # minutes
daq_sample_frequency = 10000 # samples/s
cam_trigger_frequency = 150 # frames/s
callback_sample_frequency = 250 # samples (determines min opto latency -- not important in open loop)
# Set these to True or False to use one or two cameras
record_left_camera = True
record_right_camera = True
# Set these to None to disable opto
# opto_stim_left = None
# opto_stim_right = None
# Or set them to a path to a MAT file with pre-generated stimulus.
#
# These are created in MATLAB like:
# >> stim = [ones(10000, 1) * 3; zeros(10000, 1)]; save('opto_stims/example_opto_stim1.mat', 'stim')
# >> stim = [zeros(10000, 1); ones(10000, 1) * 3]; save('opto_stims/example_opto_stim2.mat', 'stim')
#
# You can also use the same one for both cameras.
opto_stim_left = "opto_stims/example_opto_stim1.mat"
opto_stim_right = "opto_stims/example_opto_stim2.mat"
###################################################
###################################################
### Only edit this section when switching rigs ###
###################################################
cams = []
ao_trigger = []
ai_audio = []
ai_exposure = []
ao_opto = []
ai_opto_loopback = []
opto_stim = []
rig_names = []
if record_left_camera:
# MurthyLab-PC05 -> Cam1
cams.append("16276625")
ao_trigger.append("Dev1/ao0")
ai_audio.append("Dev1/ai0:8")
ai_exposure.append("Dev1/ai15")
ao_opto.append("Dev1/ao1")
ai_opto_loopback.append("Dev1/ai9")
opto_stim.append(opto_stim_left)
rig_names.append("rig2_1")
if record_right_camera:
# MurthyLab-PC05 -> Cam2
cams.append("18159111")
ao_trigger.append("Dev1/ao2")
ai_audio.append("Dev1/ai16:24")
ai_exposure.append("Dev1/ai31")
ao_opto.append("Dev1/ao3")
ai_opto_loopback.append("Dev1/ai25")
opto_stim.append(opto_stim_right)
rig_names.append("rig2_2")
###################################################
###################################################
############### Do not edit below!! ###############
###################################################
import leap_rigs
import datetime
import time
import numpy as np
import glob
import os
import h5py
# Setup session naming
expt_name = datetime.datetime.now().strftime("%y%m%d_%H%M%S")
data_path = f"D:/Motif/daq/daq.{expt_name}.h5"
# Get session metadata from motif
# metadata = {"title": expt_name, "description": hostname}
metadata = {"title": expt_name}
metadata.update(leap_rigs.motif.get_experiment_metadata())
# Acquire motif controller
motif = leap_rigs.motif.get_motif_remote()
# Start cameras
for cam in cams:
cam_filename = f"{expt_name}_{cam}"
motif.call(f"camera/{cam}/recording/start", codec="h264-gpu", filename=cam_filename, metadata=metadata)
print(f"Starting recording with camera {cam} -> {cam_filename}")
# Setup DAQ
daq_controller = leap_rigs.daq.DAQController(
ao_trigger=ao_trigger,
ai_audio=ai_audio,
ai_exposure=ai_exposure,
ao_opto=ao_opto,
ai_opto_loopback=ai_opto_loopback,
data_path=data_path,
opto_data=opto_stim,
daq_sample_frequency=daq_sample_frequency,
cam_trigger_frequency=cam_trigger_frequency,
callback_sample_frequency=callback_sample_frequency,
expected_duration=experiment_duration + 1,
)
# Setup DAQ
daq_controller.setup_daq()
daq_controller.setup_saving()
print("Setup DAQ and saving")
# Start DAQ and triggering after a delay
daq_controller.start_saving()
print("Started saving")
time.sleep(2.5)
daq_controller.start_triggering()
print("Started triggering")
# Keep checking if experiment is done...
t0 = time.time()
done = False
while not done:
# Check if we're past the max duration
time_elapsed = time.time() - t0
max_duration_expired = time_elapsed > (experiment_duration * 60)
# Check if no cameras are running
still_recording = any([motif.is_recording(cam) for cam in cams])
# Determine if we're done
done = max_duration_expired or (not still_recording)
# Pause
if not done:
time.sleep(5.0)
print(f"[t = {time_elapsed / 60:.2f} min] Still recording")
total_duration = time.time() - t0
print("Stopping experiment after %.1f minutes" % (total_duration / 60))
# Stop triggering
daq_controller.stop_triggering()
print("Stopped triggering")
# Send stop signal to cameras
for cam in cams:
motif.call(f"camera/{cam}/recording/stop")
print(f"Stopping camera: {cam}")
time.sleep(1)
# Wait for them to finish
done_recording = False
while not done_recording:
print("Waiting for all cameras to finish recording...")
# Check with Motif if cameras are running
still_recording = []
for cam in cams:
try:
cam_is_recording = motif.is_recording(cam)
except:
print(f"Failed to check if {cam} is recording! Will assume it is stopped.")
cam_is_recording = False
if cam_is_recording:
print(f"Waiting for {cam} to finish recording...")
still_recording.append(cam_is_recording)
time.sleep(1)
done_recording = not any(still_recording)
if not done_recording:
time.sleep(1)
time.sleep(2.5)
# Stop saving DAQ now that cameras are done
daq_controller.stop_saving()
print("Stopped saving.")
# Force close all DAQ tasks
# TODO: Figure out why they don't get closed in the above commands.
print("Making sure all tasks are closed...")
daq_controller.close_all_tasks()
print("Tasks closed:")
daq_controller.check_tasks()
# Pull out data from the temporary DAQ HDF5 data file into session folders
print("Temporary data_path:", data_path)
final_data_paths = []
if daq_controller.is_saving:
time.sleep(3)
# Move data to final session folder
with h5py.File(data_path, "r") as daqF:
daq_data = daqF["data"]
has_opto = [stim is not None for stim in opto_stim]
for c, (cam, cam_has_opto, rig) in enumerate(zip(cams, has_opto, rig_names)):
cam_filename = f"{expt_name}_{cam}"
vid_dst = f"D:/Motif/{cam_filename}_{rig}"
print(f"Saving camera data to: {vid_dst}")
for _ in range(3):
vid_src = glob.glob(f"D:/Motif/{cam}/{cam_filename}*")[0]
print(f"Trying to move: {vid_src} -> {vid_dst}")
try:
os.rename(vid_src, vid_dst)
print(f"Moved: {vid_src} -> {vid_dst}")
break
except:
time.sleep(3)
try:
vid_daq_path = f"{vid_dst}/daq.h5"
with h5py.File(vid_daq_path, "w") as f:
audio_inds = [daq_controller.channel_map.index(f"audio{i}.cam{c}") for i in range(9)]
f.create_dataset("audio", data=daq_data[audio_inds, :], compression="gzip", compression_opts=1)
print(f"Saved audio (data indices: {audio_inds})")
exposure_ind = daq_controller.channel_map.index(f"exposure.cam{c}")
f.create_dataset("sync", data=daq_data[exposure_ind, :], compression="gzip", compression_opts=1)
print(f"Saved sync (data index: {exposure_ind})")
if cam_has_opto:
opto_loopback_ind = daq_controller.channel_map.index(f"opto_loopback.cam{c}")
f.create_dataset("opto", data=daq_data[opto_loopback_ind, :], compression="gzip", compression_opts=1)
print(f"Saved opto outputs (data index: {opto_loopback_ind})")
print(f"Saved DAQ data to final session folder: {vid_daq_path}")
final_data_paths.append(vid_dst)
except:
print(f"Failed to save DAQ data to final session folder: {vid_daq_path}")
# Delete temporary DAQ HDF5 data file
try:
os.remove(data_path)
print("Deleted temporary data_path:", data_path)
except:
print("Failed to delete temporary data_path:", data_path)
time.sleep(3)
print("Session finished.")
if len(final_data_paths) > 0:
print("\nFinal data_paths:")
print("\n".join(final_data_paths))